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Unit root tests for time series with level shifts of general form are considered 
when the timing of the shift is unknown. It is proposed to estimate the nuisance 

parameters of the data generation process including the shift date in a first step 
and apply standard unit root tests to the residuals. The estimation of the nuisance 

parameters is done in such a way that the unit root tests on the residuals have the 
same limiting distributions as for the case of a known break date. Simulations are 

performed to investigate the small sample properties of the tests, and empirical 
examples are discussed to illustrate the procedure. 

1. INTRODUCTION 

There has been some debate in the recent literature whether macroeconomic 
time series can be modeled adequately by a nonstationary process with a unit 
root or whether they are better thought of as being generated by a trend- 

stationary process with stationary fluctuations around a broken trend. The issue 
is important because, in the unit root case, stochastic shocks to the series have 

permanent effects, whereas in the trend-stationary model only changes in the 
trend function have a permanent effect and stochastic shocks are transitory. Usu- 

ally tests are carried out to choose between a unit root process and a trend- 

stationary alternative. Given the importance of the issue for assessing the 

implications of economic activities it is not surprising that a number of articles 
consider unit root tests in the presence of possible structural breaks. 
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In this literature broadly two alternative assumptions regarding the possible 
dates of the structural breaks have been made. In one part of the literature the 
break date is assumed to be known by the analyst, that is, the break is assumed 
to be due to some exogenous shock that has occurred at a known date. Exam- 
ples of articles where this assumption was made are Perron (1989, 1990), Park 
and Sung (1994), Saikkonen and Liitkepohl (2001), and Liitkepohl, Miiller, and 
Saikkonen (2001). Another part of the literature assumes that the break date is 
unknown to the investigator and it may be a random event that may be mod- 
eled endogenously. In some of this literature the timing of a structural break is 
regarded as an additional unknown parameter. For example, Evans (1989), Chris- 
tiano (1992), Perron and Vogelsang (1992), Zivot and Andrews (1992), Baner- 
jee, Lumsdaine, and Stock (1992), and also Leybourne, Newbold, and Vougas 
(1998) consider shifts at an unknown date. 

Different estimators for the break date have been proposed for the case when 
it is unknown. Some authors take into account that the final objective of the analy- 
sis is testing for a unit root and therefore focus on the consequences of using an 
estimated break date in this situation (e.g., Perron and Vogelsang, 1992; Zivot 
and Andrews, 1992; Banerjee et al., 1992). For instance, the former two articles 
propose to estimate the break date such that the unit root test becomes least fa- 
vorable to the null hypothesis of a unit root and consider the asymptotic distri- 
bution theory of the resulting test statistic. Leybourne et al. (1998) estimate the 
deterministic part of the assumed DGP (data generation process) first, includ- 
ing possible structural shifts. Then they apply unit root tests to the residuals. They 
do not show asymptotic properties of their tests so that it is not clear which crit- 
ical values are appropriate for a specific time series under consideration. 

In the present study we will use an approach similar to that of Amsler and 
Lee (1995). More precisely, we propose estimating all nuisance parameters of 
the process in a first step in such a way that the limiting distributions of the 
subsequent unit root tests do not depend on the estimator of the break date. Our 
approach differs from that of Amsler and Lee in some important respects, how- 
ever. Whereas these authors fix the break date, the timing of the shift is esti- 
mated in our approach. Moreover, Amsler and Lee model the shift by a simple 
dummy variable, whereas much more general structural shifts are considered in 
our framework. In fact, the shift function can be a smooth function from one 
state of the process to another, or it can be of some other nonlinear form. It is 
argued by Leybourne et al. (1998) that allowing for general shift functions is 
important because it is not likely that all agents react simultaneously and in- 
stantaneously to changes in the environment. Therefore a smooth transition to 
a new level may often be more realistic than an instantaneous shift. Finally, we 
consider another estimator of the nuisance parameters than Amsler and Lee. 

Our procedure for estimating the nuisance parameters extends the approach 
of Elliott, Rothenberg, and Stock (1996), who propose to estimate the param- 
eters of the deterministic term under local alternatives. Elliott et al. show that 
their procedure leads to unit root tests with nearly optimal local power. In de- 
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veloping our theoretical results we therefore use this approach for models that 
allow for a level shift in addition to other deterministic terms. 

The structure of the paper is as follows. In the next section two general mod- 
els for univariate time series with a shift in the mean and a possible unit root 
are presented. The models are those treated by Saikkonen and Ltitkepohl (2001) 
and Ltitkepohl et al. (2001) for the case of a known shift date. Section 3 con- 
siders estimation of the nuisance parameters of the DGP, and the tests for unit 
roots are presented in Section 4. Small sample simulation results are given in 
Section 5, and empirical examples are discussed in Section 6. Conclusions are 
contained in Section 7. Proofs are deferred to the Appendix. 

The following general notation is used. The lag and differencing operators 
are denoted by L and A, respectively, so that for a time series variable Yt, Ly = 

Yt-l and Ayt = Yt -Yt-l. The symbols -> and -4 signify convergence in prob- 
ability and in distribution, respectively. Independently, identically distributed 
will be abbreviated as iid(.,.), where the first and second moments are indi- 
cated in parentheses in the usual way. Furthermore, O(-), o(.), Op(.), and op(.) 
are the usual symbols for the order of convergence and convergence in proba- 
bility, respectively, of a sequence. We use Amin(A) (Amax(A)) to denote the min- 
imal (maximal) eigenvalue of a matrix A. Moreover, II II1 denotes the Euclidean 
norm. GLS abbreviates generalized least squares. The m-dimensional Euclid- 
ean space is denoted by Rm. 

2. THE MODEL FRAMEWORK 

Saikkonen and Ltitkepohl (2001) and Liitkepohl et al. (2001) consider two al- 
ternative general models for the DGP of a time series with a possible unit root 
and a structural shift. The one investigated by Saikkonen and Liitkepohl has 
the form 

Y=t + gt+(O)'y + xt, t = 1,2,..., (2.1) 

where the scalar j/, the (m X 1) vector 0, and the (k X 1) vector y are unknown 
parameters and gtr(O) is a (k X 1) vector of deterministic sequences depending 
on the parameters 0 and on the break point that is denoted by T, that is, a shift 
occurs in or just before period r. The quantity xt represents an unobservable 
stochastic error term that is assumed to have a finite order autoregressive (AR) 
representation of order p, 

b(L)(1 - pL)xt = st, (2.2) 

where b(L) = 1 - blL- . - bp_lLP- 
1 has all its zeros outside the unit circle 

if p > 1, whereas -1 < p ' 1. A unit root is present, of course, if p = 1. There 
are different possible assumptions that could be made regarding the initial con- 
ditions of xt without affecting the asymptotic derivations. The essential require- 
ment is that the initial conditions must be independent of the sample size T. 
For convenience we assume, however, that x0 = 0 and xt = pxt- + b(L)-let 
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for t = 1,2,.... Using this generation mechanism, there is of course no need for 
specifying further initial values. The error terms Et are assumed to be iid(0, o-2) 
with 

Elstla <oo for some a>2. (2.3) 

With respect to the function gi,(O) it is assumed that the first component is 
unity so that the first component of y defines the level parameter of Yt. Specif- 
ically we have 

gt(0) = [1 :ft,()']', (2.4) 

where ft(0) is a (k - 1)-dimensional deterministic sequence to be described in 
more detail subsequently. 

The model considered by Ltitkepohl et al. (2001) has the form 

b(L)yt = +at + gt+(0)'y + vt, t 1,2, ..., (2.5) 

where 

t = pVt-1 + St (2.6) 

is an AR process of order one with initial value v0 = 0 again assumed for con- 
venience. The other notation is as before. Obviously, if p = 1, then vt and, 
hence, Yt has a unit root. Initial values of Yt are assumed to be fixed observed 
presample values. 

A leading example of a sequence ft is a shift dummy variable 

0 t< T 
ftT(O) 

= dt : 1 (2.7) 

In this special case the sequence ft, does not depend on any unknown param- 
eters 0. For this shift function the difference between the two models (2.1) and 
(2.5) is particularly easy to see. For both models the shift function results in a 
permanent level shift. For the first model the new level is reached immediately 
in period r, whereas in model (2.5) there is a gradual transition to the new 
level. The precise form of the transition depends on the AR operator b(L). In 
the unit root literature this model is sometimes called an innovational outlier 
model, whereas (2.1) is referred to as an additive outlier model. Further exam- 
ples of sequences ftT(0) will be discussed later. 

