@0

sent of Physics

dversity of New York
NY 14260, USA

ae: 1-716-645-2576
1-716-645-2507

aent of Physics

! Tsing Hua University
"300, TAIWAN

ne: 886-35-715928

1 886-35-723052
ackn@phys.nthu.edu.tw
ttis

1ent of Physics

ty of Utah

¢ City, UT 84112, USA
ne/Telefax: 1-801-3633444
mattis @mail physics.utah.edu

l
ty of Patras

*f Engineering

ring Science Department
0 Patras, GREECE

a¢: 30-61-997222
30-61-997255

a0

ate and Structural

48try Unit

astitute of Science

2-560 012, INDIA

ae: 91-80-340580
91-80-341683
snrrao@sscu.jisc.ermet.in

]
ENSI
=s Noririeux Supreconducteurs
4u Maréchal Juin
‘Caen Cedex, FRANCE
ne: 33-31-951212
'33-31-951600
RAVEAU@FRCPNILBITNET
wara
ent of Electrical
:ectronics Engineering
mstitute of Technology
sendai, Miyashiro
Saitama
345, JAPAN
1e: 0480-344111 ext 687
0480-342941
ki
for Materials Research
“Iniversity

Sendai 980, JAPAN
1e: 81-22-2152005
181-22-2152006
achiki@tachp.imr.tohoku.ac.jp

21

‘Watson Rescarch Center
218

n Heights, NY 10598, USA
1-914-9452141

suei @yktvmv

i

ell Labs
jotain Ave

ill, NJ 67974, USA

se: 1-908-5822358
1-908-5824702
1mv@physics.att.com

o

of Physics

-Academy of Sciences

1603, Beijing 100080, CHINA

: 86-1-2569220

+86-1-2568834

THAOZX @ihepvx.slac.stanford.edu

‘ntific Publishing Co. Pte. Ltd., Farrer
titon Street, Covent Garden, London

« mechanical, including photocopying,
imission from the Copyright owner.
Inc., 222 Rosewood Drive, Danvers,,

4 in January, April, July and October
5. Subscription rates available upon

fo Publications Expediting Services,
“kes, 200 Meacham Avenue, Elmont,

International Journal of Modern Physics B, Vol. 10, No. 15 (1996) 1821-1862
© World Scientific Publishing Company

CLUES TO THE EXISTENCE OF DETERMINISTIC CHAOS
» IN RIVER FLOW

AMILCARE PORPORATO and LUCA RIDOLFI

Department of Hydraulics, Transports and Civil Infrastructures,
Polytechnic of Turin, Italy

Received 21 December 1995

The present work investigates the existence of a component of deterministic chaos in the
discharge time series of a river. The first part of the work is concerned with the recon-
struction of the attractor and the calculation of the correlation integral; in the second
part the analysis is conducted with the aid of nonlinear prediction. Some clues emerge as
to the possible presence of chaos, probably immersed in a phenomenon altogether more
extensive and manifold. If confirmed, this presence could provide interesting openings
for a better comprehension of the formation mechanism of river flow, and a more precise
forecasting of floods.

1. Introduction

Recent developments in the theory of nonlinear dynamical systems have shed new
light on the comprehension of complex dynamical systems. In particular, the appli-
cation of nonlinear methods to time series of natural systems has certainly enhanced
the comprehension of phenomena, even though its results are much more “vague”
than those obtained by analytical models or laboratory experiments. In such a case,
indeed, it is not possible to be completely certain of the presence of deterministic
chaos.3*™ Because of both the great complexity of these systems, and the fact
that the available data for natural phenomenon is often small and contaminated by
disturbances of various types, the approach adopted in this case must be different.
In accord with the strategy proposed by Grassberger, Schreiber and Schaffrath,3*
emphasis is to be placed not on the search of the strongest form of determinism
(that is, the absence of any kind of random noise) which might be a good model for
the underlying process, but rather on the possibility of recognizing a weaker form
of determinism consistent with all possible tests.

Nonlinear analysis of series of natural phenomena therefore requires special at-
tention: all available methods are needed in order to explore the phenomenon from
every side. In fact after having done this, we may expect to find ourselves not
in front of irrefutable proofs which demonstrate the presence of low-dimensional
deterministic chaotic dynamics but, at best, with clues which do not enable its
exclusion.
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1822 A. Porporato & L. Ridolfi

The present work is concerned with the analysis by nonlinear dynamical methods
of the behavior of river flow. With regard to the component linked to the rainfall
regime, the study contributes to the wide field of research on climate. On the other
side, the system presents two further aspects which are also extremely relevant:
that of the response of a river basin to precipitations, with its runoff mechanism
formation; and that, concerning engineering, of flood forecasting.

Considering the climatic aspect, the approach to time series with nonlinear
methods is not new: chaos theory methods have been applied to various natural
phenomena of environmental interest, many of which were concerned precisely with
climate dynamics. Due to the extension of the problem, the subtlety of the analyses
in question, and the difficulty of obtaining sufficient reliable data, a lively scientific
debate is currently going on (see Refs. 52, 57, 96 and the references therein). Further
arguments related to climate dynamics have likewise been confronted in other works,
with interest focused also on the engineering aspects of the problem.76:82

Despite the aims and motivations partially in common with these latter studies,
the phenomenon examined here has it own particular characteristics, which are to
be added to the climatic component and make it a candidate for low-dimension
nonlinear dynamics. While, in fact the debate on the presumed climate attractor
is above all centered on the dialectics between the apparent excessive complexity
of the system and its description in terms of low-dimension dynamics, in the case
of riverflow the effect of the river network, the acquifers, glaciers and lakes can
contribute (if the climate itself is not already of a low dimension) to a reduction
of the complexity of the system. To suggest such a possibility is the fact that the
flood formation mechanism is affected by the topology of the river network, strongly
enough as to be better pictured in terms of fractal geometry (for example, Refs. 38,
63, 75 and the references therein), and by other characteristics like the geometry
of the basin, the presence of storage capacities (lakes, glaciers or snowfields), the
geology, etc. Some of these factors have in part been linked with the possible pres-
ence of chaotic dynamics''*® regarding, respectively, the behavior of runoff due to
snowmelt in a small mountain basin, and the discharges from sewer systems in large
cities.

Besides the works cited, which are not directly concerned with the problem of
riverflow, we are not aware of any studies which have investigated the presence of
deterministic chaos in the discharge time series of a natural water course. Three
articles*!»4244 are nevertheless to be noted which, without investigating the presence
or the features of an underlying deterministic chaotic dynamics, have explored the
possibility of forecasting discharges of a river using statistical methods in some way
referable, even though only formally, to chaos theory.

It appears therefore useful to undertake a detailed examination of the possibility
of the existence of deterministic chaos in the discharge time series of a river. Recog-
nizing a low-dimensional chaotic dynamics would on one side enable us to improve
flood-formation models, and on the other allow us to make forecasts which are more
reliable on short-term, and thus important for civil protection.
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Clues to the Ezistence of Deterministic Chaos in River Flow 1823

The present work reports the results on the geometry of the conjectured attractor
by means of the correlation integral and the dimensions linked to it, and analyzes
the local dynamics through nonlinear prediction.

The paper is structured as follows: after a brief outline of the characteristics
of the time series measured (Sec. 2), the results of the traditional statistical and
spectral analyses are reported (Sec. 3). The subsequent part deals with the problem
of the reconstruction of the attractor in phase space (Sec. 4). Section 5 reports the
results on the correlation dimension, which are corroborated by some simple veri-
fications presented in Sec. 6. Sections 7 and 8 deal with nonlinear prediction, seen
above all as an instrument to investigate nonline dynamics. Section 9 summarizes
the results obtained, drawing conclusions and perspectives.

2. General Features of the River Flow Series

The data used in the present work is part of the series of mean daily discharges of the
Dora Baltea, orographic left tributary of the river Po, measured at the Tavagnasco
section. The series consists of 14246 measurements, taken uninterruptedly daily
from 1st January 1941 until 31st December 1979 by the Po Hydrographic Office.
The measured section subtends the entire river basin of the Aosta Valley, alpine
region in northwest Italy. The predominantly impermeable basin has an extension
of 3313 km?, of which about 190 are glacial areas; the average height of the basin is
2080 m above sea level, the maximum 4807 m above sea level (Monte Bianco), and
the minimum, corresponding to the section measured, 263 m above sea level.

