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Abstract.

Bayesian analysis is applied to the general linear model to develop a

framework for studying different types of change in the mean value of time series and
linear regressions. The output of the Bayesian analysis is the posterior distribution of
change point location and amplitude. This information provides a rational and relatively
objective basis for making decisions as to where to locate a change point. Several
examples of hydrological applications are presented to demonstrate the utility of the

methodology.

1. Introduction

In most statistical analyses of hydrological time series an
assumption is made that the phenomenon under consideration
is stationary over time. For example, it is not uncommon to
assume that the population mean and variance of a random
variable are constant. While in most situations this assumption
is reasonable, cases arise where data suggest that at some
point, there has been a change in some of the basic statistical
characteristics of the process. If there is reason to believe that
a change has taken place, a statistical analysis should be un-
dertaken to examine the time and nature of the change.

A closely related problem may arise in regression analyses
where data sometimes suggest that it would be preferable to
divide the predictor space into two or more regions and fit
different models to observations in each region. In both cases
it would be preferable to employ an objective data-based
method to identify the most likely point of change. Certain
nonparametric regression methods such as recursive partition-
ing regression and multivariate adaptive regression splines
have been developed in recent years to address this issue
[Friedman, 1991].

We employ here a Bayesian approach to investigate the
location and nature of changepoints in time series and linear
regressions. Change point determination has been studied ex-
tensively in the literature, using both classical statistical ap-
proaches and Bayesian approaches. Some recent references to
Bayesian work on the subject include Carlin et al. [1992],
Bernier [1994], Stephens [1994], O Ruanaidh and Fitzgerald
[1996], and Perreault et al. [1999, 2000a, 2000b]. The specific
purpose of this paper is to show that the generalized linear
model used in conjunction with Bayesian analysis provides a
convenient framework for describing changepoints associated
with a variety of change types. The output of the Bayesian
analysis is the posterior distribution of the time of change and
the marginal distribution of the change amplitude.

The paper is organized as follows: In section 2 we review
properties of the general linear model and the Bayesian frame-
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work used to make inference about linear models. In sections
3-5 the general procedure for studying change points in time
series and regression relationships is outlined. Section 6 pre-
sents three hydrological applications of the methodology.

2. General Linear Model

Our point of departure is the general linear model, which is
frequently employed in statistical analyses and which also has
seen many applications in the field of water resources. Any
data set that can be described by a linear combination of basis
functions and an additive Gaussian noise satisfies the general
linear model:

M
yi= 2 bigili) + &

k=1

i=1,...,N, (1)

where y, is the dependent variable and g, (i) is the kth basis
function which is a function of the explanatory variables asso-
ciated with the ith observation. In the case where y; is a time
series, g, () will typically be a function of the observation time,
that is, g,(¢;). Coefficients b, are associated with the basis
functions, and ¢; is an independent random noise assumed
here to have a Gaussian distribution with zero mean and vari-
ance o°. The assumptions regarding the noise term may at first
seem restrictive. However, approximate normality can often be
achieved by an appropriate transformation of the data. Trans-
formation may also serve to render the residuals homoscedas-
tic. A small to moderate serial correlation of observations is
not expected to have any major impact on the approach to be
described in this paper.
In matrix form, (1) becomes

y=Gb + &, 2)

where y is a N-dimensional vector containing the observed y
data, G is a N X M matrix with columns representing basis
functions and rows representing observations, and € is an N-
dimensional vector of Gaussian noise with zero mean and
covariance matrix o°L.

The model parameters are the noise variance o2, the coef-
ficients b associated with the basis functions, and a set of
parameters {w} describing the basis functions. For the above
model the likelihood function L of & = [o, b, {w}] is given by
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Figure 1. Models for change point in time series. (a) Change in mean. (b) Change in linear relationship
between two variables. (c) Change in intercept of linear relationship.

e’e

i)

L(®ly) = p(y|®) = p(e|®) = 27c?) M2 exp [— =

I

To perform a Bayesian analysis of model parameters, a prior
distribution of the parameters must be specified. The prior
distribution should reflect any knowledge of & that is not
related to the data. In practice, such information is often not
available or is so vague compared with the information con-
veyed by the data that it can be neglected. Therefore as prior
distribution of ® we consider Jeffrey’s noninformative prior

p(®)xo”, )

which corresponds to assuming a uniform distribution of b,
{w}, and log 0. Bayes’ theorem can then be used to obtain the
posterior distribution of ®:

p(®ly)xL(®ly)p(P). (5)

