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Abstract. We present multivariate statistics to detect intensity changes
in longitudinal, multimodal, three-dimensional MRI data from patients
with multiple sclerosis (MS). Working on a voxel-by-voxel basis, and
considering that there is at most one such change-point in the time se-
ries of MR images, two complementary statistics are given, which aim
at detecting disease activity. We show how to derive these statistics in
a Neyman-Pearson framework, by computing ratios of data likelihood
under null and alternative hypotheses. Preliminary results show that it
is possible to detect both lesion activity and brain atrophy in this frame-
work.

1 Introduction

In a previous work [1], we proposed to consider the detection of disease activity
in MRI as a change-point problem. After spatial and intensity normalization of
MR data acquired on a given patient over time, we proposed to apply a one-sided
[2] and a two-sided [3] univariate statistical test for the detection of at most one
change-point in the intensity profile of each image voxel over time. Such a change-
point was hypothesized to convey an actual biological change, eventually related
to MS activity. The first test aimed at detecting directional changes (increase or
decrease of the intensity), whereas the second one aimed at detecting changes in
either of the two directions. The limitation of these tests is twofold. First, they
assume that the variance of the observations is known. Second, their application
is limited to monomodal images, whereas complementary information about the
pathology is often available in multimodal data (classically, T1-, T2-weighted
and PD MR images). In this paper, we show how to derive two complementary
multivariate statistics which do not assume that the variance matrix is known.
These statistics are given in Section 2.2, after the description of the preprocessing
pipeline in Section 2.1. Preliminary results are presented in Section 3.

2 Methods

2.1 Preprocessing Steps

Before voxel-by-voxel statistical analysis of a time series of MR images, spatial
and intensity normalization must be performed, to reduce intensity variations
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due to imaging artefacts and to ensure spatial correspondence of the voxels under
study. These preprocessing tasks have been extensively described in our previous
work [1]. The whole MRI analysis pipeline is summarized in Figure 1. Briefly, it
consists in:

– Intensity non-uniformity correction [4].
– Intensity normalization [1].
– Affine registration in the stereotaxic space [5].

2.2 Statistical Analysis

Problem Formulation. In this paper, we extend our previous work [1] by
proposing two multivariate tests for the detection of a unique change-point.
After the MR data have been spatially- and intensity-normalized, we perform
a statistical analysis on a voxel-by-voxel basis (see Figure 2). Let xi be the p-
dimensional vector gathering the information available at time i for a given voxel
(for example, p = 3 if we have 3 modalities). In a probabilistic framework, the
vector xi can be seen as the realization of a random variable. For the sake of
simplicity, this random variable and its realization will be named the same way
(xi) in the following.

It is common to assume that xi has a normal distribution with mean µi

(depending on the brain structure the voxel belongs to) and covariance matrix Σ,
considered as unknown but common to all the xi’s (this matrix mostly conveying
the image acquisition noise). This can be summarized as: xi ∼ N(µi, Σ). Given
these hypotheses, an active pathological process occurring at this voxel is likely
to translate into a change in the mean µi (for example, a white matter area

Fig. 1. MRI analysis pipeline.
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becomes lesional after time m). In the Neyman-Pearson framework, reasonable
null (H0) and alternative (H1) can then be simply stated as follows:

H0: µi = µ, i = 1, . . . , n
H1: µi = µ, i = 1, . . . , m

µi = µ∗ �= µ, i = m + 1, . . . , n

µ and µ∗ are unknown mean vectors before and after the unknown change-
point m. In the following, we show how to derive statistics to test H0 against
H1. Two approaches are used: the likelihood ratio (LR) statistic and a Bayesian
statistic are given in the next two sections.