In Saikkonen and Ltitkepohl (2001) and Ltitkepohl et al. (2001) it is as- 
sumed that the shift point r is known a priori. In the following discussion we 
will give up this assumption and consider the case of an unknown r. In other 
words, the break point r will be regarded as an unknown integer valued param- 
eter. Some of the assumptions and results are discussed only briefly. More de- 
tails on these issues may be found in Saikkonen and Ltitkepohl (2001) and 
Ltitkepohl et al. (2001). 
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To gain generality, we allow ft(0) to be of a much more general form than 
d,. In fact, we only assume that ft(0) satisfies the conditions stated in the 
following assumption. 

Assumption A. 

(a) The parameter space of 0, denoted by ), is a compact subset of R', and NT, the 
space of T, is a subset of {2,..., T - 1}. 

(b) For each t = 1,2,... and each r E NT, f7(0) is a continuous function of 0 and 

T 

sup sup E liAf(0)l < oo, 
T OEO?,rENT t=1 

where fo,() = 0. 
(c) There exist a real number e > 0 and an integer T. such that, for all T > T,, 

f T 1 

info.AreNT Amin r Ag,(0t)Ag,r (0) 6E, 
t= 

where gl,(0) =[1 :f,(0)']'. 

The assumption of a compact parameter space O is standard in nonlinear 
estimation and testing problems. Instead of assuming that the space of T is the 
whole set {2,..., T - 1}, as supposed in the preceding special case, we use the 

slightly more general assumption that NT may be a subset of {2,..., T- 1}. In 
this way it is possible to take prior information on the date of the possible level 
shift into account. For instance, it may be known that the level shift has oc- 
curred during the second half of the sample period. 

Because ft(0) = Afi(0) + ? + Aft (0) Assumption A(b) ensures thatf,(0) 
and gt(0) are bounded uniformly in t, r, and 0. Moreover, it guarantees that, if 
estimation is done under the unit root null hypothesis, the level shift does not 
affect the limiting distribution of the test statistic, as we will see in the follow- 

ing sections. Estimation under the null hypothesis effectively amounts to using 
differenced data. Hence, if for example a simple shift dummy variable is con- 
sidered as shift function, differencing it results in an impulse dummy that has 
the value one in one period only and is zero otherwise. Therefore it does not 
affect the asymptotic results as in the approach of Amsler and Lee (1995). The 
idea of our assumption is to provide a condition that implies the same result in 
the case of much more general shift functions. 

Assumption A(c) guarantees that estimation of nuisance parameters is possi- 
ble for the differenced model, that is, under the null hypothesis. It ensures that 
the regressor matrix corresponding to the parameter vector y is of full column 
rank for sufficiently large sample size T. 

In the terminology of condition B of Elliott et al. (1996), Assumption A im- 

plies that g,r(O) is a slowly evolving trend. It is easy to see that Assumption A 
is satisfied for the shift dummy defined in (2.7). Because there is no parameter 
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0 in this case, part (a) is trivially satisfied here. Moreover, Assumption A(b) 
holds because 

T T 

E 1/,(0)Il = I ) Adt, - 1 
t=l t=l 

for all T and 0 < - < T. Furthermore, defining gt.(O) = [1: dt.]', the smallest 

eigenvalue in question in Assumption A(c) is unity for all 0, r, and T > 2 if 
1 < < T. 

It can also be shown that, if the parameter space is defined in a suitable way, 
the assumption holds for a sequence 

[0, t<r 
ftr(O) = 

1 - exp{-(t - +l )}, t >' 

where 0 > 0 is an unknown parameter. Another example sequence is 

dt, T dt-Tq, T 

ft (0)= - ' . 
..: (L) _ p(L) ~(L)_ ' 

where the components of 0 are given by the unknown coefficients of 
qp(L) = 1 - pLL - *. - rpLr, which is a lag polynomial with all its zeros 
outside the complex unit circle. Yet another possible choice of a shift se- 

quence is of the form 

ft)(0) = exp{-0(t- T)2}, 0 > 0 

which allows for a smooth but temporary level shift (cf. Lin and Terasvirta, 
1994, where also alternative specifications are discussed). Leybourne et al. 
(1998) consider the logistic smooth transition function 

ft,() = [1 + exp{-0(t - r)}]-, 0 > 0. 

As mentioned earlier, they argue that smooth transitions to a new level of a 
series are often more plausible because agents are not likely to react all at once 
due to market inefficiencies, for example. Hence, it is important to allow for 
the more general nonlinear shifts in the present context. 

In Section 6, we consider, for instance, the series of U.S. industrial produc- 
tion, which is likely to have a downward shift at the time of the Great Crash 
in 1929. Although the crash happened at a known time, it was only the start- 
ing point of the related adjustment processes. Hence, assuming a known break 
date may be problematic in this case. Moreover, allowing for a smooth tran- 
sition may be more reasonable than assuming an abrupt shift. Of course, in 
many cases it may be problematic to assume a specific form of the shift if the 
time of the shift is unknown. In that situation one may want to consider some 
general shift function. Alternatively, a very simple shift in the level as mod- 
eled by (2.7) may be analyzed. In any case, it is of interest to treat the general 
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models because our theoretical results hold in the general situation. Even more 

generality is possible by allowing for more than one level shift. It is not dif- 
ficult to adjust our assumptions to that case. For instance, if there are two 
level shifts, the integer valued parameter r is replaced by the vector T = [71: 72] 

and the permissible values of T1 and 72 are, for instance, {2,...,[T/2]} and 
{[T/2] + 1,...,T - 1}, respectively. To avoid more complicated notations we 
will not treat this case in detail in the following discussion but will focus on 
the situation where there is just one shift. 

In asymptotic considerations it may often be natural to assume that the "true" 
value of 7 may depend on the sample size because in this way it is, for exam- 
ple, possible to allow for the fact that the shift occurs around the middle or in 
the last quarter, and so on, of the sample. In that case one may wish to replace 
the integer valued parameter r by Tr. with r, a real valued parameter taking 
values in the interval [0,1] or some subset of it. This formulation has been used 
in some previous studies (e.g., Zivot and Andrews, 1992; Banerjee et al., 1992). 
We prefer the preceding formulation with integer valued shift date parameter 7 

because, for our purposes, it offers some advantages in our mathematical deri- 
vations. It is therefore used in the following discussion. From a practical point 
of view the differences in the two alternative assumptions are hardly of impor- 
tance. We will not make the possible dependence of the parameter r on the 

sample size explicit in the notation because it has no effect on the derivations. 
For completeness we mention that seasonal dummy variables may be in- 

cluded in both models (2.1) and (2.5). Again this merely complicates the nota- 
tion without affecting the asymptotic analysis in any substantial way. Therefore 
we do not include seasonal dummies here. In the next section we will consider 

estimating the nuisance parameters of the general models (2.1) and (2.5). The 
unit root tests are presented in Section 4. 

3. ESTIMATION OF NUISANCE PARAMETERS 

In the following discussion we assume that r is any value from NT. Notice, 
however, that the chosen value of r is not necessarily the true break date. If the 
value of r is fixed, the GLS estimation methods considered in Saikkonen and 

Liitkepohl (2001) and Ltitkepohl et al. (2001) can be readily modified for the 

present context. We will begin with model (2.1). 

3.1. Estimation of Model (2.1) 

Following Elliott et al. (1996), it is assumed that the true error process xt is 

near-integrated so that the parameter p in (2.2) satisfies 

C 
P = PT= + T T' 

(L.1) 
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where c < 0 is a fixed real number. The idea is to replace PT by PT = 1 + 
(C/T) with c a chosen number and transform (2.1) by the filter 1 - pTL. This 
yields the model 

Y = Z,(O)o + U, (3.2) 

where Y = [yl:(y2 PT . :(y - PTT):' :(YTT - -)]', = [/: y']', Z7(0) 

[Z1:Z2,(0)] with Z = [1 :(2 - PT): .. :(T - P(T - 1))]' and Z2(0) = 

[gl1,():(g27(0) PTrgl(0)): :(gT(0) - PTgT-1,7(0))]'. Finally, 
U = [u1: * * * UT]' is an error term such that u = xt - pTxt-1 and, hence, 

u = b(L)-', + T (c- c)x_ df 
(0) + T-1(c - )x . (3.3) 

For any given value of r the parameters 0 and 0b and also the parameters b in 
the error covariance matrix of (3.2) can be estimated by minimizing the gener- 
alized sum of squares function 

QT(0, , ( ,b) = (Y- Z, (0))' (b)- (Y- Z,(0) (3.4) 

where E(b) = -2Cov(U()) with U(0) = [u().: * * ]'. We denote by 0, 

0T, and b/ the resulting estimators of b, 0, and b, respectively. It is shown in 
the Appendix that these estimators exist for any given value of r and for all T 
large enough. Thus we can here simply assume that these estimators exist for 
all T > k + 1, which is the case if the matrix Z,(0) is of full column rank for 
all 0 GE and all T E NT (see the Appendix). For simplicity, this latter assump- 
tion is also made in the following lemma, which describes asymptotic proper- 
ties of the estimators OT, 67, and b/. 