As will be shown in sections 3 and 4, the basis functions can
be employed to represent various forms of change in time
series and regressions. Therefore we will be concerned with the
marginal distribution of the parameters {w}. The marginal
posterior distribution of {w} is obtained by integrating out the
parameters b and ¢ from the joint posterior distribution. With
the assumptions made above the joint posterior distribution
may be written as

p{w}, o, bly)x(2ma?) N2
o [_ (y — Gb)"(y - Gb)}

20
After integrating out the parameters b and o, the following
expression for the marginal distribution of {w} is obtained:
[y'y - y'G(G'G)'GTy] ¥
| GTGl 1/2

(y — Gb)(y — Gb)
20°

= (2mwa?) ™M exp [ -

©)

1
; .

(6)

p{w}y) = . (D
where |G"G] is the determinant of GTG and M is the dimen-
sion of b. In change point analyses we will generally assume
that there are a limited number of possible changepoint loca-
tions and each of the candidates will be described by a partic-

ular G matrix. Therefore p ({w}|y) will be a discrete distribu-

tion, and the normalizing constant required in (7) can be easily
determined by summation. Note that the determination of the
marginal posterior distribution of {w} does not require explicit
estimation of the regression coefficients b and the noise vari-
ance o>,

3. Determination of Change Points in Time
Series

3.1. Change in the Mean Value of a Series of Independent
Normal Variables

The case of a change in the mean value of a series of
independent normal random variables is the simplest case con-
sidered here. This problem has been studied extensively in the
literature, both from a classical statistical perspective and from
a Bayesian viewpoint. Lety,, y,, ..., y, be a series of obser-
vations of a normal distributed random variable Y, observed at
times ¢4, ¢5, ..., t5. It is assumed that the observations are
independent; that is, there is no serial correlation. We hypoth-
esize that at some point in the sequence, there has been a shift
in the population mean, and we want to determine the poste-
rior distribution of the change point, ¢,,,. It is assumed that the
noise variance is constant over time. This particular problem is
illustrated in Figure 1a. The posterior distribution of ¢,,, can be
readily obtained using the results from section 2. In particular,
we postulate the following model,

_Jmte i=m .
yi—{M2+gi i>m i=1,...,N ®)
corresponding to observation times ¢, i = 1,..., m, m +

L,..., N. Our interest is to make inference about ¢, or,
equivalently, about m. The above model can be easily for-
mulated as a general linear model, i.e., in the formy = Gb +
€. We take b” = (u,, ,) and define the G matrix as

11 - 1|00---0
e &)

00 - 1
P Nom
In other words, G,,, has two columns, the first containing m
rows of ones followed by N — m rows of zeros and the second
containing r rows of zeros and N — m rows of ones. The only
parameter of the basis functions is m. Insertion of G,, in (7)
yields

o=
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Figure 2. Models for change point in linear regressions. (a) Change in constant mean. (b) Change in both
intercept and slope. (¢) Change in intercept. (d) Change in linear regression with continuity at change point.

ptly) = {IGLG,| " y"y — ¥y'G,.(GLG,) 'GLy] ™M/

1

-1
IGIG{[y'y — yTGi(G,-TG,-)‘G,-Ty]‘N‘M”}

i=1
m=1,...,N~-1 (10)

with M = 2. The denominator serves to standardize the dis-
crete probability function so that ¥ _! p(¢,,ly) = 1. This
expression corresponds to the probability function derived by
Lee and Heghinian [1977]. Note that m is restricted to [1; N —
1] because there must be at least one observation before and
after the change point. Candidates for a change point estima-
tor are the mode and the mean. The mode may be preferred if
p(t,,|y) has a distinct peak. The mean value may be preferred
if the distribution is more dispersed.

The generalization to the case of several change points is
straightforward. For example, in the case of two change points
(m,, m,) we would define b” = (w,, o, 1), and G,,, would
take the form

G- [0 0’1 1}0 e

mi m2 N—my—m>

The change point distribution would be bivariate and its sup-
port would be all possible combinations of #, and m,.

