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We discuss testing procedures to detect if a random sequence of exponentially distributed random variables has been
subjected to a linear trend change fillowed by an abrupt change. We propose three statistics and explore their
distribution theories, As an illustration, we applied these tests to Stanford heart transplant data and airport inter
arrival dafa.
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1 INTRODUCTION

Consider # independent random variables X\, ..., X, where X;’s have exponential distribu-
tions with density functions, £(x;,8;) = 1/0; ¢ % i=1,. .. n We will derive statistics
to test if the ;% were subject to a linear trend change at an unknown pertod of time followed
by an abrupt change. The hypotheses can be described in more formal terms as,

o0, =06, i=1,...,n
f‘[A: H,; = H,‘ -+ (sd,:(p,q)

where
0 i<pora=<i<n
dip.q)=y4-p . ()
—_ <
(g —p) p=r=4

and p, q are the unknown change-points such that | <p <g <n and ¢ and § are the
unknown nuisance parameters such that €, § > 0. That is the mean function is constant up
to some unknown time and then starts to increase linearly, and then drops abruptly to the
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original value at another unknown instant. Notice that if p = | and g = &, then we have the
linear regression model. This model has numerous applications. For example, consider a si-
tuation where the death rate of a population increases linearly due to a disease. Once a drug
for this disease is discovered the death rate will abruptly drop back to its original level.
Although we know the time the drug was discovered, the effects of it will not be felt imme-
diately. Hence this situation could be modeled by the above hypotheses. Also in neurophy-
siology, scientists study the behavior of neurons after the onset of a stimulus. Here the
activity of the neuron changes abruptly and then reverts back to its original position after
an unknown period. This too can be modeled by the change points with linear trend followed
by an abrupt change.

Since Page (1954, 1955) discussed a procedure for detecting a change, many new promis-
ing directions of research have emerged. Many authors have considered the single change-
point problem for the univariate and the multi-variate normal distributions, Chernoff and
Zacks (1964) took a baysian approach to model the change points in sequence of normal
means. Worsley (1986} constructed a confidence set for the change point for exponential
famillies. Hsu (1979) proposed a test statistic for detecting a single shift change
of the scale parameter in a sequence of gamma random variables. Ramanayake and Gupta
(1997} discuss change-point problems with epidemic change for the exponential distribution.
Change-point problems with linear-trend are discussed by Gupta and Ramanayake {1997).
For related work on change point problems, see Gupta and Chen {1996), Chen and Gupta
(1995, 1997).

In this paper we propose two test procedures based on the likelihood ratio type statistic,
one by assuming that the change-points have an equal chance to take values in the set
{(p.q) € Z> 1 1 < p < g < n}, and the other by using a different prior on (p, q). We discuss
the asymptotic properties of these statistics, Next we derive Rao’s efficient score statistic
and discuss its asymptotic behavior. Then we compare these three statistics in terms
of powers of the tests. Finally we apply these tests to Air traffic data and Stanford Heart
transplant data.

2 LIKELIHOOD RATIO TYPE STATISTIC

First, we propose a test statistic based on the likelihood ratio to detect an abrupt linear
trend change, in a sequence of independent exponential variables. Hsu (1979) proposed
a similar statistic for detecting a single shift in the scale parameter in a sequence of
independent gamma variables with fixed scale parameter. Suppose that the change-points
(p, q) are fixed, then the likelihood ratic function under #{; that d > 0 to that under /1y,
is given by,

r
R0, 8,p,q:%x) = T exp Z —+ Z ]
i= pH

i=p+ l f=p+

Thus the log likelihood ratio function under /1 to that of Ily, for fixed (p, ¢) is,

. L Xodip.g)
in R(U,5,p,q;%x) = Z ln[[ +”d(p q)] Z B0+ odp.

i=ptl i=p+|
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Next we assume that (p, ¢) has an equal chance to fall at ariy possible pointsp = 1,...,n—1
and ¢ = p + .. .., n. Then the likelihood function under H, to that under Hy as 5/9 — 0*

can be expressed as,
&
+Op 5

[ 6 n g1 )(,

R(@,0.p.q;%) =55 ZZ{ Zd(pq)+z 7 4. a)
g=2 p=] i=p+1

where N = n{n — 1)/2. Since the first term in R(8, 3, p, ¢; x} is a known constant, the equiva-

lent test statistic for testing under H to that under Hy as /0 —» 0* reduces to,

Next, if # is unknown, we can replace # by X, the maximum likelihood estimator of & under
Il Now if we change the order of summation in the above expression, the test statistic for
testing Hy vs. Hy can be written as,