Given the rainfall regime, the geographic position, the fairly considerable exten-
sion of the basin, its compact form, and the presence of numerous glaciers, snowfields
and lakes, the river flow of the Dora Baltea is of the glaciopluvial kind, not very
irregular. Besides, numerous large and small valleys and a wide area of pasture and
forest make such a water course a valid representative for a first study of the kind
discussed in the Introduction.

The discharge values are obtained by evaluating the free surface level of the
water course in the measuring section, from which the rating curve of discharges is
taken and calibrated. This links the discharges to the height of the water through
the geometrical and hydraulic characteristics of the section of the water course.
The data can be affected by a certain imprecision, reflected in the rather modest
number of significant digits of the measurement (reported to one tenth of m3/s)
and by errors in the valuation of the discharges. The latter are accentuated on
the occasion of large flood discharges, both because it is then more difficult to
measure correctly the levels reached from the free surface and the characteristics
of the liquid section, and because erosions and deposits from extreme hydrological
events may alter the characteristics of the section itself. To such disturbances to
measurements, which should be taken carefully into consideration in the subsequent
elaborations, we also need to add human activity factors, manifested in withdrawals

T
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1824 A. Porporato & L. Ridolfi

for hydroelectric use, irrigation, acqueducts, etc. For the Dora Baltea river, in the

section under examination, such effects
respect to those observed in other water
Figure 1a shows the discharge time s

larged (Figs. 1b—c). Clearly visible are the flood peaks and the seasonal periodicity,
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Figs. la—c. Discharge time series behavior.

Table 1
mean 92.8 m3/s
standard deviation 80.7 m3/s
skewness 2.7
kurtosis 18.0
maximum 1260.0 m3/s
minimum 18.0 m3/s
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Table 1 shows the principal data of the series; Fig. 2 shows its probability density
function, which displays an exponential behavior for high discharge values.

107 g

pd.f

x (m/s)

Fig. 2. Probability density function.

3. Autocorrelation and Power Spectrum

The study of the autocorrelation and the spectral analysis should provide®!%° the
first important indications on the aperiodicity of the time series whose principal
characteristics were outlined in Sec. 2.

In order to avoid distortions in the spectrum and autocorrelation estimates, and
to standardize the results, we use a normalized, dimensionless signal, subtracting
from it its average and dividing the resulting series by its standard deviation.

Representing the equispaced discharge series as

z(to), 2(to + At), z(to + 2At), ..., x(to +iAL), ... ,z(te + (N — 1)AL) (1)

with N = 14246, and writing the ith value as z; = z(¢;), t; = to + iAt, 1 =

0,...,N —1, the new normalized dimensionless series is
T, — I
b = ———x, (2)
(i —)?

where the overline represents the time average, 7 = % Zf’:_ol z;.
The autocorrelation, defined as

p(r) = E(T)E(E + 1), 3)

represents the self-correlation of the signal for different values of time lag 7 and
enables us to pick up possible linear links between values at different times.
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Fig. 3. (a) Autocorrelation of the original series. (b) Detail of the autocorrelation of the original
series and that of the first difference series.

Figure 3 shows the autocorrelation for values of 7 ranging between 0 days to
about 5 years. After a rapid decrease of the autocorrelation, which takes place in
7-10 days, the function shows a regular behavior, which represents the effect of the
seasonal character of the discharges, due, besides rainfall regime, to the presence of
numerous glaciers and snowfields which “breathe” with the seasons. It is important
to underline the initial abrupt fall of the autocorrelation, visible in detail in Fig. 3b.
This indicates a complex behavior, characterized by a time scale of a few days, and
grafted onto the general behavior which is certainly not periodic yet has seasonal
characteristics over annual frequency. The autocorrelation of the first difference
signal, (z; —x;_1), in Fig. 3b, shows a rapid monotonic decrease in autocorrelation.
This fact will be used later to investigate the effects of correlation of the original
signal.

The character of complex aperiodicity and irregularity is even more apparent
when one looks at the frequencies. The power spectrum in fact shows the degree
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to which the various harmonics present combine to form the whole variance of
the signal.
The expression used for the power spectrum is

+oo
sy =2 smeiar, @)
-0

so that f0+°° S(f)df = 1. The spectrum was calculated by applying the usual
Hanning window, then using the FFT algorithm on blocks of 4096 values, and
finally averaging out the spectra obtained.

Figures 4a—b show the behavior of the power spectrum. In evidence is the
peak at a frequency of about 1/365 days™!, due to the seasonal component, and
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Fig. 4. (a) Power spectrum. (b) Detail.
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accompanied by correspondingly higher harmonics. The fact that the spectrum is
continuous with a pronounced and wide base shows clearly the aperiodicity of the
series.

4. Reconstruction of the Attractor

The irregularity of the series could be due as much to a low-dimensional determin-
istic chaotic dynamics, as to the action of a very large number of variables, or even
to a combination of the two.

The first step in the search for possible traces of a deterministic behavior is
that of attempting to reconstruct the dynamics in phase space. Having available
the time series of only one of the variables present in the phenomenon, namely the
discharge x;, we can use the delay-time method due to Takens®® (see also Ref. 61),
based on the conjecture that the interaction between the variables is such that each
component contains information on the complex dynamics of the system. Choosing
a delay time 7 (usually a multiple of At), the method entails the construction of a
set of [N — (m — 1)7/At] vectors, of dimension m, of the form

x(t;) = {z(t;), z(t; — 1), ... ,x(t; — (m = 1)7)}, (5)
where m (m = 2,3, ...) is called the embedding dimension. In the m-dimensional
space such vectors describe, over time, an object topologically equivalent to the
attractor of the physical system from which = was measured provided that such an
attractor exists, if m > 2D + 1, where D is the fractal dimension of the attractor.
Apart from the latter conditions on the value of m, in theory there should not be
any other limits to the choice of the parameters m and 7. However in practice, as
Takens’ theorem presupposes series of infinite length and completely void of errors
of measurement, practical application of the method proves of course heuristic.

As for the choice of m, D not being known a priori, various methods have
been proposed (see Ref. 34 and the references therein). In order to implement
operationally the above conditions, increasing values of m are used, compatible
with the practical limitations imposed by the number of points available; then the
various quantities are estimated, and one checks whether above a certain value, say
m*, they remain almost constant. One then adopts (2m* +1), as correct embedding
dimension.

More controversial and complex is the choice of the value of 7. No preferred
criteria exist so far.®124 What is certain is that values which are too low give
coordinates which are excessively correlated in time (a phenomenon called redun-
dancy), whilst z(¢;) and z(¢; — (m —1)7) no longer have a connection if 7 is too large
(irrelevancy). Within these limits, the most appropriate estimate of the value for
7 is made by comparing the results of various methods and eventually taking the
smallest. Some criteria propose using the autocorrelation (for example, Refs. 82, 94
and 74), adopting as 7 the time at which the autocorrelation first reaches a certain
conventional value. Others instead suggest choosing a value equal to a fraction of
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the dominant periodicity T (for example, Ref. 96 proposes T'/m; whilst Ref. 19 uses
T/4). Finally, more complex approaches, such as that of Frazer and Swinney?” and
its generalization by Liebert and Schuster,*® are based on mutual information, or
those, more recent, (Refs. 7, 8, 9 and 49) which propose topological or geometrical
considerations for a correct reconstruction of the attractor. Despite this criteria, in
some experimental investigations the problem has been solved more simply consider-
ing various values of 7 and proving that the results do not show a strong dependence
on the actual value chosen.

Regarding the series under examination, the criteria based on autocorrelation
and on dominant periodicity (Figs. 3a-b and 4a—b) would give a value of 7 between
30 days and 90-100 days. Such a choice, however, would be misleading, because
the presence of a seasonal component increases the autocorrelation of the signal,
producing a link which does not correspond to a dynamic connection between data
belonging to a certain flood event. In fact, leaving aside the seasonal component, for
periods of the order of a month the discharge values can be considered dynamically
almost independent; so that we are already beyond the limit for which 7 is too
large. Similarly, as the behavior of the discharge of a water course can present even
hourly variations, the discharge series available, made up of daily averages, cannot
be considered oversampled. So, at least intuitively, a reliable value of the delay time
would be better chosen of no more than a few days.

In support of such a suggestion, it appears useful to apply two of the most
recent methods proposed; the fill-factor method and the criteria which ensures the
maximum spreading of trajectories.