Before presenting this lemma we note, however, that in the present context a 
natural way to estimate the parameter r is to use the least squares (LS) estima- 
tor obtained by minimizing the function QTT/(T, O, ,b) with respect to T. The 
estimators 07, 07, and bT corresponding to this value of r would then give the 
estimators used for 0, 0, and b, respectively. We will not consider this ap- 
proach here because our test procedure can be used in the same way with any 
estimator of r, as will be seen later. 

Now we can state the following lemma, where , = [i7: A/]' conformably 
with the partition of b. The lemma assumes the local alternatives specified in 
(3.1). Its proof and other proofs are given in the Appendix. 

LEMMA 3.1. Suppose that Assumption A stated in Section 2 holds and that 
the parameter space of b is such that, for some e > 0, b(L) + 0 for ILI < 

1 + e, that is, the roots of b(L) are bounded away from the unit circle. More- 

over, suppose that p is given by (3.1) and that the matrix Z,(0) is of full col- 
umn rank for all 0 GE , all r G NT, and all T> k + 1. Then, 
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sup 11 0 - 0l = Op(1), (3.5) 
rENT 

1 1 
sup ||y~ -| Y- op(Tri), forany r with -< r'l - (3.6) 

TENNT a 2 

sup 11 b-b- [ 0 (3.7) 
TENT 

and 

sup Ir1/2(, - ) - r1 T 0, (3.8) 
TENT 

where 

UT= (T 'Z'1(b) -Z1) 'T '/2Z r(b) 'U 

--4 (AB c (1) + 3(1-A) sB (s) ds (3.9) 

with = o/b(l), A = (1 - c)/(l - + c2/3), and B,(s) = fo exp{c(s - u)} X 

dBo(u) with Bo(u) a standard Brownian motion. 

The lemma shows how the considered estimators behave asymptotically and 
uniformly in r. The first result of the lemma is, of course, trivial because the 
parameter space of 0 is assumed to be compact. The second result shows that 
the maximum distance between the estimator /YT and the true parameter value 
diverges in probability. The rate of divergence is related to the existence of 
moments of the error term st or, equivalently, of the observed process. When 
high-order moments exist, a slower rate of divergence is obtained. Because 
a > 2, the rate of divergence that is always obtainable is op(T1/2). We have 
given this rate of divergence as an upper bound in (3.6) because it is needed to 
prove (3.7) and (3.8). It is also the worst rate of divergence that still suffices 
for the development of the next section. If the value of r is assumed known a 
considerable improvement is obtained in (3.6) because then the right-hand side 
(r.h.s.) can be replaced by Op(1) (Saikkonen and Liitkepohl, 2001, Lemma 1). 
However, in (3.7) and (3.8) the situation is different, and no improvement is 
obtained even if the value of r is known. A convenient feature of Lemma 3.1 is 
that it shows the asymptotic behavior of the considered estimators in the case 
where r is replaced by any estimator. Except for the estimation of y nothing is 
asymptotically lost by using an estimator for T instead of the true parameter 
value, and even in the case of y the result is not too bad, as mentioned previ- 
ously, and will be seen in the next section. 

The results in (3.5), (3.6), and (3.8) remain true if E(b) is replaced by an 
identity matrix in (3.4), that is, if an LS estimator is used instead of the GLS 
estimator. Although such a procedure would be even simpler than our GLS pro- 

321 
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cedure, we have treated the GLS approach here because it is often not much 
more difficult than LS estimation computationally. Moreover, it may result in 
better small sample properties. Our unit root tests maintain their asymptotic 
properties even if a simple LS estimator is used for the nuisance parameters 
because they are based on the results in Lemma 3.1. 

To gain intuition for the preceding discussion, consider model (2.1) withf, a 
shift dummy as in (2.7) and suppose that c = 0. Then the nuisance parameters 
estimated from the differenced version of (2.1) and the parameters yl and Y2 
are coefficients of impulse dummies. Thus, the estimation of these parameters 
is clearly asymptotically orthogonal to the estimation of the other parameters, 
and it is also fairly obvious that the situation does not change even if an en- 
tirely incorrect value is chosen for r. This example suggests that an explana- 
tion for the nice results of Lemma 3.1 is that the consequences of using any 
incorrect value of r are not substantial because under the null hypothesis and 
local alternatives the parameters r, 0, and y describe aspects of the observed 
process that are only minor. Despite this remark, ignoring these aspects can 
have serious consequences on unit root testing in finite samples. 

A similar result is obtained by Amsler and Lee (1995). As mentioned in the 
introduction, their assumptions differ from ours, however. In particular, they 
use a different assumption regarding the shift point. In their framework the shift 
occurs at a fixed fraction of the sample, at least asymptotically. Moreover, the 
shift date has to be chosen in a deterministic, nonrandom way, and they do not 
discuss how that is actually done. In contrast, in our framework the choice of r 
may be data dependent, and, as mentioned earlier, our shift function can be 
much more general than the simple shift dummy considered by Amsler and 
Lee. 

3.2. Estimation of Model (2.5) 

Now consider estimating the parameters of the model (2.5). It is easy to see 
that, upon multiplication by (1 - pTL), the model can be written in matrix 
form as 

Y = W,(0)3, + , (3.10) 

where / = [b': b']', W.(0) = [V:Z.(0)] with Vthe (TX (p - 1)) matrix con- 
taining lagged values of the Yt transformed in the same way as the other vari- 
ables. Furthermore, S = [el: * * : eT]' is an error term such that et = v, - FTVt- 1 

It follows from the definitions that 

et= et + T-l(ec-c) (3.11) 

In this case the estimators are obtained by minimizing 

ST(0,/3) = (Y- WT(0)B)'(Y- W,(0)/3). (3.12) 
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In the same way as in the case of the objective function QT,(b, 0, b), it can be 
shown that, for any chosen value of r and any T large enough, a minimizer of 
STr(, 3), denoted by 06 and /: = [b': ']', exists when Assumption A holds 
(see the Appendix). Note that here / is treated as a free parameter although the 
true value of b is supposed to define a stable lag polynomial. The discussion 
regarding the estimation of r in the case of model (2.1) applies here with ob- 
vious modifications. The following lemma gives asymptotic properties of the 
estimators 60 and /, with [, = [/': y']' partitioned conformably to p. For 
simplicity we assume in the lemma that the matrix W,(O) is of full column 
rank for all values of 0 and all r E NT. This assumption ensures that the esti- 
mators 6, and p3, exist for all T > k + 1 (see the Appendix). 

LEMMA 3.2. Suppose that Assumption A holds, p is given by (3.1), and 
the matrix W,(0) is of full column rank for all 0 E 0, all r E NT, and all 
T > k + 1. Then, if (2.3) holds with a > 4, 

sup 01 - 0 = Op(1), (3.13) 
TENT 

1 1 
sup I7~ -y7 = op(Tn), for any r with -< '< - (3.14) 

TrENT a 4 

sup 1I -b 11I4 -0, (3.15) 
rENT 

and 

sup lIT1/2(1t - b(1))/b(1)) - TII -4 0, (3.16) 
TENT 

where 

( c1 \ 
UT= (T- lZZ1)-'T- /2Z -c AB(1)+3( -A) sBc(s)ds (3.17) 

Compared with Lemma 3.1 we now need a stronger moment condition for 
the error term st. Consequently, the rate of divergence that is always obtainable 
in (3.14) is op(T1/4). We have again made this rate of divergence an upper bound 
because it is needed to prove (3.15) and (3.16). 

We close this section with a remark on the estimation of the parameter r. An 
estimator of r is, of course, needed to make the estimators considered in Lem- 
mas 3.1 and 3.2 feasible. If r is an estimator of r, feasible counterparts of S7, 

OT, and b, are defined in an obvious way. They will be denoted by 4,, 0T, and 
bT, respectively. Analogously, feasible counterparts of /, = -.[b: ']' and 6, 
are denoted by /3 = [b/': a' ]' and 67. It turns out that the asymptotic proper- 
ties of the unit root tests to be studied in the next section do not depend on the 
choice of the estimator r. 
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4. TESTING PROCEDURES 

Once the nuisance parameters (including r) of the models (2.1) and (2.5) have 
been estimated the residual series xt =Yt - 12it - gt7(O)'"y and vt = b(L)yt - 

FTt - gt~(T)'yT can be computed and used to obtain unit root tests. Here bT(L) 
is defined in terms of b7 in an obvious way. There are several possible unit root 
tests that can be used. In the following discussion we will only present Dickey- 
Fuller type tests but note that other tests can be set up in an analogous manner. 
We will provide the limiting distributions of our tests under local alternatives, 
and we will also consider their (global) consistency against fixed alternatives. 