3.2. Change in Linear Relationship Between Two Variables

Suppose now that we have N joint observations of two vari-
ablesx andy, i.e., (x;, y;) observed at equidistant times ¢;, i =
1, ..., N. We assume that a linear relationship exists between
x and y but that at time ¢,, the parameters of the linear
relationship have changed. This situation is illustrated in Fig-
ure 1b. We want to make inference about ¢, or, equivalently,
about m. This problem is also easily formulated and solved
using the general linear model. The postulated model is

+ By te is
y,:{“] Boitoe, t=m ., N (12)

o+ Bax;,+ g I>m’

In matrix form this corresponds to b” = («,, 8, @,, 8,) and

1 -+« 1 o - 0
s |x o ox, 0 ()
G, = 0 --- 0 1 e 1 (13)

0 o 0 xm+.| XN

This expression for G,,, along with M = 4, may be plugged
into (10) to give the posterior distribution of ¢,,, with the only
modification being that the posterior distribution must be re-
stricted tom = 2, 3, ..., N — 2 because at least two points
are needed to establish a linear relationship. Note again that
for a given set of observations the basis functions are deter-
mined entirely by m.

3.3. Change of Intercept in Linear Regression

It is straightforward to modify the model 12 to the case
where there is a change in the intercept but not in the slope of
the linear relationship (Figure 1c). We then have the model

o+ Bx;te I<=m
Yi=

ot Brte ism  I=Lo N (19)

with b” = (a,, B, @,) and

Gl=|x1 =" Xp Xpu Xy (15)

and M = 3. Again, (10) yields the desired posterior density of
t

m*

4. Determination of Change Points in Linear
Regression

Section 3 dealt with change points in time series. A closely
related problem arises when two variables x and y are linearly
related within subintervals of x, but the exact extent of the
subintervals is unknown. For example, we may hypothesize the
existence of two regimes corresponding to x values less than
and greater than some critical value x, and desire to obtain the
posterior distribution of x... Figure 2 illustrates different cases
of change in linear regressions.