Likelihood Ratio Statistic. Under H0, µ and Σ are unknown. Under H1, µ∗

and m are additional unknown nuisance parameters. Let L0(x) (resp. L1(x)) be
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Fig. 2. A time series of registered T2-weighted MR images. Top: the white square and
white circle indicate, respectively, an area in the white matter that visually seems
unaffected, and an area close to the lateral ventricles where a lesion appears over time.
Left: the intensity profiles of the centers of these two areas indicate, respectively, a flat
profile conveying image noise, and an intensity jump after time-point 3.
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the likelihood of the data x = (x1, . . . , xn) under H0 (resp. H1). Both L0(x) and
L1(x) depend on the nuisance parameters. As H0 is a nested hypothesis within
H1, computing the (sometimes referred to as generalized) likelihood ratio is a
natural way to derive a statistic to test H0 against H1. The LR is classically
defined as the ratio between the profile likelihoods Lp

h(x) of the data [6] under
both hypotheses, which can be written as:

LR =
Lp

0(x)
Lp

1(x)
=

supµ,Σ L0(x; µ, Σ)
supµ,µ∗,Σ,m L1(x; µ, µ∗, Σ, m)

(1)

Computing the LR consists in replacing the unknown parameters by their max-
imum likelihood estimates under the null and the alternative hypotheses in the
numerator and the denominator, respectively. Intuitively, a LR close to 1 (resp.
0) implies that H0 is fully consistent (resp. inconsistent) with the sample infor-
mation. A test based on the LR test is intuitively sensible, and even optimal
for simple hypotheses. Most standard tests are LR tests (t-, F -tests, etc.). In
our case, the two hypotheses are composite, and the LR test is not necessarily
optimal. If the vectors x1, . . . , xn are independent random variables (which is
an hypothesis we make in this paper), it can be shown that the LR leads to a
test using the following statistic [7]:

T 2 = max
m=1,... ,n−1

T 2
m, with T 2

m = y′
mW−1

m ym (2)

where:

ym =
m(n − m)

n
(x̄m − x̄∗

m), with x̄m =
1
m

m∑

i=1

xi and x̄∗
m =

1
n − m

n∑

i=m+1

xi

Wr =
1

n − 2

( m∑

i=1

(xi − x̄m)(xi − x̄m)′ +
n∑

i=m+1

(xi − x̄∗
m)(xi − x̄∗

m)′
)

The exact distribution of T 2 under H0 is known in the univariate case (p = 1) [8,
9]. In the multivariate case, the distribution appears to be intractable. The clas-
sical asymptotic theory would imply a χ2 limiting distribution for −2 log LR, as
n → ∞. This theory is not applicable here, as the likelihood function (under H1)
is not continuously differentiable in m. Instead, the simple Bonferroni inequality
can be applied, as the distribution of each T 2

r can be computed [7].

Bayesian Statistic. An alternative, Bayesian approach to the LR has been
proposed to test H0 against H1. It consists in selecting a priori distributions
p(.) for the nuisance parameters. Then, the integrated likelihoods Li

h(x) of the
data [6] under both hypotheses are computed, by integrating L0(x) and L1(x)
over these nuisance parameters. Finally, the ratio of the integrated likelihoods,
called Bayesian ratio (BR), is computed; its interpretation is close to that of the
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LR given in the previous section. The BR can be written:

BR =
Li

0(x)
Li

1(x)
=

∫
µ,Σ

L0(x|µ, Σ)p(µ)p(Σ)dµdΣ
∑

m

∫
µ,µ∗,Σ

L1(x|µ, µ∗, Σ, m)p(µ)p(µ∗)p(Σ)p(m)dµdµ∗dΣ
(3)

Two univariate approximate tests proposed in our previous work [1] were derived
based on the BR, with Σ being considered fixed. Following the same procedure,
considering the covariance matrix to be known (assumed to be the identity ma-
trix, without loss of generality) and provided the x1, . . . , xn are independent,
an analogous approximate two-sided multivariate test can be derived [10], whose
statistic can be written as:

U =
1
n2

n−1∑

i=1

( n−1∑

j=i

(xj+1 − x̄)
)′( n−1∑

j=i

(xj+1 − x̄)
)

(4)