E ZXI:Zk{‘I‘(n —k+iy— ‘l’(k)}]
f= I =

=2

where, ¥(#) is the Digamma function defined as, ‘¥(x) = d/dx In T'(x). Next, for simplicity
in  notation set, ¢ =34 kKPr—k+)-Wk)} and, M=2nY!, c=
1/6 (n - 1)n - 2). Now for convenience in computation, for testing H, vs. Hy, we will
use the statistic,

oy G .
r= MZ, ra ®

2.1 Moments of the Statistic 7 Under Hy
Define. ¥, =X/ ., X, i =1,...,n— 1. If the null hypothesis is true, then it can be

shown that (¥,,....Y,_ ) ~D,_1(1/2,...,1/2) — a Dirichiet distribution. Hence the
moments of (Y),..., ¥, 1) can be written as (see e.g. Johnson and Kotz, 1972, Ch 40, Sec 5),
n-1
) 17204
ey, = B Y V) = .

o) 7]

where al=a{a+1).--(a+r—1). Now in terms of Y;s we can writt T as,
I'=1/M Y ¢, Thus under the null hypothesis, u (T =Y /M E(Y¥;})=1/2.
Although the other moments of T cannot be written in closed form, they can be computed
without much difficulty, for any fixed n. Table I gives the first two moments of 7 and the
coefficient of skewness f§,(7) and kurtosis f,(7"), for some selected sample sizes.

It is clear from (2) that T takes values between 0 and 1. From Table I we see that the null
distribution of T has very small positive skewness, which gets closer to zero with increasing #.
Table I also indicates that the kurtosis (y, = f; — 3}, is positive and tends to zero as n — oc.
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TABLE I Moments of the Statistic T for Some Selected Sample Sizes.

n 10 (M (T (10 %) BT (1072 BT
25 0.5 6.619 2.975 2.861
50 .3 3.212 1.783 2931
75 1.5 2.124 1.269 2.955

100 0.5 1.587 0.984 2.966
125 0.5 1.267 0.804 2973
150 {1 1.055 0.680 2978
175 0.5 0.903 (.588 2.981

200 s 1L.790 519 2,983

2.2 Null Distribution of Statistic T

Define, 7| = T — 4.5 /.‘/%Rﬂ to be the standardized statistic corresponding to 7 Then by
the Lyapounov Central Limit Theorem and Slutsky’s Theorem, we get that the statistic T,
under Hy follows an asymptotic normal distribution as # — co. The test statistic is based
on the likelihood ratio, for small changes in the ratio 4/f). Thus a test that rejects My
favor of the {1, that & > 0, for large values of 7|, will give the locally most powerful one-
sided test as 8/6 — 0T, Also a test that rejects /4, for large |T)| is the locally most powerful
unbiased test against the two-sided alternatives for small values of |8/0).

For moderate sample sizes, we suggest using an Edgeworth expansion for the c.d.f. of sta-
tistic T7. The three-term Edgeworth expansion for the ¢.d.f. of statistic 77 (e.g. see Johnson
and Kotz) is given by, Fr,(x) = ©(x) — {1/6 /A (T2 — 1)+ 1724 (B,(T) — 3)x* — 3x)+
1/72 B(THx> — 10x* 4 15x)}(x), where ®{x) and $(x) are the distribution function and the
density function of a standard normal random variable respectively, We used this Edgeworth
expansion to obtain critical values for the standardized statistic 77 for selected moderate
sample sizes. These values are displayed in Table 11.

As we can see from the values in Table H, it is clear that the normal approximation is
sufficiently accurate for most situations.