In the fill-factor method, proposed by Buzug, Reimers and Pfister® (see also
Refs. 7 and 8), the optimum 7 is chosen as that corresponding to the first maximum
of the fill-factor function, defined as the logarithm of the average volume of all m-
dimensional parallelepipeds, defined by the points of the attractor. Among the
principal advantages of this method are the relative rapidity of elaboration and the
particular robustness with respect to the effects of noise. However, in some cases,
when the attractor has more than one unstable focus (this happens, for example, for
the Lorenz attractor), this method does not provide useful indications not taking
into account the local properties of the attractor.

Figure 5a shows the behavior of the fill factor for the discharge series. In the cal-
culation of the function, a number of reference points were used, chosen at random
with equal probability, equivalent to 5% of the total number of points.

It can be seen how, for values of 7 between 10 and 20 days, the reconstruction of
the attractor corresponds almost to the maximum use of phase space. Beyond this,
for 7 equal to 4 and 6 months, the fill factor exhibits relative minima due to the
seasonal nature of the phenomenon. Looking at the enlargement of the first part
of the diagram (Fig. 5b), we see that the various curves do not provide indications
as to a possible choice of 7 up to embedding values of 4-5, whilst for higher values
they show some slightly pronounced maxima at 7 = 3 for m = 6-8, and 7 = 2
for m = 9-10. This not only confirms that the optimum delay-time value must be
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Fig. 5. (a) Fill-factor function behavior. (b) Detail.

limited to a few days, but provides as well indications on the value of m to adopt
for the embedding dimension. It is to be assumed at least higher than 4-5, since
below those values the curves grow without highlighting any particular structures,
which instead begin to appear from 6 onwards, with an irregularity that denotes
zones of major or minor use of the phase space.

The other method adopted, of a local kind, was also proposed by Buzug and
Pfister.? It is based on the consideration that a correct reconstruction should ensure
the maximum possible separation between the trajectories. The following function
is used to calculate the degree of separation between the trajectories:

(Nm41(1,7)) _ Crmyi(7,7)

P =) = Calrr) ©

where (N,,(7,7)) is the number of points which each point has on average within
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distance r, and C,,,(7,) is the correlation integral

M
1
szwzﬁ('r_“xi—xj”)’ (7)
i#]
where 9 is the Heaviside step function, || - || indicates a norm of the vector, and M

is the number of points of the reconstructed attractor. The optimum 7 is obtained
when P, (7, r) presents its first relative minimum, that is when, on average, changing
the embedding dimension from m to m + 1, a point undergoes the minimum reduc-
tion of its neighbors. Beyond this, for values of m greater than the first sufficient to
correctly embed the attractor (i.e. when the addition of a further coordinate does
not provide any more information), the graph of P,,(r,r) versus 7 loses significant
minima and converges towards an accumulation line. From the slope of this curve
for very small values of 7 it is also possible to estimate the K, entropy.® Consider-
ing that the correlation integral is itself a measure of mutual (Renyi- )information,3*
the method is similar to that presented by Liebert and Schuster,*® which considers
the mutual information between m-dimensional coordinates obtained with Takens’
technique.

Contrary to what is proposed by the authors of the method, the calculation
in the present implementation is extended to all the points of the series, without
limitations: this expedient, made possible by the use of the box assisted algorithm
for a rapid search of the neighbors (which will be described in Sec. 6), provides a
better convergence of the mean values for high embedding dimensions and small
values of r.

The result of our calculation of P,,(7,r), for values of 7 between 1 and 200 and
m between 2 and 10, is shown in Fig. 6a; Fig. 6b shows an enlargement of the initial
part. The value of r used corresponds to the zone in which there appears to exist
a certain convergence of the correlation dimension (see Sec. 6).

For values of T greater than 10-12 days the curves begin to present pronounced
oscillations, which develop along an average, essentially flat behavior, which belongs
to values of 7 for which there is no longer any connection with the data. Clearly
visible is the common increase at 4 months and 6 months, corresponding with what
we observed in the behavior of the fill factor. Below 7 = 10-12, the curves show,
at the increase of m, a pronounced convergence on a line with an evident negative
slope. The irregular behavior which the curves present relative to higher values of
m is due to the lack of a sufficient number of points in correspondence with those
7 for which the attractor is more dispersed. Globally, up to seasonal fluctuations,
the behavior is analogous to that obtained applying the same method to the Hénon
map: in this case the appropriate delay time is that provided by the map itself,
and the curves which represent P, (7,r), after a linear decrease, are horizontal for
values of 7 at which the data no longer shows dynamical correlations. The periodical
presence of common maxima on various curves (7, 14, 21, ... days) should also be
noted, which we are at present unable to explain. Analogous periodic behavior is
found in the redundancies of the Réssler attractor.52:67
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T (days)

P, (t)

T (d3)

Fig. 6. (a) Maximum spreading of trajectories: Pm(7) behavior (the isolated symbols represent
the values of Pn(7) for m = 8 and 9 where it was possible to calculate only a few points).
(b) Detail.

Figure 6b shows in greater detail the various curves of the initial zone. In
the section where they converge on a line, these do not exhibit pronounced minima
(very minor ones might perhaps exist at the values 2, 5, 6 days) and therefore cannot
provide more precise indications, consistent with the measurement resolution, for
the choice of 7, beyond the fact that it must not have a value larger than around
10-12 days. For higher values the line of convergence begins to disappear and the
dynamical structure of the attractor is lost: this is in accord with what the fill factor
showed and is in agreement as well with results from the application of nonlinear
prediction. With regard to the embedding dimension, we observe that passing from
4 to 5 it practically reaches complete convergence on a line: once more the result
corresponds to that of the fill factor.
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Figs. 7a~f. Projections of the reconstructed attractors on the plane z(t) — z(t + 7) with different

delay times.

7= 182
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The considerations made up to now suggest very low values of 7. A verification
of a purely visual kind may make such a conclusion more evident: Figs. Ta~f show
on the plane z(t) — z(t+ 7) the projections of the reconstructed attractors for values
of 7 of 1, 2, 5, 32 (1 month), and 182 days (6 months) respectively.

Even though the projection for 7 = 1 day presents a certain thickening on
the first bisectrix (corresponding to the periods during which the discharge has
no considerable variation), for the other periods the dynamics appears to be well
represented. On the contrary, when 7 is greater than 2-3 days, this typical structure
gradually disappears. For values greater than 7-10 days the various projections are
practically indistinguishable. For all these reasons, and on the basis of what was
obtained from the fill-factor method and the maximum spreading of trajectories,
values of 7 = 1 and 7 = 2 will be used in what follows. Occasionally checks will be
made with different values of 7.

We note that the shape of the projection of the reconstructed attractor with
7 = 1 and 7 = 2 resembles that of other physical systems in which evidence of
chaotic dynamics has been recognized, for example, the Rossler attractor and those
of velocity series measured in weak turbulence of Taylor-Couette.?:2® Even closer is
the resemblance to the attractor reconstructed from the time series of sunspots.?®
With regard to the latter phenomenon we note that also the time series and the
power spectrum are quite similar.

5. Correlation Dimension

Systems in equilibrium characterized by chaotic dynamics move on strange at--

tractors, associated with at least one positive Lyapunov exponent, with fractal
dimension D. Having previously reconstructed the attractor, the present section
proceeds to the estimate of its fractal dimension, to which the number of excited
modes in the system is linked (or, equivalently, the number of variables necessary
to characterize the dynamics).

In general, the evaluation of D does not follow directly from its definition but
through the calculation of the correlation dimension, according to the method pro-
posed by Grassberger and Procaccia.3?:3% If the phenomenon is chaotic and the
attractor is correctly reconstructed, for a sufficiently large number of points and
very small values of r, beyond a certain m the correlation integral follows the power
law

Cr(r) <1, (8)

where v is the correlation dimension, which provides a (generally good) estimate
for defect of the fractal dimension D of the attractor.

We begin with a few comments on the method of calculation utilized.

First of all, the so-called infinite norm has been adopted in place of the
Euclidean one, because it provides a lower computational burden and leads to more
reliable results. Secondly, the use of the box assisted algorithm for the fast search
of neighbors, proposed by Theiler®® and implemented according to the optimization
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elaborated by Grassberger,®! allows us a drastic reduction in calculation time, mak-
ing it easier to realize numerous tests and to resort, as described in the last section,
to the maximum spreading of trajectories method.