4.1. A Test Based on Model (2.1) 

First consider model (2.1) and the auxiliary regression model 

t = pXt- + u, t = 2,...,T. (4.1) 

Similarly to Saikkonen and Liitkepohl (2001) we define X = [x2: ?* * :'T]' and 

X_1 = [xl: * * * :xT_-1', and we introduce the estimators 

p - ( X | t ( b ̂  )- 1) _ E(b )-X 'X (4.2) 

and 

T2 =(T- )-1 (X- X_ p)'(bT)-] (X- X_ p). (4.3) 

For testing the null hypothesis we can now introduce the "t-statistic" 

X _ ( bX/- 
1 

x )/ - 
I))X. ( (4.4) 

The limiting distribution of this test statistic under the local alternatives (3.1) is 
given in the following theorem. 

THEOREM 4.1. Suppose the assumptions of Lemma 3.1 hold. Then, 

lf1 )-1/2 
T 4 2 (1 Gc (S;C) 2ds) (Gc (1; I) 2- 1), 

where 

Gc(;) =Bc(s) -s AB,() + 3(1-A) sB(s)ds 

and A and BC(s) are as in Lemma 3.1. 

The limiting distribution in Theorem 4.1 agrees with that obtained in Theo- 
rem 1 of Saikkonen and Liitkepohl (2001) in the case where the shift date is 
known a priori. It is the one that Elliott et al. (1996) obtained for their t-statistic 
in a model with mean and linear trend and without a shift term. Critical values 
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for our test are therefore available from Elliott et al. (1996, Table I.C) for c = 
-13.5. These authors found that with this choice of c the test is nearly optimal 
for all values of c. Obviously, the unit root null hypothesis is rejected for small 
values of Ti. It is interesting and seems remarkable that the estimation of the 
integer valued parameter T has no effect on the asymptotic properties of our 
test. Hence, Theorem 4.1 also justifies the commonly used approach in which r 
is "estimated" by a visual inspection of the series. 

Theorem 4.1 implies that the test has more local power if the distance of the 
local alternative from the null hypothesis increases and the asymptotic power 
tends to unity as c -- -oo. Unfortunately, the (global) consistency of the test 
against fixed alternatives is still not easy to show because in our present frame- 
work the break date is unknown and may be specified incorrectly and the model 
is a nonlinear one. Despite these complications the consistency of the test based 
on T1 can be established. It follows from the next theorem. 

THEOREM 4.2. Suppose the assumptions of Lemma 3.1 hold except that 
the value of the parameter p is fixed and satisfies - 1 < p < 1. Then, T"-'/27 
diverges in probability to -oo. 

The consistency of the test based on 7T follows from this result because I/a < 
71 C by assumption. The rate of divergence of IT improves when a increases 
or, in other words, when more moments exist for the white noise error process. 
From the proof of the theorem it can be seen that the rate of divergence is 
Op(T1/2) in the case where the break date is known. Similarly, this rate applies 
if NT is assumed to be a bounded set. This suggests that power gains may be 
expected if one can use a priori information about the break date. This result is 
in line with intuition, of course. 

Instead of using the statistic T1, which is based on GLS estimation, an aug- 
mented Dickey-Fuller (ADF) test based on 

p-1 

aX = a_t-1 + E 7r Axt_ + et, t = p + 1,..., T, (4.5) 
j=1 

can be used. Here a = (1 - p)b(1) and a unit root test with the same asymp- 
totic distribution as TE can be based on the usual t-statistic for the null hypoth- 
esis a = 0 obtained from least squares estimation of the auxiliary model (4.5). 
This approach is used by Elliott et al. (1996) in their framework. Our GLS 
approach is more in line with our basic model, however, and it is equally easy 
to apply in the present context because an estimate of the covariance matrix 
E(b) is available from the previous steps of the analysis. As in Elliott et al. 
(1996) we could also derive point optimal tests. These tests would be based on 
the statistics &2(1) and 2( PT) defined by replacing p in (4.3) by unity and 
PT, respectively. According to the simulation results of Elliott et al. (1996) the 
overall properties of the ADF t-statistic appeared somewhat better than those 
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of the point optimal tests. We therefore use our DF type statistic T in the fol- 
lowing discussion. 

4.2. A Test Based on Model (2.5) 

Now consider model (2.5), for which we introduce the auxiliary regression model 

=pt-l + e, t = 2,...,T. (4.6) 

We define the estimator 

T \-1 T 

P = E2-21 2 Vt-1Ut, (4.7) 
t=2 / t=2 

the associated error variance estimator 

T 

2 = (T- 1)-1 ' (t- 5Vt- )2, (4.8) 
t=2 

and the test statistic 

/ T \1/2 

2 = E2 l) (p - )/. (4.9) 
t=2 / 

For this test statistic we have the following theorem. 

THEOREM 4.3. If the assumptions of Lemma 3.2 hold, the limiting distri- 
bution of the test statistic T2 is the same as that of the statistic T, in Theorem 4.1. 

The discussion given for the test statistic T7 in the foregoing exposition ap- 
plies here also with obvious modifications. In particular, we can also prove 
consistency of the test based on T2 against fixed alternatives. The result fol- 
lows from the next theorem by noting that 71 < <. 

THEOREM 4.4. Suppose the assumptions of Lemma 3.2 hold except that 
the value of the parameter p is fixed and satisfies -1 < p < 1. Then, 
T217- /2T2 diverges in probability to -oo. 

Finally, note that both tests can also be used with the a priori restriction 
u0 = 0. The tests remain the same except for the limiting distribution, which is 
then the same as in the case without any deterministic terms. In the following 
discussion we denote the resulting test statistics corresponding to Ti and T2 by 
7i? and T2?, respectively. Power gains can be considerable compared to tests 
whose properties depend on deterministic terms as in Elliott et al. (1996). More- 
over, seasonal dummies may be included without affecting the limiting distri- 
butions of our test statistics. In the next section we consider the small sample 
properties of our tests. 
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5. MONTE CARLO STUDY 

We have performed a small simulation study to explore the finite sample prop- 
erties of the unit root tests based on the following two DGP's: 

Yt = ydlt + xt, (1 - b L)(1 - pL)xt = t, t= 1,...,T, (5.1) 

and 

(1 - blL)yt = ydlt + vt, v pvt_ + st, t= 1,...,T, (5.2) 

with st ~ iidN(O,l), bi = 0.5,-0.5, p = 1,0.9,0.8, T = 100, and y = 3. In the 
simulations we also generated 100 presample values that were discarded ex- 
cept that they were used in the estimations underlying model (2.5). We also 
performed simulations with larger samples of size T = 200 and other values of 
the size of the break y. The results did not affect our main conclusions. There- 
fore they are not presented in the following discussion. 

The first process (5.1) is a special case of the model (2.1) with an abrupt 
shift at time r so that the 7T tests are the appropriate tests, whereas in general 
the model underlying the T2 tests can only approximate the DGP (5.1). By ap- 
plying these tests also we hope to get some indication of the flexibility of the 
framework and of the consequences of using an approximate model. The DGP 
(5.2) is a special case of (2.5) and generates a smooth shift in the deterministic 
term. The T2 tests are designed for this process, whereas the T7 tests are approx- 
imations only. To capture the smooth transition from one regime to another the 
T1 tests have to be combined with a smooth shift function. For both types of 
tests we use the shift functions ft(l) = dt, 

^(2) f0, t<T 

ftT(') - exp{-0(t- T +)}, t- 
and 

(1) f(1) 
, 

() ftT (5.3) ftt( =/ - 1 OL - OL ( 

The latter two can generate smooth shifts at time r. For large values of 0, 
ft2(0) will also generate an abrupt shift, and the same is true for ft )(0) if 0 
and the second component of y are close to zero. Thus, the last two shift func- 
tions can also well approximate the abrupt shift in DGP (5.1). Although there 
is no linear trend term in the DGP's we allow for such a term in computing 
the test statistics T7 and T2. In other words, when we consider these tests we 
assume that the absence of a linear trend is not known a priori. 