2.3 Asymptotic Distribution of 77 Under the Alternative Hypothesis

Under the alternative hypothesis, we know that X, .. .. X, will follow independent exponen-
tial distributions with mean #; = ¢ + ddi(p, ¢). For convenience in notation we will suppress

TABLE 11 Approximate Critical Values of the Ty Test.

f Coaf Coppp2s Cpis Com Co 25

25 2.493 2,065 1.699 1.24%0 (1645
50 2.445 2.035 1.686 1.291 0.653
7 2423 2021 1.679 £.291 0.659
1{) 2410 20013 1.675 1.290 11662
125 2.401 2.007 1.672 1.289 0.663
150 2.394 2.003 1.669 1.249 (3.665
175 2.289 2.000 1.668 1.288 1.665
200 2.385 1.997 1.666 1.288 (1666
0 2326 1.960 1.645 1.282 0.674

Note: ¢, is defined to be J;:‘_,"{x‘](l\' - a.
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the indices (p. q) in di(p, ¢), and write it as d;. Now if we assume that £/ holds and that,
p/n — Ay and g/n — A, such that 0 < 4; < 4; < 1. Then by the Lyapounov central limit
theorem we get,

e ¢ et
[Z’ﬁ[;,‘t ngzﬂl/z b - N(0,1)

and by the weak law of large of numbers we have, X/E(X) kN 1, where E(X)=
L/n¥ 0, 8 =0+1/n6(n— (g —p+1)/2). Thus from Slutsky’s theorem, we have that,

T —u,

n

-— N(0, 1},

where,

o = Zle C;H,' _ ]/2 -+ P l/Mn Zle C,‘d,‘
" MZ?:I ()1 1 + P l/n Z:'T:I d,'

and,

— ET | ?H?‘ -‘} Zr— CZJFlﬂZ! ]czd +Zr—l ‘ZdJZ
(M3, f] MZ[”'HOZ ]

3
=

L}

where p = /0. Thus under the null hypothesis we have that,

(T - 0.5)

1/Mn \fzf | q

Now the power of the test at level o can be written as,

/ " 2‘..m 1
flay=1-@ —A}"JE_'? - =, - 0.5)

=N VIRN

where z, i8 given by the equation, x = l ¢(x) dx. 1t is clear from the expression of S(x), that
the power of the test depends on ! and 3 only through p = 4/8.

Figure A gives the approximate power curves for a sample size » = 50, The first plot gives
the power curves for fixed g{= 30) with values of p ranging from (1, 29) for p = 1(2)7. The
seconds plot shows that power curves for fixed g(= 50) with values of p ranging from 0 to 5
for g — p = 15, 25, 35. We can see from these two plots that the power is an increasing func-
tion of p for any values of p and ¢. Moreover the power of the test is greater if the change
occurs in the middle of the sequence. Notice that the rate of increase of power decreases
with increasing p. The third plot shows the power curves for fixed ¢ — p(= 10) with values
of p ranging from 0 to 20 for p = 185, 25, 35. The fourth plot shows the power curves for fixed
duration of change ¢ — p(= 15) with values of p ranging from 0 to 20 for p = 5(5)25. Plots 3
and 4 both indicate that the power of the test is greater if the change occurs in the middle of
the sequence and is smaller if the change occurs at either end of the sequence. These plots
also indicate that the power of the test decreases with g, if the change point p is at 5.
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FIGURE A Power curves for statistic 7).
3 ANOTHER LIKELIHOOD RATIO TYPE STATISTIC
Here we assume that (p, g) have a prior density,
flp gy x i —p)(nz—q-i—p), for1 <p<gq<n
H

Then by a similar argument as for 7 in section 2, we can derive the corresponding the like-
lihood ratio type statistic for this prior for /6 — 0% as,

Ty =n

Y= DB =i+ D+ 1 — DX
M ZLI X ‘

where M, = 2/n Z:.:ll Hi— 1B —i4+20n+ 1 =D =1/5@— D2+ n+2)n4+1).
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3.1 Moments of the Statistic T Under Hy

Sete; = i(i — D)3n — i+ 2)(n + | —1)/M,, then we can rewrite Top = n Y ., Xies/ 3 1y X
From section 2 we know that (¥, ..., Y, )~ D,_{ (1/2,...,1/2). Thus we can find,

1

1 () = 5

44n* + 2517 + 350n% + 495n + 486
126(r + 1)(n — D{n + 2)°(2n + 1)

a(T3p) = g%o%(n —2)(373n" +2381n° + 177370 + 1019244* + 2115674°

+ 24914977 + 2311231 + 258546)[(n — 1’21 + 1Y2(n + 2P (n + 1)?
x (n+4)""

t4(T20) =0.0915 o(n™?)