Among the causes which can produce distortions in the estimate of v are the
effect of the attractor boundary, which was studied for white noise by Nerem-
berg and Essex® and produces a weak underestimation, and the effect of the time
autocorrelation between successive data in the attractor, which can produce a pro-
nounced knee bend in the behavior of the correlation integral 8187 We expect that
ignoring the effect of the boundaries should not sensibly affect results. As for the
second effect, which can in some cases completely distort the evaluation of v, it was
carefully accounted for in terms of the following modified formula,” which enables
the exclusion of temporally correlated points

1 N N

M(M -1) B (r = flx: = x411) - 9)

n=W i=1

Cm(r) =

Tests carried out with values of W up to and beyond 50 lead to the conclusion that,
for the discharge data under examination, the correlation integral is practically not
distorted by autocorrelations. It was however decided to adopt W =5, in order to
discard the most temporally correlated data, without reducing the amount of data
in the calculation.

The problem of the minimum length of the series is in fact also very important.
From the most recent indications (see Refs. 34, 93 and 96) on the convergence of
the correlation integral, we see that the number of points available allows correct
deductions up to embedding dimensions equal to 56. One can even push the
analysis to larger values, at least if looking for qualitative indication only, if, as we
shall show happens in the present case, the slope of the correlation integral does
not continue to increase linearly but tends to reduce its growth with the increase
of m before this reaches values which are too large. By way of further verification
of the significance of the amount of data, the behavior of the correlation integrals
and their relevant slopes were evaluated for samples with different amounts of data,
always giving the same results. Such evidence has led us to omit the adoption of
the precautions usually necessary for the estimate of the correlation dimension from
short time series.36-3%,65

The behavior of the correlation integral (Fig. 8) for the reconstructed attractor
with 7 = 1 day is fairly regular. For high values of r/o, where ¢ is the standard
deviation and represents a measure of the extension of the attractor, we get the
mentioned saturation zone, whilst for small values we observe an interval where
the behavior appears to be linear. Finally, for even lower values of r, we notice
the effects due to the limited number of points (depopulation) and to the modest
precision of the measurements.

In order to reach better indications on the possible presence of a scaling region
and of saturation with the increase of m, Fig. 9 shows the slopes of the curves Cp (7).
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Fig. 8. Correlation integral behavior for m between 2 and 10 (r=1,W =5).
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Fig. 9. Correlation integral slopes for m between 2 and 10.

The values shown are calculated from the data of the previous figure with three-point
formulas (the slope calculated on two points, even though slightly more irregular,
shows an analogous behavior).

The behavior of the slopes is interesting: between the saturation on the right
and the effect of noise on the left, we have an interval in which the curve is closest
to the horizontal, with values less than 4. The pronounced growth of the slope for
low values of r is typical of experimental series affected by errors and imprecisions
of measurements, and to such factors the growth seems to be attributable (for white
noise we have in fact C,,,(r) o< r™).
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To evaluate the degree of saturation and convergence at a particular value, the
values of the slopes are shown (Fig. 10) for the section where the behavior is closest
to the horizontal (corresponding to the values of r indicated by the arrows in Fig. 9),
in relation to the embedding dimension.

12

—@— original series

slope

=—=%——first difference

Fig. 10. Correlation integral slopes in the inflection zone versus the embedding dimension.

Even though a real plateau does not exist and there is no complete satura-
tion, such a behavior of the correlation integral allows the possibility that a low-
dimensional dynamics component might be present in the phenomenon. It is cer-
tainly an interesting fact that the value of C,,(r) is always below 4.

On the other hand, the interval where the slope is constant is not very large,
and even if it were better pronounced, it would only provide a necessary and not
sufficient condition for proving the presence of a chaotic dynamics. It could also
happen that possible underlying trends and other forms of correlation between data
make the correlation integral look like that of a chaotic series, being in reality a
correlated stochastic series.5%72:89 Even a strong intermittency or the presence of
different dynamics simultaneously active can give rise to wrong results.3* In order
to have further indications we need then to subject the series to verifications and try
to reduce the effects of instrumental disturbance, using noise reduction techniques.
There were actually cases in which the application of these techniques brought in a
considerable improvement in the convergence of the correlation integral slopes (see
for example, Ref. 79, Figs. 1 and 3).

In conclusion of this section, we note that the reduction in growth of the values
of the correlation integral slope from values of m > 4-5 corresponds substantially
to the results obtained from both the fill factor and the maximum spreading of
trajectories. Also, the behavior of the correlation integral and its relevant slopes
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calculated on the reconstructed attractor with different values of 7 (Figs. 11a—c)
confirms our previous observations about the choice of 7. Apart from the low-
est values of delay time, the dynamical link between data is lost early and the

curves of the slopes grow analogously to how they would do in the presence of a
white noise.
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Figs. 11a—c. Correlation integral slopes for different values of 7 (W = 5).
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6. Some Simple Tests

The effect, mentioned above, of a possible non-stationarity of the series on the
correlation integral has stimulated the preparation of various tests to distinguish
chaoticity from randomness.

The first consists in comparing the results of the original series with those relative
to the first difference series (z; —z;_1). As Provenzale et al.” observed, for a system
governed by a low-dimension strange attractor, v is the same for both the original
signal and that of its first differences, so that the observation of a marked difference
between the values of the two series could be a good indication that the signal has a
strong stochastic component. Against the simplicity of the method is its sensibility
to disturbances, which may reduce its sensitivity and moreover could be amplified
by the operation of difference performed on the signal.
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Figs. 12a—c. First difference signal. (a) Complete series. (b) Projection of the attractor recon-
structed with 7 = 1 day. (c) Correlation integral behavior (t =1, W = 5).

Figures 12a and b show, respectively, a section of the first difference signal and
the projection of the corresponding reconstructed attractor using 7 = 1 day. In
the latter, as well as in the behavior of the correlation integral (Figs. 12c-d), we
see that the difference series preserves the imprint of the dynamics present in the
original signal.
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Fig. 12d. Difference signal: C,,,(r) slopes for m between 2 and 10.
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Fig. 13. Comparison of the discharge series autocorrelations calculated with differing numbers of
points.

In order to make the comparison more concrete, Fig. 10 shows, on the same
graph, the correlation integral slopes versus m, for both the discharge and difference
series: the test appears to confirm the presence of a low-dimensional deterministic
dynamics.

The second test considers the dependence of the autocorrelation on the lengths of
the series from which it is derived: as noted by Tsonis, Triantafyllou and Elsner,%
if the time in which the autocorrelation goes to zero does not continue to grow
with the number of points considered, then it may be assumed that the series is
not a fractal Brownian motion and that the process is stationary. Figure 13 shows
the behavior of the autocorrelation calculated with the first 5000, the first 10000,
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and with all the available points, respectively. All behaviors are essentially identical,
up to the oscillations due to the number of points: thus even this check may be
considered positive, and allows us to exclude the possibility that the irregularity of
the series may be due essentially to the presence of correlated stochastic noise.

7. Nonlinear Prediction

We may conclude, from the analysis of previous sections that clues exist indicating
the presence of a chaotic dynamics in the phenomenon under study. We proceed
therefore with the application of nonlinear prediction to the time series.

Since its formulation nonlinear prediction has actually always had a double
value. On the one hand we may only consider its predictive aspect, focusing on
the fact!1:25:34.93 that within chaotic phenomena it allows better forecasts than
those obtained with other traditional methods (for example, autoregressive models,
ARMA, ARMAX, etc.), thanks to its capacity to pinpoint the nonlinear aspects
present in the dynamics.

On the other hand, one may instead consider nonlinear prediction as one of
the important indicators necessary to understand whether or not a time series is
the result of a chaotic dynamics. Moreover, it allows us to distinguish, with good
reliability, such a dynamics from others possibly present in the time series which
only mimic some characteristic property of the chaotic series.21:22.71,85.93,95,96,97

We shall concentrate mostly on the second of the above aspects. The possibility
of making forecasts out of a time series is certainly connected with the type of
dynamics which generates it. In particular the existence of a chaotic dynamics,
though it may reduce the possibility to make long-term forecasts, would at the
same time -— in view of its deterministic character — allow us to make short-term
forecasts. Obviously the expressions “short-term” and “long-term” should not be
understood in an absolute way, but in relation to the value of the largest among
the local Lyapunov exponents.