In Table 1 empirical test sizes are shown for break date estimates r = 50 and 
T = 55.1 The first break date is the correct value, of course, whereas r = 55 
assumes a misspecified break date. We have picked a quite substantial misspec- 
ification of the break date to investigate the implications of using a poor esti- 
mate. Notice that in the present case the size of the break is such that choosing 
the correct break date by visual inspection may be possible. In Table 1 it is 
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TABLE 1. Empirical sizes of tests, T = 100, r = 50, y = 3, nominal signifi- 
cance level 5% 

= 50 T =55 

DGP (5.1) DGP (5.2) DGP (5.1) DGP (5.2) 
Shift 

Test c function bl = 0.5 -0.5 bl = 0.5 -0.5 b~ = 0.5 -0.5 bl = 0.5 -0.5 -. 

fi? 0 ft) 
f(2) 
f(3) t 

-7 ft) 

(3) 

2? 0 ft() 

ft(2) 
/X(3) 

-7 ft( 
f(2) Jt 

ft(3) 

I7 0 t() 

/(2) 

-13.5 ft 

f(2) 
/(3) Jt 

12 0 t 
f(2) 
/(3) 

-13.5 f) -13.5 ft() 

ft(2) 
(3) 

Jrt 

0.039 0.056 0.070 0.040 0.032 0.045 0.070 0.050 
0.043 0.058 0.080 0.060 0.033 0.053 0.050 0.050 
0.047 0.062 0.050 0.060 0.033 0.041 0.050 0.040 

0.077 0.157 0.090 0.150 0.066 0.144 0.080 0.200 
0.141 0.263 0.162 0.246 0.165 0.312 0.185 0.313 
0.195 0.304 0.190 0.230 0.169 0.289 0.230 0.330 

0.023 0.050 0.050 0.060 0.030 0.034 0.050 0.060 
0.025 0.049 0.040 0.060 0.030 0.038 0.030 0.040 
0.035 0.044 0.070 0.060 0.030 0.034 0.070 0.040 

0.191 0.130 0.240 0.090 0.235 0.103 0.230 0.130 
0.299 0.195 0.301 0.183 0.373 0.267 0.392 0.250 
0.364 0.243 0.360 0.240 0.367 0.249 0.400 0.340 

0.022 0.060 0.020 0.030 0.016 0.042 0.020 0.070 
0.025 0.063 0.050 0.040 0.030 0.050 0.050 0.090 
0.031 0.072 0.050 0.080 0.028 0.052 0.050 0.090 

0.085 0.154 0.130 0.140 0.071 0.126 0.140 0.150 
0.237 0.288 0.271 0.311 0.277 0.310 0.308 0.351 
0.158 0.239 0.190 0.260 0.144 0.198 0.200 0.240 

0.016 0.055 0.040 0.060 0.016 0.042 0.040 0.070 
0.025 0.049 0.010 0.060 0.027 0.045 0.030 0.060 
0.019 0.043 0.030 0.080 0.024 0.045 0.030 0.060 

0.155 0.174 0.210 0.110 0.238 0.129 0.260 0.120 
0.362 0.262 0.369 0.246 0.567 0.350 0.568 0.344 
0.301 0.204 0.350 0.240 0.337 0.224 0.340 0.230 

Notes: Critical values for c = 0 are -1.96 for T,? and T20; -2.62 for T7 and T2. Critical value for c = -7 is 
-1.96. Critical value for c = -13.5 is -2.85. 

seen, however, that even a substantial misspecification of the break date does 
not have a very large impact on the sizes of the tests if c = 0. A substantial 
effect is observed, however, for nonzero c. Obviously, for nonzero c all tests 
have size problems in some situations even if the break date is specified cor- 
rectly. In some cases these distortions are so large that the tests become useless 
for practical purposes if estimation is done under local alternatives. On the other 
hand, if the nuisance parameters are estimated under the unit root hypothesis 
(c = 0) all tests have reasonable empirical sizes or are conservative for both 
processes and all parameter values, even if the break date is estimated incor- 
rectly. Although the sizes improve for larger sample sizes T, we still found con- 
siderable distortions for nonzero c in simulations with T = 200. Therefore we 
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recommend estimating the nuisance parameters under the null hypothesis be- 
cause controlling the size is a minimum requirement for a test. 

Power results are presented in Table 2. An obvious finding from that table is 
that a poorly estimated break date results in a substantial decline in power. Again, 
this result is obtained for all tests, DGP's, and shift functions. We have also 
performed simulations with different values of # and found that the power tends 
to decline with increasingly distorted shift estimate, as one would expect. More- 
over, using different values of y we found that the power declines with increas- 
ing size of the shift. This result is in line with findings for other unit root tests, 
for example, by Perron (1989), who observed that a shift in a time series may 
substantially reduce the power of Dickey-Fuller type tests. 

Another observation from Table 2 is that the power is larger if a linear trend 
term can be excluded a priori, that is, the T? tests tend to have more power 
than the tests that include a linear trend term. Again these results were to be 
expected. Moreover, the Ti tests tend to be more powerful than the T2 tests. 
Surprisingly, this also holds for DGP (5.2), which can only be approximated by 
the model underlying the T tests. In other words, using a test that is especially 
designed for a specific DGP is not necessarily preferable to using an approxi- 
mate test. Based on these limited simulations, the Ti tests are therefore our 
preferred choice for use in applied work. Examples are considered in the next 
section. 

6. ILLUSTRATIONS 

To illustrate how our testing procedures work in practice we use two time se- 
ries that have been considered in previous studies on unit root tests in the pres- 
ence of structural shifts. These series are annual U.S. Employment (1860- 
1988) and U.S. Industrial Production (1890-1988) from the well-known Nelson 
and Plosser (1982) data set extended as in Kleibergen and Hoek (1999).2 The 
variables are in logs. The unit root properties of similar series were analyzed 
by Perron (1989), Zivot and Andrews (1992), and Amsler and Lee (1995) among 
others. The series are plotted in Figure 1, where they are seen to have a shift at 
the time of the Great Crash in 1929. It has been questioned, however, if such 
an exogenous dating of the shift is appropriate (see, e.g., Zivot and Andrews, 
1992). Moreover, as a result of the necessary adjustments in the economy the 
shift may be a smooth one. Therefore we use the same three shift functions as 
in Section 5. 

The shift date r will be estimated in different ways. As mentioned previ- 
ously, one possibility is to choose the shift date by visual inspection of the 
graph of the series. Another possibility is to view T as a regular nuisance pa- 
rameter and minimize the relevant objective function with respect to r in addi- 
tion to all other nuisance parameters. In the present case, Q, and STT are the 
objective functions, depending on which model and test are used. Of course, 
because in the present cases some prior information on the possible ranges of r 



TABLE 2. Empirical rejection frequencies of tests, T = 100, r = 50, c = O0, y = 3, nominal significance level 5% 

DGP (5.1) DGP (5.2) 

b1 = 0.5 b = -0.5 b, 
= 0.5 bl = -0.5 

Shift 
Test r function p = 1 0.9 0.8 p = 1 0.9 0.8 p = 1 0.9 0.8 p = 1 0.9 0.8 

TI? 50 f(I) 
G(2) 

ft(3) 

55 fil( 

ft(2) 

ft(3) 

T20 50 ft(l) 
f 

(2) 

f(3) 
55 f,(1) 

ft(2) 

f(3) 

7T 50 f,(1) 
f,(2) 

ft(3) 

55 ft1 

f 
(2) 

f(3) 

T2 50 f" 

ft(3) 