B1(Ty) =31.8820(n"

Fr(T) =3 —4.1610(n ")

iy{T0) =

The null distribution is positively skewed and has negative kurtosis (y, = f§, — 3) but they
both tends to 0 as # — oo,

3.2 Null Distribution of Statistic T3

Define, > = (75 — 0.5)/ \/ PaTTz(T) to be the standardized statistic corresponding to Thg.
Then as in section 2, we can show that 7, is the locally most powerful one-sided test as
0/t — 0. And |T>| is the locally most powerful unbiased test against the two-sided alter-
natives for small values of |§/6|. Next, we use a three-term Edgeworth expansion for the
c.d.f. of statistic 7 to get, Fr,(x) = D(x) — 1/24 (B,(T2) - 3} — 3x)¢(x). This Edgeworth
expansion was used to obtain critical values for the standardized statistic 75 for selected
moderate sample sizes. These values are displayed in Table 111,

As we can see from the values in Table 1L it is clear that the normal approximation is
sufficiently accurate for most situations. Also notice that these critical values are very
close o the critical values of statistic 7,, given in Table 1.

TABLE 11 Approximate Critical Values of the 75 Test.

A Long Cnpzs Cias Coro Co 25§
25 2.490 2.064 1.6499 [.290 0.646
50 2.436 2.028 1.681 1.289 .656
75 2413 2014 1.674 1.288 0.661

106 2.400 2.006 1.670 1.288 0.663

125 2.391 2.000 1667 1.287 0.665

150} 2.385 1,997 1.665 1.287 0.666

175 2.380 1.993 1.666 [.287 0.667

200 2.376 1.991] 1.666 1.287 0.667

oc 2.326 1.960 1.645 1.282 0.674

Note: ¢, is defined 1o be ‘[;:”f(.\-)d.x oy
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3.3 Asymptotic Distribution of T; Under the Alternative Hypothesis

As in section 2 we can derive can show that under the alternative hypothesis, that for large n,

T — *
28 2 N,

H

where,

i= 1/2+p Z:":' eid,/Mn and, o = et ¢ +2p Do "fzdi + fﬂ)z Dot ",Zd;'z
" N4p L di/n ’ Mn+p Y0, d]

We alsc can show that as n — oo, ytf — p* and m)':z — a*?, where,

1 I a5 1
LS LD PRI LR ) S E B
K {2+”( phh -tk og

oy 5.y by s A — AN
*T-z-},zll W§Al +§A] —'EAI ! +p 3

3.2 3 1 ]
A%A% — glgi% +§izﬂ.? — Eﬂ.’aﬂ?

and,

o = %% {(—41584,43 — 4158434, — 4158141 + 2079023 — 415823

— 544527 + 15401 + 792045 — 1544] — 4752025 +- 381154] — 1232028
+ 138613 — 4158347 + 79204343 — 1541347 + 15404347 + 15404, 4]

— 154505 + 79204323 — 15447 4] — 1544347 + 7920424 ~ 54454377

+ 15404545 — 54450347 4+ 79204, 43 + 15404145 4 15401347 — 54454, 15
— 54457373 — 1544320 — 1540547 — 54451507 + 79207547 — 1544343
—5445),45 — 154427 + 15404,4] + 1540434 p + (29704, 43

— 17824327 — 11884,4] + 891043 — 59447 — 60547 + 15425 1 9904

— 1427 — 2079045 + 169404] — 554413 + 63043 — 23764347 + 49501213
— RALSAT 4+ 9212347 + 12324, 4] — 1264, 45 + 39604347 — 112424]

— 422247 + 29704307 - 24200347 + 4624305 — 18154347 + 59404, 4;

4+ 10784228 + 6164343 — 42354, 45 — 36300345 — 564345 — 981547

— 30254307 + 19804,45 — 704345 — 1210449 — 284,4% 4 3084,4]

(- m}f

+ 770432007 + 374}”1 +

Then we have that for large n,

VT =8 0 e ),
n—*
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FIGURE B Plot of p* — 0.5 vs. (), 42),

LEMMA | The test based on Ty is consistent for testing Hy vs. Hy if, 1043 + 84143~
4873 + 6327 — 36432, + 4543 + 44D + 3002, — 240,21 + 1547 — 1223+ 22 > 6.