If the observations (x;, y;) are ordered so that x; = x,
= ... = xy, the formulas given in sections 2 and 3 can be used
without modifications. Note that the condition i < m is equiv-
alent to the condition x; = x,, = x_. Since in the general case
the x observations are not equidistant, some precaution should
be taken when interpreting the posterior distribution of m. If
the mode is used to determine the most likely point of change,
then one should consider the discrete probabilities associated
with observed x values and, for example, select the midpoint of
the interval between the mode and the next observed x value as
the appropriate change point. This seems reasonable since
p(x,,|y) represents the probability that the change occurs in
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the interval [x,,,; x,,, ,1]. On the other hand, if the mean value ~ where it is assumed that b, has » elements and b, has M — r 6.
is used as an estimate of the change point, then it may be elements and the C matrices have corresponding dimensions.
preferable to consider x a continuous variable. The posterior Then the marginal distribution of b, is re
density is constant between adjacent x observations x,, and . e
X, +1 and is given by iz (v + n]icy}? d
p(bily, m) = — - 1
X, r&rré r [0}
fx) = PLEal?) (16) [TGT TG ws v] o
c(xm+] - xm) R . tl(
(b; — b)"Ci(b, — b))] "
forx,, =x<ux,,;andm =1,2,..., N — 1, where 11+ - . (2D pr
a
¢ = p p(x,]y) This result, along with (19), is useful for quantifying the T
o Xl T X amount of change given a specific change point. The distribu- tq
tion can be made unconditional upon m by the following sum- e;
As defined above, the density function is restricted to [x, x,). mation: N
In some cases (such as the case in Figure 2b), the posterior Vé
density of x,, must be further restricted to allow for several il W
observations before and after the change point. p(byy) = 2 p(bily, m)p(mly), (22)
A variant of the case in Figure 2b arises if one requires that = al
the relationship between y and x be continuous over the ‘e oiven N
nstup between y- ar N where the general form of p(mly) is given in (7). th
change point. This situation is 1'llustra'1tec.1 in Fx_gure 2d. Although (19) and (21) provide the general formulas for c
. Assum}ng that t'he change point coincides with the observa- computing the posterior distribution of b and b,, we shall fr
tion x,,, it is readily seen that (12) becomes illustrate their use by determining the posterior distribution of g
vi=a+Bx+e is=m i=1,...,N the amplitude of change in an otherwise constant mean value e
(17)  of a series of random normal variables (equation (8)). Since, in se
yi=at By, +Bx,—x)+e i>m i=1,...,N this case, interest focuses on the amount of change 6 = w, —
h th
With b7 = (a, By, B,), we obtain the following G, matrix: tt, rather than the mean values themselves, we recast (8) as ?;
_[mte i=m i=1,...,N .
, ! 1 1 1 y"_{p+8+ei i>m i=1,...,N (3 n
Gm —_— xl e . xm xm s .. xm (18) lS
0~ 0 (xp—=%Xpe1) " (Xm—2xn) which corresponds to b = (8, u)7 and h
m
and M = 3. . 00...0}11...1 B
Gn=l11--1l11---1 o
: . T T (24) W
5. Posterior Distribution of Basis Function " N fr
Coefficients It is readily seen that ct
In many situations the basis function coefficients provide Nem N-m ar
valuable information about the amplitude and significance of GIG, = [ N-m N ] , (25) tu
the change. Therefore it is of interest to consider the posterior re
distribution of b and subsets of b. For a fixed changepoint m  and therefore C,, as defined in (20) takes a particularly simple
and after having integrated out the residual variance, the mar- form, namely C,, = N/[m(N — m)]. As before, b is esti-
ginal posterior distribution of b is a multivariate ¢ distribution:  a¢ed byb = (§, 1)T = (GLG,,) 'GLy. When inserted into
21), we obtain
(5 (v + M)]|GLG,, |2 @
p(bly, m) = TiL(N — D] JIN = m)m/N :
TG s o sy, my = 2 DIVW = m) ~
POl e - ) s ‘
TGN - - 2s :
(b — b)TG:,G,,,(b _ b) —(r+M)/ 2 2 2 S
11+ . ’ (19) “
vs (8 _ 6)2N —~(N-1)/2
~ |1+ 2 ’ (26)
where I' is the gamma function. In the above expression, b = (N = m)m(N — 2)s ‘
Ty~ 1T 3 . 2 o
EGZ G) Gy @ the least Squares e':stlmate of b, s . 2 _(y ‘ which is the desired posterior density of 8, conditional upon a
9:)%/(N — M) is the unbiased estimate of the noise variance, chanee at time ¢
and v = N — M is the number of degrees of freedom. 8 e
Typically, a change is modeled by a subset of the elements of .
b. In that case it is of interest to determine the marginal . e .
distribution of the particular subset of b that reflects the 6. Hydrological Applications
change in model parameters. Consider the following partition- In this section, we give some examples of how Bayesian
ing: change point analysis can be used for estimating statistical
b 6 c. characteristics of hydrological data. The examples illustrate the Fi
=™ L | T -1 _ 1 12 ease by which the framework can be adapted to particular ]
b [bz] b [bz] (GG, [Cn sz]’ (20) O

situations.
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6.1. Estimating Trends in Hydrologic Time Series

The traditional approach to hydrologic time series analysis
requires a time series to be decomposed into a trend compo-
nent, a periodic component, and a random component. The
deterministic trend component usually refers to the evolution
of the mean value of the deseasonalized time series. Detrend-
ing therefore requires estimation of the mean value as a func-
tion of time in the presence of random noise. A common
procedure is to assume a polynomial form of the mean value as
a function of time and to estimate the coefficients of the poly-
nomial by the method of least squares. It is, of course, possible
to divide the timescale into two or more segments with differ-
ent functional forms for the trend. In that context the Bayesian
change point analysis described in sections 2-5 can provide
valuable input as to how to divide the timescale in a sensible
way.

For the purpose of illustration, consider the time series of
annual streamflows of the St. Lawrence River at Ogdensbourg,
New York, shown in Figure 3. Inspection of Figure 3 reveals
that the mean value in the first years of the record is signifi-
cantly higher than in later years. This could be due to low-
frequency climate variability or perhaps to a change in the
gauging method. We do not attempt to provide a physical
explanation of the trend but will focus on how to detrend the
series in a rational and objective way.