Several authors!®24:25,93.96.97 have gone as far as suggesting that the capacity to
make forecasts is connected with the very existence of deterministic chaos. Farmer
and Sidorowich,?® in particular, speak about the autoconsistency of nonlinear pre-
diction. In this sense, the results of nonlinear prediction can help to understand
whether a chaotic dynamics is present in the phenomenon.

Practically speaking, the basic idea of nonlinear prediction is the following: start-
ing from the time series available, once the attractor has been correctly constructed
(Sec. 4) in phase space, of dimension m, it is possible to interpret the dynamics in
the form of an m-dimensional map fr

x(t+T) = fr(x(t)), (10)

where x(t) and x(¢t + T') are vectors of dimension m, describing the state of the
system at times t and (¢ + T), respectively. If, thanks to the available data sample,
a good approximation fr, necessarily nonlinear, of f7, can be built, an estimate
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x(t + T) of future values of x(t > tgy,, the final time accounted for by the series)
can then be obtained through the map

x(t+T) = fr(x(t)). (11)

Of course there exists an infinite number of potential nonlinear models for fr
and if no indications are given by the physics of the phenomenon considered, there
is no single method to find the most appropriate shape of fT (except possibly,
generalization criteria'’). Any choice has some degree of arbitrariness, therefore,
the choice of the form of fT should be linked essentially to the complexity of the
dynamics, to the extension as well as to the quality of the reference sample, and to
the computational burden (both in terms of time and required memory).

Two different approaches to identify an optimal form for fT have been proposed,
one global and the other local.

The first one tries to approximate the map (10) by working globally on the
entire attractor, and searching for a map fT valid for any of its points. Examples
of such an approach are: polynomial and rational functions (for example, Refs. 16,
24 and 93), radial basis functions,'%3743 neural networks,?18:21,28,47,58 a4 mixed
methods.!1-83

The alternative method, which we follow here, is based instead on local
approximations.'6-24:25,30.50 ¢ entails the subdivision of the fr domain into many
subsets, each of which identifies some approximations fT, valid only in that same
subset. In this way the dynamics of the system is described step by step, locally
in phase space. This choice leads to a considerable reduction in the complexity of
the representation fT, whilst avoiding to lower the quality of the forecast x(¢ + 7).
Some examples in the literature!!:*8:%3 indicate that on very short time (up to values
of T of the order of 4 + 6At, whereAt is the sampling time interval of the series),
particularly when one has long reference series and the dynamics is not simple, the
results obtained are generally better than those one gets with global methods. Vice
versa for longer forecast times, due to the capacity of the latter methods to catch
the global structure of the attractor.

The identification of the sets in which to subdivide the domain can be done in
different ways. Disjoint sets may be considered!®; however, in such a case problems
can emerge at the boundary zones.?® This can be corrected either by enforcing
conditions of continuity at the boundaries of the subset, which can be difficult
because of the phase-space dimension, or by allowing an overlap between adjacent
subdomains.?® The latter approach, which has become the most commonly used,

entails first of all fixing a metric || - ||, then, given the starting point x(¢) from which
one wants to initiate the forecast, identifying the k points x(¢;) (i = 1, ... , k), with
t; < t, nearest to x(t) that minimize the quantity

lIx(t) = x(t)Il, (12)

which constitute the set corresponding to the point x(t). A local map fT is then
constructed, which has the set of the x(#;) as domain and that of the x(t; + T)

as codomain. If, as
component z(t+T)
interpolates the pai

As for the choic
simpler than those ¢
representations {ord
reaching a greater
therefore of a great
the literature?3,85.93
the nearest neighbo
quadratic one (thir
of interpolation gre
dimension of the att
of coefficients and t
instead the optimus
local map complexit

In accordance w
approximation, inte
nomials. We observ
is still nonlinear be
a different neighbor
sions of fT.

We also note the
order to determine
kmin = (m + g)!/(m
which noise is prese
consider wider neig]
such a case, the pro

with the least squar
the matrix of the v:
heaviest computatio
more efficient using
In the process o
with the method pro
or rather a simplifics
it entails the isolati
m + 1 neighbors cor
is inside it and the
distance from x(¢).3



T T T ——

T by the series)

(11)

r models for fr
»sidered, there
xcept possibly,
ness, therefore,
mplexity of the
sample, and to
aory).

been proposed,

globally on the
ints. Examples
wnple, Refs. 16,
17,58 and mixed

$tead on local
ain into many

in that same
by step, locally
b complexity of
ecast x(t + T).
e (up to values
of the series),
ot simple, the
gmethods. Vice
hods to catch

‘tan be done in
case problems
I by enforcing
#n be difficult
jween adjacent
§mmonly used,
(t) from which
s oo. k), with

(12)

Bap fT is then
3 ’the x(t;+T)

Clues to the Existence of Deterministic Chaos in River Flow 1843

as codomain. If, as is often happens, we are only interested in forecasting the last
component z(t+T) of x(t+T'), the search is limited to a map fr : R™ = R, which
interpolates the pairs (x(t;), z(t; + T)) instead of a function fr : R™ = R™,

As for the choice of the function fr, one may use expressions which are much
simpler than those considered in the global approximation. If we consider high order
representations (order refers to the derivative on which mostly the error depends®*),
reaching a greater flexibility requires neighborhoods of greater dimensions, and
therefore of a greater complexity to reproduce. Essentially all the applications in
the literature?3-85-93 stop at the third order and therefore consider three possibilities:
the nearest neighbor (first order), the linear approximation (second order), and the
quadratic one (third order). Whilst in the case of low-dimensional chaos, orders
of interpolation greater than 3 can bring improvements, with the growth of the
dimension of the attractor, due to the fact that larger orders require a higher number
of coefficients and therefore larger neighborhoods, orders equal to 2 or 3 constitute
instead the optimum choice,?® that is the best compromise between set size and
local map complexity.

In accordance with this, in the present approach we consider a second order
approximation, interpolating the pairs (x(¢;),z{(t; + T)) with 1st degree poly-
nomials. We observe that even if the approximation fT is linear, the prediction
is still nonlinear because during the forecast procedure every point corresponds to
a different neighborhood, and therefore to different neighbors and different expres-
sions of fT.

We also note that, even if the minimum number of neighbors to be identified in
order to determine the approximation parameters with polynomials of degree ¢ is
kmin = (m + g)!/(m!g!), it is often useful, particularly in the case of time series in
which noise is present (a circumstance which always happens in natural series), to
consider wider neighborhoods in order to give better stability to the forecast. In
such a case, the problem of interpolation can be solved by minimizing the error

k
e =" lla(ti + T) = fr(x(t))I, (13)

with the least squares method,®* as is done in the present work, or by factorizing
the matrix of the values x(¢;).%3 Search of the k neighbors, which constitutes the
heaviest computational burden in local approximation methods, can be made much
more efficient using the algorithm already mentioned proposed by Grassberger.3!
In the process of identification of the function fr, we have also experimented
with the method proposed by Sugihara and May,%5 which constitutes a modification,
or rather a simplification, of that of Farmer and Sidorowich.?* Contrary to the latter,
it entails the isolation in embedding space of a simplex, identified by k& = kpin =
m + 1 neighbors constituting its vertices, chosen in such a way that the point x(t)
is inside it and the weighing, in the forecast, of each neighbor is in relation to the
distance from x(¢).3! However, this method leads to results which on average are
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worse than those obtained by the method of Farmer and Sidorowich. This may be
attributed to the choice k¥ = kmin which, despite the weights, does not provide any
way to reduce the negative effect of noise.

The forecast is generally made by choosing T = At, that is considering a forecast
time interval equal to the sample interval of the time series. When instead the
forecast is for T = nAt (with n > 1), there are two possible schemes: iterated
forecast and direct forecast.?%2%> With the former scheme one evaluates the map
for At and then iterates it (n — 1) times until it reaches time T. With the latter
procedure a new map is constructed to approximate fr at each time 7. Farmer
and Sidorowich show that when the local approximations are well identified, the
iterated method provides better forecasts.

At the beginning of this section we emphasized how the importance of non-
linear prediction resides also in helping one to discern between dynamics which,
even though different, can produce time series very similar in appearance and
difficult to distinguish. Such a potential capacity makes nonlinear prediction a
precious investigative instrument, almost independently of its predictive aspect,
when searching for indications of a chaotic dynamics in complex time series.