55 f <1) ft(2) 
./t0 

0.039 
0.043 
0.047 

0.032 
0.033 
0.033 

0.023 
0.025 
0.035 

0.030 
0.030 
0.030 

0.022 
0.025 
0.031 

0.016 
0.030 
0.028 

0.016 
0.015 
0.019 

0.016 
0.027 
0.024 

0.289 
0.253 
0.215 

0.234 
0.203 
0.186 

0.184 
0.160 
0.186 

0.206 
0.159 

0.159 

0.106 
0.105 

0.106 

0.089 
0.093 
0.092 

0.069 
0.059 

0.075 

0.067 
0.071 
0.059 

0.533 
0.469 
0.377 

0.417 
0.360 
0.358 

0.399 
0.330 
0.342 

0.353 
0.306 
0.277 

0.317 
0.314 
0.292 

0.279 

0.257 
0.243 

0.225 
0.198 

0.221 

0.217 
0.183 
0.183 

0.056 
0.058 
0.062 

0.045 
0.053 
0.041 

0.050 

0.049 
0.044 

0.034 
0.038 
0.034 

0.060 
0.063 
0.072 

0.042 
0.050 
0.052 

0.055 
0.049 
0.043 

0.042 
0.045 
0.045 

0.385 
0.354 
0.323 

0.144 
0.173 
0.147 

0.330 
0.263 
0.255 

0.116 

0.137 

0.141 

0.249 
0.259 
0.255 

0.153 
0.150 
0.151 

0.198 
0.177 
0.178 

0.114 
0.109 

0.116 

0.664 
0.618 
0.568 

0.181 
0.252 
0.209 

0.517 
0.495 
0.493 

0.124 
0.171 
0.157 

0.606 
0.602 
0.576 

0.360 
0.326 
0.312 

0.479 
0.450 
0.439 

0.267 
0.231 
0.230 

0.070 
0.041 
0.050 

0.040 
0.034 
0.020 

0.050 
0.025 
0.070 

0.040 
0.036 
0.020 

0.020 
0.027 
0.050 

0.030 
0.031 
0.070 

0.040 
0.014 
0.030 

0.040 
0.022 
0.050 

0.220 
0.230 
0.170 

0.120 
0.147 
0.110 

0.210 
0.189 
0.160 

0.080 
0.140 
0.120 

0.080 
0.109 

0.100 

0.060 
0.086 
0.090 

0.100 

0.075 
0.070 

0.040 
0.048 
0.060 

0.330 
0.406 
0.300 

0.160 
0.226 
0.220 

0.370 
0.374 
0.330 

0.100 

0.186 

0.190 

0.330 
0.297 
0.250 

0.210 
0.199 

0.210 

0.300 
0.224 
0.230 

0.140 
0.134 
0.170 

0.052 
0.061 
0.065 

0.050 
0.064 
0.049 

0.045 
0.045 
0.050 

0.037 
0.055 
0.046 

0.060 
0.062 
0.067 

0.055 
0.061 
0.062 

0.045 
0.039 
0.049 

0.045 
0.055 
0.049 

0.384 0.659 
0.359 0.629 
0.337 0.586 

0.246 0.404 
0.242 0.407 
0.216 0.375 

0.331 0.600 
0.271 0.501 
0.246 0.458 

0.194 0.313 
0.209 0.306 
0.190 0.293 

0.256 0.615 
0.266 0.612 
0.248 0.574 

0.199 0.499 
0.202 0.458 
0.203 0.456 

0.331 0.600 
0.157 0.438 
0.180 0.438 

0.148 0.360 
0.148 0.321 
0.140 0.316 

Note: Critical values for c = 0 are -1.96 for T?? and T2?; -2.62 for 7T and T2. 

O 0 
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FIGURE 1. Example time series. 

is available, it may be useful to restrict the range of permissible z values in the 
estimation procedure. 

There are also other possibilities for estimating r that could be considered. 
We will confine the analysis to the two options "visual inspection" and "mini- 
mization of the objective function" in the following discussion, however. In all 
cases we include a linear trend. The value of c is fixed at zero because of the 
size distortions found in the previous section for nonzero values of c. We use 
the same lag order p that has been used in previous studies. Perron (1989) ar- 
gues that the two series exhibit a level shift but not a break in the trend slope. 
Hence they are in line with our framework. He rejects the unit root hypoth- 
esis for both series. Zivot and Andrews (1992) also reject the unit root hypoth- 
esis for log Industrial Production (IP) but they cannot reject a unit root in 
the Employment series if their finite sample critical values based on Student-t 
innovations are used. Amsler and Lee (1995) cannot reject a unit root with any 
of their tests in Employment and find mixed evidence regarding a unit root in 
the IP series. In our analysis we use the extended series and employ the lag 
orders given in Table 6 of Zivot and Andrews (1992). 

The graphs of the two series in Figure 1 indicate that there was a shift after 
the Great Crash in 1929. Because of our definition of the shift date we there- 
fore specify T = 1930 as our visual inspection estimator. Note that our defini- 
tion of the shift date is slightly different than in some other literature. As a 
result of this difference the shift year 1929 in Perron (1989) and Zivot and 
Andrews (1992) corresponds to our year 1930. The test results are presented in 
Tables 3 and 4. Given the low power of tests allowing for a linear trend that 
was observed in the simulations, using a 10% significance level may be reason- 

331 
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TABLE 3. Unit root tests for U.S. log Employment 

Test statistic (shift date) 
Estimation method for Shift 
shift date p - 1 function Ti (r) 2 ( ) 

Visual inspection 7 f(1) -2.41 (1930) -1.61 (1930) 
f(2) -2.43 (1930) -1.40 (1930) 
f(3) -2.27 (1930) -1.35 (1930) 

Minimal objective function, 7 f(1) -2.37 (1932) -1.61 (1946) 
1908 r < 1977 f(2) -2.43 (1930) -1.40 (1930) 

f(3) -2.37 (1931) -1.35 (1930) 

Note: Critical values are -2.62 (5%), -2.33 (10%). 

able in this case, and, hence, we provide the corresponding critical values in 
the notes for Tables 3 and 4. 

If T1 is used in conjunction withf(l) andf(2), a unit root can be rejected for 
the Employment series at a 10% significance level, whereas T2 favors the null 
hypothesis. Of course, this result may reflect the lower small sample power of 
T2 that was observed in the simulations reported in the previous section. The 
situation is similar if the shift date is estimated by the minimal objective func- 
tion criterion. Most estimated shift dates are close to 1930, the only exception 
being if T2 is used with f(). For this case, 1946 is obtained as shift date, which 
is not totally unreasonable given the graph in Figure 1. Again the values of the 
test statistics are very stable and close to the corresponding values in the upper 
half of Table 3. The only change in the test decision is obtained when Ti is 
used withf(3) at a 10% level. Hence, for this series our results are more in line 
with those of Zivot and Andrews (1992) in that we find some weak evidence 
against a unit root in log Employment. 

TABLE 4. Unit root tests for U.S. log IP 

Test statistic (shift date) 
Estimation method for Shift 
shift date p - 1 function T1 (T) T2 (T) 

Visual inspection 8 f(1) -1.17 (1930) -2.03 (1930) 
f(2) -1.14 (1930) -1.78 (1930) 
f(3) -1.05 (1930) -1.68 (1930) 

Minimal objective function, 8 f(l) -1.52 (1921) -1.79 (1932) 
1884 < r - 1978 f(2) -1.52 (1921) -1.78 (1930) 

f(3) -1.46 (1921) -1.69 (1931) 

Note: Critical values are -2.62 (5%), -2.33 (10%). 
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Test results for U.S. log IP are given in Table 4. In this case none of the tests 
rejects the null hypothesis, so that our results contrast with those of Perron 
(1989) and Zivot and Andrews (1992) and to some extent also with those of 
Amsler and Lee (1995). Despite the unanimous test decision, the shift dates 
obtained with the minimal objective function criterion are now quite different. 
Using the IT setup, 1921 is obtained with all three shift functions, whereas the 
T2 framework results in shift dates ranging from 1930 to 1932, that is, they are 
close to the Great Crash. 

7. CONCLUSIONS 

In this study we have shown that unit root tests can be constructed that work if 
there is a level shift in a time series of interest. The general approach is to 
estimate the nuisance parameters in a first step, remove the corresponding parts 
of the DGP, and apply a unit root test of the Dickey-Fuller type to the residu- 
als. It is shown that the asymptotic distributions of the test statistics do not 
depend on the nuisance parameters. In particular, they do not depend on the 
shift date. In fact, they do not even depend on the way the shift date is esti- 
mated. Therefore, an estimator may be based on a visual inspection of the graph 
of a series of interest, for example. Perron (1989) was criticized by some au- 
thors for assuming an exogenous break date in his unit root tests (see, e.g., 
Zivot and Andrews, 1992). In our approach it does not matter whether we con- 
dition on the shift date or treat it as endogenous. 

In a small Monte Carlo simulation study it is found that estimating the nui- 
sance parameters under local alternatives as recommended elsewhere in the unit 
root literature may lead to substantial size distortions in the presence of level 
shifts. Therefore we recommend estimation under the unit root null hypothesis. 
It is also found that in this case the test sizes are not very sensitive to choosing 
a poor estimate of the break date, whereas it can have a substantial impact on 
the test power. More precisely, a loss in power may result from using a poor 
estimate of the break date. Empirical examples are discussed to illustrate how 
the tests work in practice. 

There are a number of possible directions for extensions of our study. Be- 
cause the main objective of this study is to present our theoretical approach to 
treating an unknown shift date in unit root tests, we have only done a small 
Monte Carlo study to explore the finite sample properties of our tests. In future 
research it may be of interest to do a more extensive small sample investiga- 
tion. In practice the choice of the specific shift function is not a trivial matter. 
The fact that our approach accommodates a great variety of very general shift 
functions leaves the applied researcher with a range of options. In the exam- 
ples we have used different shift functions. Fortunately, the results pointed at 
least in the same direction. If there is uncertainty with respect to an adequate 
shift function it may be reasonable to allow at least for some flexibility in the 
form of the shift function. Finally, it may also be of interest to allow for even 
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greater flexibility by considering a break in the slope of the linear trend term. 