Proof Under the null hypothesis we have that, v/(Tag — 0.5)/1/85/252 — N(0, 1).
Thus the power of the test based on T4, at level « is given by,

ﬂ(oc)—l—fbl\/’z%%—‘f(,u'—&ﬁ -1 asn— oo

i p = 0.5 > 0421043 + 84143 — 4845 + 64347 — 36434, + 4513 4+ 44047 + 30424, —
244,47 — 6 + 1547 — 124} + 22 > 6, Hence we get the resul,

The contour plot for g* — 0.5 > 0 is given in Figure B. The contours indicate the area
where ;* — 0.5 > 0. From this plot it is can be seen that the test based on T; will be
consistent if the change-points fall in the middle of the sequence.

4 SCORE STATISTIC

Notice that, for testing 71y vs. 11, the maximum likelitood estimators cannot be computed in
closed form. Hence we will derive Raos efficient score statistic as an alternative. First we
define,

f= [:] h(t):—% and y, =[] di]li=1,...,n,

where d; = ddp.q) if i=p+1,...,q and 0 elsewhere. Then notice that we can write,
#; = A(y;f) and the log likelihood of x;’s as,

LB, x) = {xh(y Y+ Inh(yf)) fori=1,... n
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Next let B, = {0 0] and ﬁg be the restricted mie of f§,. Now for fixed {p, ¢), Rao’s efficient
score statistic for test [ly : ff = B, vs. Hy: f = f8, can be written as,

Lp.q) **U (BoY (Bl Unt o),

where,
d
Un(ﬁﬂ ! —InL (ﬁ)'ﬁ__,rg”
and
LBy = Mwmuumm

Thus for fixed (p, g) we get the score statistic to be equal to,

! (X X)
Nip.q)= d;
0 lZ 0% o ]

where, wp.q)= 1/12(g —p) (g —p + D{4nlg — p)+2n = 3(g — p¥ = 3(g —p)]. But
since in this situation, the location of the change points (p, ¢} are unknown, so we can use,

73 = max
lwpegen

d (X; ~ X)d,
di’(}’f )_1 N
;; RS NETy

to test Tl against a two-sided alternative. On the other hand when we want to test /; against
H; & > 0 we suggest,

n (X — 5()

T = max 1
3 Z‘ iw.q X ’_v(p D

lzpag<n po

and to test /1y against H, 1 0 < 0 we suggest,

— X)
7o = dip,
L 1 T(lc?wz . )X‘/v(p q)
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4.1 ASYMPTOTIC NULL DISTRIBUTION OF THE SCORE STATISTIC

Recall that the change points (p, ¢) are such that, p/n — 4, and g/n — A, with
0 < A <A, < 1 whep # — oc. Then we can show that as n — 00, v(p, ¢)/n°, converges
to va(Ar, A2) = 1/12(4; — 41 (4 — 34, + 34;). Next, notice that we can rewrite,

I

) 1 ! .
3%, q) > i~ p)X; —X)’

(q—pl)?\fv(p,q);jpﬂ
B L -h Sw-% ‘
- p)\/v(p q).;. g Z l

Now define a partial sum process on [0, 1] to be

il v P :
LZ(XJ_X) ifl§u<ﬁ-—1,15f<n
By = VI X " "

0 ifu:lorif0§u<l.
n

Then under the nuil hypothesis, {B,(#) : 0 < u < n} converges weakly to a Brownian Bridge
process {B(u) : 0 < u =< 1}. Thus for fixed (p, ¢), under the null hypothesis of no change,
T3y //n converges in distribution to

Ay
(s — A)BUi2) — [ Blu) du.

JAy

L=

sup
(I<;|<} < (112 ),])1/1/'0(/1[ A2)

LEMMA 2 The critical points of the tests Ty, Ty, tend to infinity and T; tend to negative
infinity as n — oc.