For this purpose, several authors??:66:85.96 gyggest that the forecast as far as its
predictive step T is concerned, should enable us to distinguish periodic and quasi
periodic signals (in which the quality of the forecast, though elevated, remains
constant or oscillates with T') from chaotic ones (in which case it decreases in a
monotonic manner, due to the progressive divergence of the trajectories in phase
space, linked to positive Lyapunov exponents).

Moreover, nonlinear prediction also constitutes an important instrument to
distinguish chaotic signals from stochastic ones, whether or not with zero auto-
correlation. In the first case, whilst for a white noise the predictive capacity remains
at low levels and is almost constant with the growth of T, when the signal is chaotic
the quality of the prediction cannot but decrease.8%9397 This is also true when
the non-correlated stochastic signal is superimposed on a periodic or quasi peri-
odic signal,®%°3 in which case the correlation between real series and forecast series
again remains constant or oscillates, but now around a value linked to the noise
present.

When there is nonvanishing autocorrelation the question is much more delicate.
As mentioned in Sec. 3, several works,5%:728% have demonstrated the capacity of
some types of colored noises, e.g. fractal Brownian motions (characterized by a
spectrum of the form S(f) = Cf~*), to mimic certain characteristics of chaotic
signals. With regard to this, Tsonis and Elsner®® have highlighted a further as-
pect of nonlinear prediction: as the forecast time interval changes, the accuracy of
the forecast decreases according to a different law, depending on whether the sig-
nal is chaotic or fBm. In the former case, the dependence between the correlation
coeflicient

= Tr%p — Tidp (14)
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(with subscripts r and p indicating the real and forecast values respectively) and T
is the following
82 (O) €2K T

T)=1-
(1) o

(15)
where $(0) is a measure of the amount of information present in the initial state and
K is a lower bound to the real metric entropy. For the fBm signal we have instead

k i\ 2H
r(T) = BZ w; (1 — T) K (16)
=1

where H is the Hurst scale exponent (equal to the reciprocal of the fractal dimension
D), w; are the coefficients of the nonlinear prediction and B is a positive constant.

Therefore, in presence of a chaotic dynamics there is an exponential link between
the correlation and the forecast time interval; whilst for an fBm the dependency
assumes the form of a power law.

A further capacity of nonlinear prediction regards the embedding dimension.
Up to now we have described nonlinear prediction presupposing the knowledge of
the correct embedding dimension m. It is instead evident that when we want to
apply it to a time series for which the value of m is not known, we must proceed
by trial and error. Sugihara and May®® not only suggest that nonlinear prediction
allows the identification of the value of m which produces the best forecast, but
also that such a value, revealed by a knee bend in the diagram r = r(m), is the
optimum phase space dimension in which to construct the attractor. Such a feature
has been indeed noted by Tsonis®® and Tsonis, Triantafyllou and Elsner,®” though
doubts regarding it had been expressed by Grassberger, Schreiber and Schaffrath.34
It is actually plausible that good forecasts may be obtained with values of m and
7 which are not optimum in the reconstruction of the attractor according to the
criteria noted above. This is consistent with the local nature of nonlinear prediction,
where it can happen that “non optimum” pairs of m and 7 may seize some aspects
of the dynamics, or of sections of the time series, especially when this is as complex
and manifold as the case under consideration.

In conclusion of this section it is worth recalling that forecasting methods
formally similar, or at least related, to nonlinear prediction have also been pro-
posed in statistical fields. Among these, the threshold autoregressive method,%!
the local linear method of Priestly,®®"® and the method of Pikovsky,®* that is an
improvement on the method of analogs proposed by Lorenz5! are especially notable.

The latter method has been used with success in particular in runoff prediction,
by Karlsson and Yakowitz.41:42

We finally cite, for the sake of completeness, the article by Kember, Flower and
Holubeshen** in which nonlinear prediction is applied to the forecasting of river flow.
This paper is concerned with the predictive aspect, without however investigating
if a chaotic dynamics exists in the time series considered.

i
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8. Application of Nonlinear Prediction

We discuss in this section our analysis of the time series of mean daily dis-
charges from Tavagnasco section of the river Dora Baltea by the nonlinear prediction
method, based on a local approximation of the second order. This approximation
was preferred to the global one, because the natural phenomenon under study has
a complex dynamics and therefore the behavior of the attractor can be expected to
be more describable, in the very short term, through local methods.

It is indeed of the utmost practical importance to be able to make discharge
forecasts reliable for 1-2 days, in view of possible engineering implications, and this
further emphasises the advantage of choosing the methods which should provide
the best short-term forecasts.

Also, the test proposed by Tsonis and Elsner, related to the possibility of dis-
cerning between chaotic signals and fBm, refers to the very first predictive steps;
therefore, since local methods in this case enable better forecasts, we believe that
this test should be more precise if done using such methods.

In applying nonlinear prediction to the time series available, the first 13000 days
(from 1st January 1941 to 4th August 1976) were considered as reference time series,
in such a way that the attractor could be explored as comprehensively as possible
given the length of the series available. The subsequent 200 days were overlooked
(to avoid the possibility of direct consequentiality between the base series and the
series to predict) and the forecasts were realized with reference to the 300 days from
21st February 1977 to 17th December 1977.

The 300 values used to forecast may appear not numerous enough in view of
the stability of our results. However this constitutes the best compromise between
a good attractor description (contained in the reference series) and a sensible sig-
nificance of results (linked precisely to the length of the forecasted series). The
complexity of the natural phenomenon under study motivates of course the high
number of values constituting the first series.

Figure 14 shows the portion of the signal considered for the forecast. It well
represents the entire series available, exhibiting the principal characteristics (intense
floods which graft themselves onto the basic dynamics). We note in particular that
in the second part a phenomenon appears which is unusual with respect to the
thirty-year history available: two very intense floods (having maximum mean daily
discharges equal to about 14 and 13 times the mean of the series and about 16 and
13 times the mean square deviation, respectively) occurred within a very short time
interval (the first took place on 30th September 1977, the second on 8th October
1977).

We considered embedding dimensions m variable from 4 to 20, each of which
was explored, with T = At = 1 day, using delay times 7 ranging from 1 to 6,
with unitary scansion (namely, from 6 to 30, considering multiples of 3). In such
a way we wanted to study in large detail how the forecast quality is influenced by
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Fig. 14. Diagram of the time series considered for the forecast.

the choice of the two quantities m and 7, and to highlight possible correspon-
dences and differences with what had emerged from the reconstruction of the
attractor.

As for the number of neighbors to use, different tests, in which the value of k
was varied from k = ki, to k = 3m, showed the number &£ = 2m of neighbors to
be optimum. For higher values of k, the k points become involved with increasingly
wider neighborhoods for which the local model becomes increasingly less adapted,
and consequently the errors grow. Below k = 2m the method becomes less and
less stable as k is decreased with an ever increasing number of large errors in the
forecast (due to the appearance of quasi-singular matrices in the application of the
least squares method adopted to minimize the error e defined in (13)). We also
investigated the possibility of employing different numbers of k in various zones of
the attractor considered (e.g. where there are large floods), but with no noticeable
advantages.

Figure 15 shows the three-dimensional surface r = r(m, 7) thus obtained. Its be-
havior appears irregular, as might be expected for a complex natural phenomenon
of the sort considered, and somewhat affected by noise, in view of the fact that
the surface is obtained from 300 forecast values. Nevertheless, observing its mean
behavior, two important features can be noticed: first of all the correlation coeffi-
cient decreases with the growth of 7, ranging from values around 0.70-0.75 for the
shortest delay times to values variable around 0.5 for the largest T among those
considered. Second, still observing the mean behavior of the surface, we note that
there are values of r greater than 0.65-0.70 only for 7 inferior to 5-10 days, whilst
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for 7 larger than about 15 days r is practically always below 0.6. Both these
observations appear to confirm what was observed by the reconstruction of the at-
tractor: the optimum delay time is found for 7 of the order of units (in particular
the nonlinear prediction would indicate 7 = 1-2 days), while values above about 10
days lead on average to increasingly worse forecasts.

Fig. 15. Correlation coefficient behavior versus embedding dimension and delay time.

Preliminary tests for some pairs (m, ), considering 600 forecast values, have
reproduced substantially the strong irregularities visible in Fig. 15.

Peaks can be observed, which dramatically raise locally the quality of the forecast
with respect to the surrounding pairs (m,7), and pronounced minima which on
the contrary create sharp falls in r. Furthermore we note that the peaks tend to
accumulate mainly along lines with constant 7, in particular for 7 = 12, 18 and 24
days, pointing out to a certain regularity which is reminiscent of the periodicities
observed in the results on the maximum spreading of trajectories.