Unfortunately, such an extension is not a trivial one because a change in the 

slope is likely to have an impact on the limiting distributions of the test statis- 
tics and cannot be handled in our framework in a straightforward manner. 

NOTES 

1. The critical values are simulated with a GAUSS program as follows: series xt = xt-1 + et 
(t = 1,2,...,1,000), x0 = 0, st - iidN(O,l) are generated and trend (mean) adjusted as Xt = 

Xt - Io - ft [xt = xt - /o], where iOt and /j [/Io] are obtained from a regression 
(1 - pL)Xt = .tOZOt + tt(t - pT(t -1)) + errort [(1 - PTL)Xt = k6OZOt + errort] with zot = 1 for 
t =1 and (1 - PT) otherwise. The unit root test statistics are then computed from the xt as in (4.4). 
The simulated critical values are the relevant percentage points based on 10,000 replications. 

2. We thank Frank Kleibergen for providing the data. 
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APPENDIX: PROOFS 

In the proofs we make extensive use of results from Saikkonen and Litkepohl (2001) 
and Liitkepohl et al. (2001) where possible. Thereby we hope to minimize repetition of 
derivations and make the main line of arguments more transparent. At the same time the 
major differences between the known break date case and the presently considered un- 
known break date situation can be seen. 

Proof of Lemma 3.1. 

It will be convenient to use the subscript o to indicate true parameter values. This means, 
for instance, that (3.2) is written as Y = Z (Oo0)0o + U, where the components of the 
error term are supposed to satisfy (3.3), as assumed here. Thus, we have the identity 

Y = Z,(O,),o + ,T (A.1) 

where 4 = U + (Z2o (0) - Z2 (07))y,. Assuming that the matrix Z,(0) is of full col- 
umn rank for all 0 E ( and all r C NT we can repeat the argument used in Section 3 of 
Saikkonen and Lutkepohl (2001) and conclude that the estimators lo, 0,, and b, exist. 
Moreover, 

Fr = [Z(,)this (bA.) Z()t follos t '( - Y. 

From this and (A.1) it follows that 

D1T(q4> - ISo) = [D1-T1Z,(0)'I(bv)-lZ,(_)D-']-lD1-T1Z.(^ )'(b[)-l , (A.2) 

where D1T = diag[T1/2: k]. We shall study the two factors of the product on the r.h.s. 
and start by showing that the inverse is asymptotically block diagonal. To this end, we 
first conclude from the definitions that 

1 gl (0)' 

c c 
1- Ag2,(0) - g g(0)' 

T T 
Z= .and Z2(0) T 

c(T- l) c 
1- (T AgT(0) ^ T- 1,(0)' _ T _ _ T g, 
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It will sometimes be convenient to denote by Zlt the tth component of Z1 and by Z2t,(O)' 
the tth row of Z27(0). Because \ft,T(0)\ -< Al1fi(O) + + * a + ||t(0)|| it follows from 

Assumption A(b) that max1lt <Tft1,(0)1 can be bounded by a constant independent of 
0, T, and T. This boundedness property will be of frequent use. It implies, for instance, 
that gt,(O) and Z2tr(0) are similarly bounded, which in conjunction with Assumption 
A(b) yields 

T-1/2 sup \\Z2(0)'Z1, = O(T-1/2). (A.3) 
Oe?,r ENT 

This result will be used to show that 

T-1/2 sup bZ2,(Z,)'(b) 1Z1I = Op(T-1/2). (A.4) 
TENT 

To justify this, proceed in the same way as in (A.9) and (A.14) of Saikkonen and 
Liitkepohl (2001) and use the previously mentioned boundedness of Z2t(0) to con- 
clude that 

T 

T-1/2 2(O)'S(b )-Z1 = T-1/2 E [b(L)Z ( L)Z)][(L)Zt] + O(T-1/2), (A.5) 
t=p 

where the error term is uniform in T and b[(L) = 1 - 
b,L bp-l,1LP- 

1 is 
defined in terms of the estimators b/. Because the roots of b(L) are bounded away from 
the unit circle by assumption, the estimators bj, j = l,...,p - 1, belong to a bounded 
set for all r so that (A.3) makes it clear that the first term on the r.h.s. of (A.5) is of 
order Op(T-1/2) uniformly in r. Thus we have established (A.4). 

It follows from (A.4) that the matrix that is inverted in (A.2) is asymptotically block 
diagonal. We also need the result that the smallest eigenvalues of the blocks on the 
diagonal are bounded away from zero uniformly in r. To this end, note that, analo- 
gously to (A.3) of Saikkonen and Liitkepohl (2001), we can now conclude from Assump- 
tion A(b) that 

T 

Z2,(0)'Z2(0) Agt,(O)Ag,(O)' + O(T-1), (A.6) 
t=l 

where the error term is uniform in both 0 and r. Next note that Amax(I(b)) c K < oo so 
that 

Amin(Z2r(0r) '(br) 'Z2(0)) K Amin (Z2(0r)Z2T(0 )) 

- K-1 infoc,, TN Amin( Agt(0)Agt(0)') + o(1) 

-K-16 + op(l), Th T,. (A.7) 

Her e the second inequality follows from (A.6) and the third one from Assumption A(c). 
Thus we have shown that the lower right-hand block of the matrix that is inverted in 
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(A.2) has its smallest eigenvalue bounded away from zero uniformly in r. It follows 
from 

T-' z (b,)- Zl 2 K_ T- ~ Z1Zl 

= K-l (- c+ c2/3) + O(T-1) (A.8) 

that the same is true for the upper left-hand block. Here the equality is obtained from 

(A.1) of Saikkonen and Ltitkepohl (2001). Now, using (A.4), (A.7), and (A.8) in con- 

junction with Lemma A.2 of Saikkonen and Ltitkepohl (1996) one obtains 

(DlZz(OT)'Z (bT)- zT ()D1hl)-1 

=diag[(T 1Z'lY(b)-'Z-'Z ) :(Z27(0T)':(b)- Z2,(T0))-1] + Op(T-1/2) (A.9) 

uniformly in r. Note that by (A.7) and (A.8) the first term on the r.h.s. of (A.9) is of 
order Op(l). Note also that from the given derivations it is straightforward to check that 

(A.9) holds with Op(T- /2) replaced by O(T-1/2) even if 80 and bT are replaced by any 
parameter values 0 and b in their respective parameter spaces. This makes clear that the 
matrix ZT(0) is of full column rank for all 0 ( , -r NT and all T large enough. 

Now consider the latter factor on the r.h.s. of (A.2). We divide our analysis into two 

parts according to the partition Z,(0) [Z1:Z27(0)]. First note that (A.4) obviously 
holds even if Z2,(0r) is replaced by Z2o(0). Thus, using the definition of -T and (A.4) 
we find that 

Tr- /z; )-(b)l = T -/2ZI(bT)-l U+ O(T-1/2) = O() (A.10) 

uniformly in r. The latter equality can be justified by using arguments entirely similar 
to those used in (A.9), (A. 11), and (A.12) of Saikkonen and Ltitkepohl (2001). It is easy 
to see that the dependence of the estimator bT on r has no effect on these arguments. 
For the second part of our present analysis we note that, uniformly in r, 

T 

Z2,(0T) X(/-)-'1^ = E [[b(L)Z2tT(0)][b[(L)'tT] + Op(l) 
t=p 

T 

= E [b(L)Z2t(0T)][br(L)ut ] + Op(l), (A.11) 
t=p 

where 4tT and ut are tth components of the vectors 4 and U, respectively. These equal- 
ities can be justified by using the argument in (A.9) of Saikkonen and Ltitkepohl (2001) 
and the fact that 

T 

sup sup E lZ2t(O) < co (A.12) 
T 0E@,7ENT t=1 

obtained from Assumption A(b) and the definition of Z2tr(0). To study the first term in 
the last expression of (A.11), consider for example the quantity 

T T 

E Z2tr(0)ut < max ut| sup sup IZ2t(0)B11 (A.13) 
t=p l-t<T T 0E?,7ErNT t=p 
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The latter factor on the r.h.s. is finite by (A.12), so we need to consider the first one. To 
this end, recall from (3.3) that 

c def (0) + T-1(c - 
u, = b(L)- , + T- (c c)x_ 1 = u c)xt, 

where T-lmaxlt<-lx t-1_ = Op(T-1/2), which holds because T-1/2X[Ts] satisfies the 
invariance principle. As for u(, we have El u ?) < oo by (2.3) so that 

T 

P{ max Ilu 
() 

>T7e} T P{ u)1 T 0e} a< const. e-T1 -a 
1-< t-<T t= 1 

where the latter inequality is Markov's. Because the preceding result holds for every 
e > 0 we have 

max lu?) = op(T), r T > 1/a. 
l 't'T 

Thus, we can conclude that 

max \ut, = op(T7), r1 > l/a, (A.14) 

which, combined with (A.12), shows that the r.h.s. of (A.13) is of order op(Tr). Be- 
cause it is clear that the same conclusion obtains even if ut and Z2tr(Or) in (A.13) are 
replaced by lagged values it follows that the first term in the last expression of (A.1 1) is 
of order op(Tr') uniformly in T. Thus, we have shown that 

Z2,(YtV'()-l = op(Tr), r7 > I/a, (A.15) 

uniformly in r. Because a > 2 (see (2.3)) we can proceed by assuming that r -'< . 
Hence, using (A.9), (A.10), and (A.15) we find from (A.2) that 

-T 12(/ -/.lo) Op(1) 1 1 
D1T(7 - ) = - < -- < - , (A.16) 

Yr~yo Op(Trl) a 2 

uniformly in r. This proves (3.6), whereas (3.5) is obvious because the parameter space 
0 is compact by assumption. 