Most methods for trend removal require prior specification
of the functional form of the trend. A simple model assumes
that the mean is constant except for an abrupt change occur-
ring at some point in time. Of course, if the shift in the mean
is thought to be due to a change in the gauging method and one
has knowledge of the time when the recording method was
modified, then this information is sufficient to fix the change
point. In the opposite case, where information about the
change point is vague or nonexistent, a choice most be made.
While a change in the mean value can be observed visually
from Figure 3, it is not obvious exactly where to locate the
change point. Assuming that the population variance before
and after the change is the same, we can use model (8) for the
time series and perform a Bayesian change point analysis. The
resulting posterior distribution of ¢,,, is shown in Figure 4a. The

N N N [ (]
[ B [«2] [+2] o
o o o o (=

]
o
o

Annual mean flow [ x 1000 cfs]
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Figure 3. Annual mean flow of the St. Lawrence River at
Ogdensbourg, New York, for the period 1861-1950.
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Figure 4. Abrupt change in constant mean level. (a) Poste-
rior distribution of change point, ¢,,. (b) Mean value before
and after 1891.

mode of the posterior distribution is equal to 1891 and the
mean value is equal to 1892. The difference between the two
values is negligible, and either may be used as the appropriate
year of change. The mean value of annual flows before (and
including) 1891 is 256,500 cubic feet per second (cfs) (1 cfs =
2.8317 x 10~ m%fs), and after 1891 the mean value of flows is
equal to 230,400 cfs. The mean values are indicated in Figure
4b. The posterior distribution of the difference in mean values
conditional upon a change in 1891 can be obtained from (26).
The posterior distribution of § = p, — u, is shown in Figure 5.
Clearly, there is ample evidence to support the theory of a
change. The density can be made unconditional upon the year
of change. However, because the posterior distribution of the
year of change is relatively concentrated, the conditional and
unconditional densities are almost identical.

As an alternative to an abrupt change in an otherwise con-
stant mean, one could hypothesize a linear trend before the
change point, followed by a constant mean. This model was not
considered in sections 2-5 but can be easily formulated. It
corresponds essentially to model (17) with B, set equal to zero.
The G,, matrix then becomes

GI =
m xl o« .. xm xm - .. xm
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Figure 5. Posterior distribution of change amplitude, condi-
tional upon a change in 1891.

with b = [a, 8] and M = 2. The Bayesian analysis results in
the posterior change point distribution shown in Figure 6a.
This distribution is much more spread out than the previous
distributions of ¢,,,, and the mode is clearly not the appropriate
estimate of the change point. Since the distribution is reason-
ably symmetric, the mean value would be a reasonable choice.
The mean value is equal to 1916, and the corresponding pa-
rameter estimates are [, B] = [1486.5, —0.66]. The mean
value function is shown in Figure 6b and appears to provide a
good fit to the data.

6.2. Determination of Two Regimes of an Intensity-
Duration-Frequency Curve

A common task in hydrologic design is the estimation of
intensity-duration-frequency (IDF) curves from observed rain-
fall data. Although maps are available from which IDF rela-
tionships can be interpolated [e.g., Hershfield, 1962; Hogg and
Carr, 1985], hydrologists often prefer to determine IDF curves
directly from a reliable rainfall station in the vicinity of the site
of interest. The determination of a set of IDF curves involves
the following steps:

1. Slide a window of a given duration (D) over the ob-
served data and extract the series of annual maximum rainfall
depths corresponding to that duration. Repeat this for differ-
ent rainfall durations which should be multiples of the time
resolution of the data. Convert depths to intensities (7).

2. For each duration, fit a probability density function (e.g.,
the Gumbel distribution) to the series of annual maximums.

3. For selected return periods, use the fitted distributions
to obtain the intensities associated with the durations consid-
ered in step 1.

4. Finally, for each return period, fit an appropriate func-
tion to the set of intensities and durations. This will result in a
set of curves displaying intensity as a function of duration for
selected return periods.

The following example deals with the last point, specifically,
the fitting of a function to the (I, D) points. IDF curves are
often special cases of the generalized form I = a(D* + ¢) ¢,
where a, b, ¢, and d are parameters [Koutsoyiannis et al.,

1998]. Here we will assume that ¢ = 0 and d = 1, in which
case the I-D relationship for fixed frequency becomes

I=a/D". (27)

To estimate the value of a and b, the above expression may be
linearized by a logarithmic transformation:

log (I) = a + B log (D), (28)

where a = log a and B8 = —b. The coefficients can be easily
determined by regressing log (/) on log (D).