Proof  First consider the statistic,

Note that 77 is a special case of 73 when ¢ = ». Thus as n — oo, T9/./n converges in
distribution to,

! B(u) du
L= —,
()EET(.I JA, (1 - A.l)\f‘vg(ﬁ.[, 1)‘

where vp(d(, 1) = 1/12(1 — A;}{1 + 34;). But we can write,

§! By du Y0 =4 Bandu
(1 — A0 = AI0/12(L +34,) B(1 — i)
B(1—1y) V24(1 = A In(i/(1=1,))

AT W =) L= 4+ 34 @
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Next consider the joint Gaussian process

1 1
—B(n),
s T

Bs), 0<u<l

Notice that this process converges in distribution as s — 1 to {(X(#), ¥),0 < u < 1}, which
has a distribution that does not depend on 4. Thus as Ay — 1, the first-term in (3) converges
in distribution to a non-degenerate distribution 1/¥ [n X{u)de. By the iterated law of

TABLE IV Powers of Ty, Ty and T3 Test (z = 0.03, right-tailed).

a=73 di=0
I g Ty T, T; T, T: T
5 20 0.0024 0.0038 04630 {(HNG2 G.0002 (18256
5 25 0.0452 0.0542 14480 0.0614 0.0656 (0,7922
5 30 0.3740 (.3896 0.3926 0.6098 0.6186 0.7056
5 35 0).7494 0.76R2 03380 0.9412 0.9470 0.5918
5 40 0.8914 00426 0.2724 0.9916 (.9940 (1.4708
5 45 0.8616 (0,904 0.2488 0).98506 (.9936 (1.3848
5 50 (,3932 4866 0.1824 0.5644 0.6680 (1.2752
10 20 0.(K98 00158 (.43066 0.0026 (L0046 03,7940
1 25 0.1228 01418 0.4634 02224 $.2392 0.8276
10 30 0.5412 0.5600 (14386 0.8394 (8418 (17968
16} 35 (.8§498 0.8642 (0.3938 0.9852 09866 0.7222
L) 40 09344 0.9454 0.3520 0.9980 (1OG8R G.6108
) 45 0.9004 0.9376 0.2812 .9944 £,0984 04602
10 50) 04158 0.5130 0.2306 0.5976 0.6950 L3610
15 20 0.0304 0.0416 (L3574 0.0248 0.0342 06700
15 25 0.20064 0.2290 0.4418 04214 (.4392 01,8090
[ ] 30 0.5772 .5956 0.4550 13868 0H.83908 0.8218
15 a5 0.8506 0.8624 0.4392 0.9892 (1,9898 7972
15 40 0.9354 00.9470 0.4030 0.9982 09988 01182
15 45 0.8920 09318 0.3470 0).9944 (.9980 00,5988
15 50 0.3624 H4612 ) 2802 0.5484 6600 0.4774
20 25 01724 0,1952 (13342 0.3578 0.3764 0.6762
20 30 0.5256 0.5404 0.4406 0.8542 0.8588 0.7956
20 35 0,7952 0.8112 0.4512 0.9738 0.9770 0.8204
20 44 0.8930) 0.9120 N.4518 0.9056 0.9962 0.8000
20 45 0.8198 0.8818 (+.3904 0.9870 0.9956 0.7086
20 50 0.2676 0.3612 0.31386 04164 0.5260 0.6026
25 30 0.3138 (1.3420 0.3432 0.6042 06238 0.6666
25 a5 0.6390 1.6680 0.43060 19142 1.9224 0.7912
25 40 0.7686 0.8128 0.4702 0.9764 01,9842 (8244
25 45 01,6554 0.7534 0.4524 0.9384 0.9704 07916
25 50 0.1336 0.2058 (1.3806 3.2100 0.3136 07144
30 35 (13546 .3964 0.3380 0.6542 0.6886 0.0662
30 4} 0.5428 0.6098 0.4330 (1R680 0.9000 0.7984
30 45 0.3864 0.5208 0.4698 07418 0.8520 n826
30 50 G.0464 0.0856 0.4406 0.0602 01172 0.80354
35 40 0.2458 (1.3122 0.3462 0.5028 (.5850 0.6786
15 45 0.1438 0.2440 (.4438 0.2976 0.4896 0.7984
33 50 1.0096 0.0224 0.4524 0.00472 0.0140 0.8224
H) 45 0.0392 r.0730 0.3502 00476 1012 0.6674

40 50 4.0024 (L0050 0.4336 0.0002 00010 0.7954
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logarithm, the limsup of the second term in (3) converges to 1 a.s., as 4, — 1, and the third
term in (3) goes to infinity as A; — 1. Therefore we get,

up [‘ Blydu | limsup I ! B(u)du
O<ip<lJ1; A'\.|\/V()(/‘|.1, 1} - -1 02 (l — 11),/1)0(/1.. l) '

which tends to infinity a.s. Thus 75 also goes to infinity a.s. as » — 0. Next note that in the
definition of T: the set over which supremum is taken is a subset of the corresponding set for
7. Thus T3 also goes to infinity as # — oo. A similar argument was used by Suigira and
Ogden (1994},