The exact distribution of U can be computed [10]. However, the covariance
matrix is generally not known. To overcome this difficulty in the univariate
case, Sen and Srivastava [11,12] have proposed to divide the Gardner’s and the
Chernoff and Zack’s statistics [2,3] by an unbiased estimate of the variance. The
sample variance could be used, but in case of a change, its value will be larger
than the true searched value. Instead, the mean square successive difference,
originally proposed by von Neumann [13], is much less sensitive to such intensity
variations. Its expression is:

δ2 =
1

2(n − 1)

n−1∑

i=1

(xi+1 − xi)2

The normalized Gardner’s and the Chernoff and Zack’s statistics have known
distributions [11,12]. In the multivariate case, an analogous mean square succes-
sive difference ∆ can be computed. ∆ is an unbiased estimate of Σ that reads:

∆ =
1

2(n − 1)

n−1∑

i=1

(xi+1 − xi)(xi+1 − xi)′

By analogy with the univariate case, we propose that U can be normalized
by using ∆, which yields the following statistics:

V =
1
n2

n−1∑

i=1

( n−1∑

j=i

(xj+1 − x̄)
)′

∆−1
( n−1∑

j=i

(xj+1 − x̄)
)

Unfortunately, to our knowledge, no exact, approximate or asymptotic for-
mula is known for the distribution of V . Thus, in Section 3, we use the statistics
T 2 and U , respectively defined in Equations 2 and 4, and whose distributions
can be at least approximated, which allows to compute significance levels.
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Fig. 3. T 2 and U statistics applied on a time series. First row: transverse MR
images of a patient with MS at the level of the lateral ventricles; the first time point
of the series for each of the 3 modalities is displayed (from left to right, T2, T1, PD).
Second row: T 2 statistic applied on the series, using only T2 data (left), T2 plus T1

(middle), and the 3 modalites (right). Third row: same display as the second row for
the statistic U . Saturated white voxels are significant at the 0.1 level.

3 Results

In this section, we give preliminary results on a time series of multimodal images.
Ten image volumes over a four year period were acquired on a patient with very
active disease, at the MS clinic of the Montreal Neurological Institute. We applied
the two statistics T 2 and U on this data, and the results are displayed in Figure 3.
Saturated white voxels are significant at the 0.1 level. For both statistics, using
more modalities seems to improve the detection of disease activity. Qualitatively,
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the detected voxels are mainly located around the ventricles, where most of the
lesions are. These significant voxels also convey the brain atrophy that occurs
during the MS course, which translates into a decrease of ventricular size.

In the univariate case, it has been experimentally demonstrated that both
statistics perform best (i.e., have their best power) when m is close to n/2 [14]. At
this value, U is superior to T 2. Otherwise, most of the time, T 2 performs better
than U . To our knowledge, no experiment has been led to compare the power
of these statistics in the multivariate case. However, a qualitative interpretation
of Figure 3 suggests that this conclusion may be also valid in the multimodal
case. For example, a active lesion in the right frontal lobe is much well detected
with T 2 than with U . It turns out that this lesion is only present at the first
time point of the series: the change-point occurs very early, which favorizes T 2.
Further experiments will be necessary to determine which statistic, on average,
is the best.

4 Conclusion and Future Work

In this paper, we have presented two complementary multivariate statistics to de-
tect intensity changes in longitudinal, multimodal, three-dimensional MRI data.
A preliminary result has been presented, which suggests that is possible to detect
both lesion activity and brain atrophy in this framework. Qualitative comparison
of the two statistics has been given, but further experiments will be necessary to
determine which statistic, on average, performs best. The significance levels of
the statistical maps we obtained should also be corrected for multiple compar-
isons across all voxels of the volume. Bonferroni correction, or less conservative
approximations [15] could be used. These statistics can be viewed as activity
indices whose use, together with global or local atrophy metrics, may result
in a better surrogate of disease activity, with potential applications for better
diagnosis, prognosis and treatment of the disease.
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