For the purpose of illustration, Table 1 gives estimated val-
ues of the /-D relationship for a return period of 2 years for
Baltimore, Maryland [McCuen, 1998]. Figure 7 shows the plot
of log (I) versus log (D), along with the least squares fit based
on all I-D data. Clearly, the fit is not particularly good, espe-
cially for short-duration rainstorms. A better fit could possibly
be obtained if the points were divided into two groups, one
with durations less than some value D,, and the other with
durations greater than D, and (27) then fitted to each group
of I-D values. In addition, it would be reasonable to require
continuity at D ,,.

The question is how to determine D, in a rational way. Of
course, in this relatively simple example, it would be straight-

(a)

0 o)
1860 1880 1900 1920 1940

2601
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Annual mean flow [ x 1000 cfs)

180+
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Figure 6. Linear trend followed by constant mean. (a) Pos-
terior distribution of change point, ¢,,. (b) Mean value func-
tion before and after 1916.
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Table 1. Estimated 2-Year Intensities for Baltimore,
Maryland

Estimated 2-Year

Duration, Intensity,® inch
hour hr?!
0.083 5.20
0.10 5.00
0.167 4.11
0.25 3.40
0.333 3.00
0.50 2.30
0.75 1.65
1 1.35
1.5 1.00
2 0.81
4 0.50
6 0.36
8 0.30
10 0.25
12 022
18 0.16
24 0.13

1 inch = 2.54 cm.

forward to try different values of D,, and select the one that
appears to provide the best overall fit of the two models.
Alternatively, one could conduct a Bayesian change point anal-
ysis. Equation (17) is the appropriate model for the case con-
sidered here. With the appropriate changes in notation, we
obtain the following model:

logl;=a+ B, log D; + ¢; D,=D, (29
logf,=a + B, log D, + Bylog D,, — log D))

+e; D;>D,,.

The posterior distribution of D, resulting from the Bayesian
analysis is shown in Figure 8a. The analysis reveals that the
posterior distribution has a distinct peak at log D,, =
—1.0986 or D,, = 1/3 hour = 20 min, where virtually all
probability mass is concentrated. Hence we choose to divide
the I-D points in two groups, one corresponding to durations

log(/)

At

21

-3 -2 -1 0 1 2 3 4
log(D)
Figure 7. I-D relationship for 2-year precipitation events in

Baltimore, Maryland. The straight line is the least squares fit to
the points.

(a)1.5

p(D,ly)

05}

log(/)

1F

2}

_3 e r A i i i

-3 -2 -1 0 1 2 3 4
_ log(D)

Figure 8. Change in linear relationship between log (/) and

log (D). (a) Posterior distribution of change point, D,,. (b)

Fitted model corresponding to change point log D,, =

—1.0986.

=20 min and the other to durations >20 min. The parameters
of the global model corresponding to D,, = 20 min are [, 8,,
B;] = [0.671, —0.402, 0.735]. The fit is shown in Figure 8b.
Figure 8b explains why the posterior probability of D,, is
concentrated at 20 min; the fit is almost perfect with very little
scatter around the regression lines.

6.3. Determination of Error in Rain Gauge Data

Data from precipitation networks are the main input to most
hydrological models. Before using data from a particular sta-
tion, the consistency of the gauge should be verified. An ap-
parent decline in average precipitation may be due to a factual
decline in precipitation but could also be the result of a change
in the exposure of the gauge or a mechanical problem with the
gauging device. A standard procedure for checking the consis-
tency of a rainfall gauge is the so-called double-mass curve
technique [McCuen, 1998]. To check the consistency of a
gauge, the cumulative catch for the station is plotted against
the cumulative catch for a neighboring station or against the
sum of a set of regional stations that are known to be consis-
tent. In the case of a consistent station, the double-mass curve
should appear as an almost straight line. A sudden change in
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Figure 9. Hyetographs of daily rainfall for two rainfall gauges in southern Ontario (April 25 to

November 30, 1993).

the slope of a double-mass curve indicates a drift in the gauge and
calls for a correction. In cases where the change in slope can be
related to well-documented interventions, such as a change of
location or a change of gauging device, the time when the change
occurred will usually be known. However, in some cases, the exact
time of change may not be known, and, in addition, changes may
be so small that the point in time before or after which the
correction should be made is not evident from the double-mass
curve. Bayesian change point analysis may be helpful to guide the
choice of appropriate change point.