Observing the surface through lines 7 = constant in order to investigate the
shape of the link between the correlation coefficient and the embedding dimension,
one cannot clearly identify a particular behavior, either regular or characteristic,
and it appears hardly possible to have indications on values of m enabling, on
average, better forecasts. Consequently, indications on the value of the optimum
embedding dimension for the reconstruction of the attractor cannot be deduced
from this analysis. There is therefore no way to confirm what was deduced by the
evaluation of the correlation integral, where a slight saturation beginning from m
of about 5-6 seemed to emerge.
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Fig. 16. Comparison between the real time series and that forecast. (a): m = 12, 7 = 1 day;
(b): m =18, 7 =1 day.

In order to exemplify which kind of forecast is synthesized by a value corre-
sponding to the shortest delay times of r of about 0.70-0.75, Figs. 16a-b show the
comparison between the real series and the forecast series, adopting m = 12 and
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m = 18, respectively, both with 7 = 1 day (the relative values of the correlation
coefficient are 0.77 and 0.79). Recalling that this is a natural phenomenon in which
noise is present, the result of the nonlinear forecast can be certainly considered
good. In fact, not only is the average behavior well forecasted, but some insight
into several aspects of great hydrological importance is also gained: the main sign in-
versions of the time derivative and the localization, the duration, and, with an error
still tolerable from an engineering point of view, the maximum values of the floods.
However, the presence of spurious oscillations should also be noted in the fore-
cast series, with a characteristic increase in the amplitude corresponding to the
depletion curves of the most powerful floods.

In order to understand if large isolated mistakes (which sometimes, though
rarely, may appear in the forecast, due to the presence of tangent trajectories in
the phase space) are what makes the surface r = r(m, 7) so irregular, the 30 worst
values of the series (equal to 10% of the total) were excluded in the calculation
of the correlation coefficient (in accord with what is reported in other works (e.g.,
Refs. 10 and 50).

Figure 17 shows the corresponding new surface r = r(m, 7). The surface has
now a behavior on average more regular than the previous one, mainly for 7 less
than about 15 days, and some of the irregularities have disappeared, or at least have
been strongly reduced (such as, e.g., the minimum observed in the neighborhood
of m = 4 with 7 = 4). Besides, we now see more clearly that the mean behavior
decreases with the growth of the delay time: from values of 7 about 0.9 for 7 = 1-2
days, to r of about 0.60-0.65 for 7 = 27-30 days.

Fig. 17. Correlation coefficient behavior versus embedding dimension and delay time, excluding
the 30 worst forecasts (equal to 10% of the total).
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One feature of the surface stands out: looking at it along the lines 7 = constant,
we note, with the exception of the very first values of delay time, a behavior always
decreasing on average with the growth of the embedding dimension m, which gives
to the surface an amphitheatre shape. This implies that on average the same values
of r (and hence the same quality of the forecast) which are obtained with certain
values of 7 for m larger than about 10, are also possible for larger values of 7,
provided small m are selected. Even if less evident, a similar behavior can already
be guessed from the original surface r = r(m, 7).

A possible explanation of this feature, which would seem to contradict the ex-
pectation of 7 initially growing with m and then remaining essentially stable,3%:%3
is the following. It is true that the growth of the embedding dimension m from
values of 4-6 to larger values, should progressively “reveal” the attractor, enabling
a better description of it and therefore better forecasts (this concept is at the basis
of those methods seeking the correct embedding dimension by looking at the link
r = r(m)). On the other hand, it is also true that with the growth of , starting
from the highest values of m, the extreme components of the vector x(¢) become
less and less dynamically linked, with the consequent risk of irrelevance. In this
specific case there are doubts on whether, when the vector x(t) covers many tens of
days, its extremities are still dynamically linked (particularly regarding the floods)
or such link is not disguised by noise. This could then combine with the positive
effect of the growth of m, justifying, at least in part, the behavior of the surface
r=r{m,T).

Proceeding now to forecasts over several days (T" > At), Fig. 18a shows the link
between the correlation coefficient and the forecast time interval relative to embed-
ding dimensions 12 and 18, and 7 = 1. The behavior in such figure is qualitatively
equal to that identified for all the other values of m and 7 considered. The forecasts
were obtained with iterative technique.

Figure 18a shows that the capacity to make forecasts falls rapidly with the
growth of T and does not show significant oscillations. This is in accord with what
is observed in time series generated by chaotic dynamics, and agrees with the fact
that the signal analyzed comes neither from a periodic phenomenon nor from a
combination of a periodic with a non-autocorrelated stochastic signal.

With regard to the test proposed by Tsonis and Elsner to distinguish a chaotic
signal from an fBm, the values of (1 — r) versus the forecast time are shown on the
semilogarithmic plane (Fig. 18b). The plot shows that the test cannot be decisive
in this case, since the zone of interest is practically reduced to only the first three
values. In fact, at T equal to about 4At, the coefficient correlation, independently
on which of the two dynamics has generated it, has already reached values so low
that its behavior for larger T' cannot but be squeezed onto the line log(1 — r) = 0,
forcing r to approach zero for both. Consequently, it is rather arbitrary to judge such
trends: it would rather be necessary to investigate smaller fractions of the interval
At considered here, in order to have a more extensive section of significant curve.
Nevertheless, even with the above caution, the identifiable trend is increasingly close
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(1)
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Fig. 18. (Continued)

to a straight line, which makes us believe that the law r = r(T') is of the exponential
form.

Such a law emerges more clearly if the test is applied to the series obtained
by excluding the 30 worst forecasts. The relative behaviors are shown in Fig. 18c,
where we see that the initial part now comes much closer to a straight line, as the
formula (15) would imply.

Commenting on the results obtained up to now, the presence of noise has been
mentioned many times; intending by noise either the existence of a possible ran-
dom component superimposed on the chaotic deterministic one, or noise introduced
under various forms by the measuring operation, or, even more likely, the possible
presence of some higher-dimensional chaotic dynamics, which would not be com-
pletely captured by the methods adopted here. It is believed that the good but
not very high values of r, and perhaps also the impossibility to discern some opti-
mum value for the embedding dimension of the attractor, can be, at least in part,
properly attributable to such a fact.

For this reason we decided to apply a filtering, based on the usual techniques, to
the original signal. Even though this may involve a partial destruction or alteration
of the chaotic dynamics possibly present in the original signal,?!%15:34 we expect,
however, that filtering should, in the case of nonlinear forecasts, be more beneficial
than harmful, as suggested by experiments®® as well as by theoretical arguments.!?
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Fig. 19. Diagram of the time series to predict, after the filtering.

Fig. 20. Correlation coefficient behavior versus embedding dimension and delay time, for the
filtered series.

Despite the difficulty of establishing the noise characteristics a priors, it is plau-
sible to assume that its effect is localized not only at high frequencies, but has
on the contrary a wide frequency extension: consequently we decided to adopt
a filter (Butterworth) that operates weakly on all frequencies above 0.04 days™!.
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The effect of the filtering is shown in Fig. 19, which provides details of the time
series of the filtered forecast. Comparing it with the original (Fig. 14), we note
that even though the behavior is much more regular now and the rapid oscilla-
tions of small amplitude have disappeared, the filtered series reproduces very well
the principal behavior of the discharges, including the floods. From an engineering
point of view, the possibility to make reliable forecasts on the filtered series remains
certainly interesting.

The same type of investigation was conducted on the filtered signal as on the
original series. Figure 20 shows the behavior of the correlation coefficient r =
r(m, 1), evaluated for the same value of m indicated before, but now with delay
times up to 5. Figure 21 shows the forecast behavior versus the forecast time
interval T', for m =12 and m =18 (r = 1).
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0.0

0.2
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Fig. 21. Correlation coefficient behavior versus forecast interval, for the filtered series.