5 POWER COMPARISONS OF THE THREE TESTS

Table IV compares the powers of the tests based on the statistics 77, > and T3 for 10,000
repetition Monte Carlo experiments, In order to keep the table to a reasonable size, only
the case of sample size, n = 50 and # = 1, 3 with a significance level x = 0.05 is reported.
We see from Table [V that the powers of the statistics 7y and T3 are pretty close for all values
d. 0 and (p, ). Notice that the powers of tests based on the statistics T\ and 77 are larger than
the power of tests based on statistic 73, when (p, ¢) fall in the middle of the sequence. On the
other hand if (p, g) fall in the beginning or the end of the sequence the power of test based on
Ty is larger than either of Ty or 7>. Power of all three tests are considerably small if (p, ¢) fall
in the very beginning and at the very end of the sequence. Higher powers for all these three
tests are achieved if (p, ¢) occur in the middle of the sequence. Also it is clear that the power
increases with increasing 8 for 75. This holds true also for 7| and 75 when (p, g) fall in the
middle of sequence.

Thus we recommend that one should use 73 unless it is likely that the trend change
has occurred in the middle of the sequence. In such a situation we recommend the use
of statistic T>. The ¢nly reason why T: is preferred over 7| is because of its ease of
computation.

6 ANALYSIS OF INTER ARRIVAL TIMES

To illustrate the test procedures, we use a set of aircraft arrival times collected from a low-
altitude transitional control sector for the period from noon through & PM. on April 30, 1969,
This data set was taken from Hsu (1979). There are 212 inter arrival times within this period.
Hsu {1979) has showed that the data is exponential and that the observations are independent.
The hypotheses of interest here are, Hy: 6 =0 vs. Hy 6 > 0. The data is plotted in
Figure C. The time series plot does not show a linear trend followed by an abrupt change
in the sequence.

To examine this more rigorously we performed the three tests discussed in above sections
to the data set, we pet the results contained in Table V. From Table V, we can see that while
the tests based T, 75 and T3 are well out side the significance bounds. Thus we can conclude
that the arrivals of the aircratts occurred at an approximately constant rate during the period
of time considered.
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FIGURE € Plot of inter arriva) times.

TABLE V Results of the Tests for Infer
Arrival Times of Air Data.

Statistic Ohserved value p-Falue
Ty 0.429 (2203
Fi (0.442 0.2518
Ta 3732 0.2378

7 ANALYSIS OF STANFORD HEART TRANSPLANT DATA

This data set was taken from “The Statistical Analysis of Failure Time Data” by Kalbfieisch
and Prentice, Appendix 1, pages 230-232. The average survival time for the 35 known age
groups is considered. We plotted average survival times ordered by their magnitudes, against
the expected order statistics of an exponential random variable with mean 1. Except for the
largest observation, the sample points form a nearly straight line. Thus we can use an expo-
nential model for this data. The hypotheses of interest here are, Hy: d = 0vs. Hy: 8 < 0. The
data is plotted in Figure D.

The plot does seem to indicate that there is a linear trend change n the sequence. To
investigate this more rigorously we performed the test discussed in the previous sections
for this data set. Table VI gives the critical values and the p-values for the three tests
based on the three statistics 7, 7> and 73. Thus we see that the p-values for the tests
based on 7| and T» are fairly large. But notice that the p-value of the test based on 73 is
somewhat small. The mle’s of the change points in this case turn out to be 7 and 10. This
translates to ages 29 and 33. This is not unexpected because the change did occur during
the end of the sequence and in this situaiion 73 was shown to be more powerful than
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FIGURE DD Piot of average survival times against the age.

TABLE V1 Results of the Tests for Stanford
Heart Transplant Data.

Statistic Observed value p-Value
T, 0.047 0.4899
7> 0.035 04932
Ta 4.78 0.0709

T, or Ty. We tested for exponentiality of data again after transforming the data according to
the mle’s and found that the exponentiality assumption holds true as well.
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