For the purpose of illustration we consider two rainfall
gauges in southern Ontario. The distance between the two
stations is ~2.5 km. The data consists of daily rainfall depths
from April 25 to November 30, 1993, for a total of 220 days.
The two hyetographs are shown in Figure 9. To construct the
double-mass curve, we first eliminated all days for which both
stations recorded no rain. This was done in order to reduce the
number of data. From this reduced set of data, cumulative
depths were obtained. Figure 10 shows the double-mass curve
constructed by plotting the cumulative catch of station 2 versus
the cumulate catch of station 1 (lower curve). To illustrate how
the Bayesian analysis can provide information about the time
of change, we inflated all rainfall events at station 2 after
August 15 by 20%. The cumulated catch at station 1 on August
15 is 313 mm. The drifting series is shown as the upper curve

500

4001

3001 Start of drift —

Cumulative catch at station 2 [mm]

0 100 200 300 400 500
Cumulative catch at station 1 [mm]

Figure 10. Double-mass curve with (upper curve) and with-
out drift at station 2.

in Figure 10. The change in slope is barely visible and, in
practice, it would not be evident where to locate the change
point. Note that in virtue of the relationship between cumu-
lated catch and time at station 1, by identifying the change
point on the double-mass curve, one implicitly determines the
point in time when the change took place.

The double-mass curve with a sudden change in slope can be
described by a slightly modified version of (17). The double-
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Figure 11. Change in slope of double-mass curve. (a) Poste-
rior distribution of change point, cumulative catch after m
observations (CC,,). (b) Fitted model corresponding to
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mass curve is known to pass through the origin, so the intercept
is zero, and therefore we let @ = 0 and consider
GTz[xl e x, X, X,, }
m 0 e 0 (xm — xm+l) [P (xm _xN)

with M = 2. As in the previous example, since we are dealing
with the problem of curve fitting, the hypothesis that the errors
are uncorrelated with each other and with the explanatory
variable may not be entirely verified. Nonetheless, the linear
model is appropriate for describing the double-mass curve, and
we can invoke the Bayesian change point analysis developed
previously.

The posterior distribution of the change point resulting from
the Bayesian analysis is shown in Figure 11a. Note that the
distribution is discrete and irregularly spaced because of the
jumps in the series of cumulative catch. The mode seems to be
a reasonable choice and is equal to 303 mm at station 1. This
corresponds to the change occurring on August 10, an estimate
very close to the true value. Figure 11b shows the general
linear model fitted to the points on the double-mass curve.

7. Conclusions

The joint use of the generalized linear model and Bayesian
analysis has been found to provide a convenient framework for
analyzing changes in statistical parameters. The strength of this
framework is that it can be easily adapted to a variety of
situations, in particular, to different hypotheses about the func-
tional forms before and after a change point and to an arbitrary
number of change points. This was demonstrated in this paper
by several examples. The key formula is (7), which can be easily
implemented using a matrix-based software such as Matlab.
For any change point model the basis function matrix G must
be specified, which is usually relatively straightforward. The
characteristics of the posterior change point distribution will
provide helpful information for selection of the most appro-
priate change point.

Bayesian change point analysis requires specification of a
model before and after the changepoint. This is, in fact, com-
mon to most change point analysis procedures. While this
component of the analysis necessarily involves a certain
amount of subjectivity, the Bayesian analysis eliminates much
of the subjectivity involved in choosing the change point from
a visual inspection of the data. As illustrated in this paper, the
posterior change point distribution will, in many cases, lead to
a clear indication of where to locate a change point.

Finally, it should be stressed that what has been presented
here is not a statistical test of change versus no change. The a
priori assumption is made that there is a change, and one even

prescribes the form of change. The question is when or where
the change took place and how much it is. The concentration
of the posterior distribution of the change point may be taken
as an indicator of the likelihood of a change. A highly concen-
trated posterior distribution would support the hypothesis of
change.
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