The first of the two figures shows aspects which are worth commenting on. First
of all, the values of r have become very high and for 7 = 1 and 7 = 2 they are
exceptionally close to 1 (r assumes values around 0.998 and 0.975 respectively) for
a natural series. Figures 22a—b show the comparisons between the real values and
the forecast values for T = At = 1 day and T = 2At = 2 days, with m = 18, and
T =1, representatives of common behavior for other embedding dimensions as well.
The forecast is impressively good: the lines are practically coincident in the case
of T = 1 day and very close for T = 2 days. To be noted in particular the fact
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Fig. 22. Comparison between the filtered real time series and that forecast. (a): m = 18, 7 = 1

day, T = 1 day; (b): m =18, 7 = 1 day, T = 2 days.

that the unusual double flood peak, mentioned earlier, is not altered substantially
by the filtering and is perfectly reproduced in each part. Furthermore, the forecast
catches very well all the sign changes of the time derivative of the series, the form
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of the floods, and the maximum and minimum values, whilst the oscillations noted
earlier have completely disappeared.

Moreover, up to 7 = 3 days the surface is much more regular than the previous
ones, while for 7 equal to 4 and 5 days we observe sharp and strong oscillations which
some preliminary tests, not reported here, show to be the prelude to a generally
irregular behavior for higher 7, qualitatively similar to that verified for the original
series. We note also that the surface exhibits a descending behavior along the time
axis more marked than those noted in the original series. In the latter, between
7 =1 day and 7 = 5 days, 7 is on average nearly constant with small variations;
here instead it passes from about 0.998 to a mean value around 0.6. From this we
conclude that the quality of the forecast is in present case much more sensitive to
the choice of 7.

Looking in detail at the behavior of r versus m we observe oscillations that are
weak for 7 = 1-3 days, much stronger for the remaining two delay times, and appear
to have a certain regularity in time. The filtered series, like the original one, does
not show a knee bend which would reveal the optimum m.

If we now consider the dependence of r versus the forecast time (Fig. 21), we
find the same type of link » = r(T) observed in the original series: monotonic
descending behavior, very similar to that noted in chaotic dynamics (notice the
strong resemblance with what was obtained for the logistic map and the Lorenz
model,®® followed by values very close to zero and not affected by significant oscil-
lations.

Finally, in order to investigate the influence of autocorrelation on the results of
nonlinear prediction, part of the elaborations described up to now were repeated
also on the two signals obtained differencing the original series and the filtered one:
a test analogous to those already carried out in Sec. 6. No substantial difference is
found with respect to the original series, and the forecasts appear to be analogous
in relation to m, 7 and T as well.

9. Summary of Results and Conclusions

Even though this work does not allow us to conclude with a definitive answer
regarding the possibility whether a chaotic dynamics is or is not at the basis
of the behavior of runoff in a natural water course, the following facts lead us
to believe that a strong deterministic component does exist in the time series
considered.

The fill-factor and the maximum spreading of trajectories methods, used in
order to obtain indications for the correct reconstruction of the attractor, show a
substantial accord both on the embedding dimension, which must be higher than
4-5, and on the delay time, where the range of choice is restricted to a few days,
maximum 5-6.

The attractors subsequently reconstructed by Takens’ method, exhibit especially
for 7 = 1 and 2 days, the presence of a quite evident ordered structure.

oimwm
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With the growth of 7, in particular when values are chosen of 8-10 days, in
analogy to what is observed in the results based on nonlinear prediction, the be-
havior of the fill factor, of P,(7,7) and of the correlation integral become gradually
similar to those typical of a casual signal. This is typical of chaotic signals, which
are dynamically linked to short time values but become practically independent for
long times.

Still more characteristic is the behavior of the correlation integral slopes, which
shows a point of inflection more or less horizontal in the central zone separating
the effect of depopulation on one side and that of saturation and noise on the
other. The values of the slope in this zone are always below 4. Furthermore, even
if a real “plateau” does not exist and saturation is not complete, the behavior
tends increasingly to the horizontal with the growth of the embedding dimension,
especially for values of m above 5-6 (Fig. 10). This constitutes an indication of the
possible existence of deterministic chaos in the series.

Finally, also the result of tests performed on the first difference signal, in or-
der to verify if what was observed on the original signal could be possibly due to
its degree of autocorrelation for short time intervals, are very significant. Having
checked that the characteristic quantities of the difference signal are analogous to
those of the original one, we believe that what was observed on the discharge se-
ries may effectively be due to the dynamics of the phenomenon and not to simple
autocorrelations.

The application of nonlinear prediction has produced several positive results.
First of all, the good quality of the forecast emerges: the examples shown in
Figs. 16a-b, together with the correlation coefficient values oscillating around 0.75,
testify that the mean behavior of the phenomenon is forecasted with reliability in all
its principal hydrological characteristics (local trends, position and form of floods,
sign inversion of the time derivative). Such forecasts are even more impressive if
we consider the complexity of the natural phenomenon investigated, and the fact
that the forecasts leave out of consideration any hydrological information relative
both to the inflow on the basin and the basin itself, and are obtained by looking
only at the dynamical history of the variable considered. This latter observation
has important implications, in that it suggests that the series has in itself trace of
all the variables which are involved in the complex dynamics. One can see here a
confirmation of the delay-time technique of Takens.

Even though the study of the influence of m and 7 does not give clear indications
for the optimum choice of the embedding dimension, detailed as it may be with
regard to the delay time, it confirms instead the substance of what was observed in
the reconstruction of the attractor, namely that the optimum values of 7 are of the
order of units. As for the quality of the forecast, it is found that exclusion of the
worst 10% raises the correlation coefficient to about 0.9.

The second positive result of nonlinear prediction is the behavior of the pre-
dictive capacity with respect to the forecast interval. At the growth of the latter
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the former declines rapidly, and we do not observe oscillations; the relation between
the two may be considered exponential. This should exclude the possibility that
we are either in the presence of a stochastic signal with correlation zero, possibly
added to a periodic or quasi periodic one, or that we are dealing with a fractal
Brownian motion. The latter account is reinforced when we take into consideration
the forecast minus its worst 10%, for which the fall of r with the forecast interval
becomes more markedly exponential.

With the careful application of a weak filtering on the original series the results
of the forecasts remain very good, and the correspondence between forecast values
and real values is striking (r = 0.998 for one-day forecasts and r = 0.975 for those
of two days, after which the forecasts decline sharply) also for very rare phenomena
in the dynamics of the series. This seems to confirm the presence in the series of a
strong deterministic dynamics component. Finally, nonlinear prediction applied to
the first difference signal confirms all the previous results.

Beside these encouraging results there are as well aspects which require further
investigation. The first is undoubtedly the effect of noise in the series. As noted in
the course of the work, the distorting effects that noise can have on all the methods
adopted is certainly important. There is then the complexity of the phenomenon.
It is perhaps illusory to try and identify in a natural physical phenomenon of such
vastness the single presence of a chaotic dynamics; one should possibly rather ex-
pect that, provided it really exists, such dynamics interacts with other types of
dynamics. Extraneous dynamics, in our case principally the seasonal character and
the intermittency, can have unexpected influence on the methods designed for the
diagnosis of chaos.

We may say that if on the one hand none of the analyses conducted up to
now has given place to possible exclusion of the existence of deterministic chaos
(rather, they enforce just the contrary proposition), on the other it is necessary to
experiment with new methods of investigation to make the dynamical picture more
precise.

With regard to this latter aspect, future developments are to be expected in two
directions: the application of techniques of noise reduction, specifically proposed
for chaotic systems,!3:17:26,35,45,46,54,78,79 an(q the reinforcement of the outcome of
present analysis, verifying the existence of a nonlinear dynamics also with surrogate
data techniques™°° and redundancy technique.52:67

Besides work should be done on the construction and analysis of conceptual
models allowing us to account for how a river basis (considered in its entirety, both
surface and underground) interacts with rainfall, giving possible rise to a chaotic
dynamics. Such models should provide a qualitative estimate, at least, of how
hydrological factors (topology of the river network, effect of lamination by storage
capacities, acquifers, snowfalls) may interfere with the inflow—runoff mechanism
when the former is supposed chaotic, thus providing also the tool for comparing the
results with those obtained trying to extract the dynamical equations from the time
series.5-2940:77 We plan as well to extend the analysis to time series corresponding
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to different sections of a single water course, and to rivers belonging to different
pluvial systems, characterized by different networks.

We conclude by recalling the aspect which constitutes perhaps the strongest
motivation for the research undertaken here: the fact that, if a chaotic dynamics is
confirmed, it can provide a relevant help in realizing effective forecast of floods. In
such a case, the techniques of nonlinear prediction, possibly accompanied by further
refinements and combined with information on inflow,!%!1 could be of extreme
importance for both engineering and civil protection.
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