Next we shall prove (3.7). We introduce the notation 

r.(o, 0) = Z,(o0)0 - Z,o(Jo,)o = Zi(/A - Io) + Z2(0)y - Z2(0o)Yo. 

Because U = Y- ZT (0)00, we have Y - Z-(0)) = U - r(0, q) and, furthermore, 

QTr(0f, b, b) = U'E(b)- U- 2U'(b)-l'r,(0, q) + r(0, ()'E(b)-1 r_(0, q) 

def 

QT(b) + Q2T(<, O, b) + Q3Tr(00, ,b). 

We shall show later that 

(A.17) T-QiT,r (^, 4, /) = op(1), i = 2,3, 
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uniformly in r. Assuming this we have 

T -'QTT(, ,O, bo) > T- QTT(, 0a, b,) = T -QlT(,) + op(l) 

uniformly in r. Here the first relation is based on the definition of the estimators 0,, 06, 
and bT. Because QlT(b) is the same as its counterpart in Saikkonen and Lutkepohl (2001) 
we have T-lQlT(b) -> Ql(b), where the convergence is uniform in b and Ql(b) equals 
the variance of the stationary process b(L)bo(L)-l't with bo(L) defined in terms of bo. 
As is well known, Ql(b) is continuous and Ql(b) - Ql(bo) with equality if and only if 
b = bo. Thus, because QTr(o, o, bo) = QiT(bo) we can conclude from the preceding 
inequality that 

Ql(bo) > Ql(b9) + op(l) (A.18) 

uniformly in r. To see that (3.7) follows from this, denote b b= bT and suppose that 
(3.7) does not hold. This means that we can find a subsequence b T., say, such that, for 
some e > 0 and O > 0, 

Pt sup bT - b\o e} 

for all j. This implies that for some Tj E NT; we have P{ tb - boll E} > } for allj. 
However, because Ql(b) is continuous and uniquely minimized at b = bo this implies 
that we can find some E* > 0 such that 

P sup Ql(bT ) - 
,Q(b0o) * . 

r ENT 

This is a contradiction to (A.18). 
Thus, to complete the proof of (3.7) we have to justify (A.17). Because Amin(((b)) > 

K > 0, we have uniformly in r, 

( A- o)2Z, E(b,b)-'Z _<Z1 ' K-'( i o- )2 |Z 112 = op(1), 

where the equality follows from (A.16) and the latter relation in (A.8). Similarly, we 
have uniformly in r, 

[Z27(O7) 
- 

Z2r(Oo)yo'/0](b&)- [Z27(6^) 
- 

Z27o(0)y0] 

K-K IIZ2(6T)' 
- 

Z2o(Oo)yo 
2 

2K-1 \\Z2,( )\\21 1 K2 + 2K-'1 Z2 (0O) 112 yo 
2 

=op(T), 

where the equality is justified by (A.12) and (A.16). To see that (A.17) holds for i = 3, 
insert the latter expression of rT,(, O) in the definition of Q3TT(4, 0, b) and use the pre- 
ceding results in conjunction with the Cauchy-Schwarz inequality. That (A.17) holds 
for i = 2 can be deduced from this, the previously mentioned fact that T-'QlT(b) con- 
verges in probability and uniformly in b, and the Cauchy-Schwarz inequality. Thus, we 
have established (A.17) and thereby completed the proof of (3.7). 
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To complete the proof of the lemma, we still have to establish (3.8) and (3.9). The 
arguments used to obtain (A.16) readily show that (3.8) holds if b(= bo) in the defini- 
tion of UT is replaced by the estimator b/. Thus, we have to show that the error of 

replacing b/ by bo is of order Op(l) uniformly in r. Because we have proved (3.7) this 
follows with standard arguments used in GLS estimation. Thereby (3.8) is established, 
whereas (3.9) is obtained from the proof of (3.12) in Saikkonen and Ltitkepohl (2001). 
This completes the proof of Lemma 3.1. A 

Proof of Lemma 3.2. 

We shall assume that vu = 0 for t - 0. First note that 

Y= W (0O)3O + T, (A.19) 

where E = 6 + (Z2 (0o) - Z2,(O6))yo (see (3.10)). The existence of the estimators 
0~ and / ' = - J[b':(]' can be established using the arguments from Ltitkepohl et al. 
(2001). These estimators are related by the equation 

I = [W w(0,)'W,_(0W)]-' ~W()Y, 

and, according to what was said with respect to the matrix Z(6O) after (A.9), it is clear 
that the same conclusions are obtained for all T large enough even if the stated assump- 
tion regarding the rank of the matrix W,(O) is not made. Thus, using (A.19) we can 
write 

DT(/37 -/ ) = [DT WT (O)'W,T(OT)DT ]-1D-' W( _)'r, (A.20) 

where DT = diag[Tr/2Ip:Ik]. Define V1 = [V:Zi] so that WT(O) = [V1:Z2(O)].. We 
shall demonstrate that 

[DT1 WT,(6)'W,(t,)DT 1 ] - diag[(T- V' V)-l : (Z2T()',Z2,(J))- 1 

op(T2-7-1) op(T7 -1/2) 

op(,(T-/2) Op(T2'-l ) 

uniformly in r. Notice that here and also subsequently r7 - is assumed. To justify 
(A.21), note first that in the latter term on the l.h.s. the first inverse is of order Op(l) by 
the discussion given in the proof of Lemma A.1 of Ltitkepohl et al. (2001), whereas 
(A.6) and Assumption A(c) imply that the same is true for the second inverse uniformly 
in r. Thus, because (A.3) also holds in the present context we can conclude from the 
inversion formula of a partitioned matrix and Lemma A.2 of Saikkonen and Ltitkepohl 
(1996) that we only need to show that 

T-1/2 sup 1Z27(O)'V 1 = 
OP(Tr-1/2). (A.22) 

OCO, TENT 

To justify this, we solve the difference equation (2.5) and use the solution to obtain a 
representation for the difference Yt - pYt-1 whose lagged values define the columns of 



UNIT ROOTS IN TIME SERIES WITH LEVEL SHIFTS 341 

the matrix V. The solution of (2.5) is discussed in the proof of Lemma A. 1 of Ltitkepohl 
et al. (2001), and from equation (A. 11) of that paper we find that 

Yt- PTYt- = Zlt , +- ktT- pTkt-,T + t, t = 1,2,..., (A.23) 

where /u. = I,l/bo(1), ko, = 0, and kt, (t > 0) is a sequence that depends on the initial 
values of the difference equation (2.5) and the sequence g-(0o). An important point to 
note is that in the subsequent analysis we can treat the sequence ktT in the same way as 
gtr(O). In particular, the differences AktT form an absolutely summable sequence in the 
same way as Aft,(0) in Assumption A(b). A final point to notice regarding equation 
(A.23) is that the process ut satisfies equation (3.3) except for transient effects caused 
by differences in initial values that have no effect on asymptotic results and can there- 
fore be ignored. 

Now we can show that a typical column of the matrix T-'/2Z2,(O)'V satisfies 

T T 

T-1/2 Z2t,(O)(yt-i - 
PYt-i-) = T1/2 Z2t(O)uti, + Op(T-1/2) 

t= t=l1 

= (T -1/2) ( < i p-l) 

uniformly in 0 and r. Here the first equation is obtained by using (A.23), (A.3), and the 
properties of the sequence kt discussed earlier. The second follows by combining (A. 12), 
(A.14), and an obvious modification of (A.13). Thus, we have established (A.22) and 
thereby (A.21) also. 

Next consider the latter factor on the r.h.s. of (A.20). Using the definition of ~T to- 
gether with (A.3) and (A.22) yields 

T-1/2Z; = T -1/2Z; + Op(T-1/2) (A.24) 

and 

T-1/2V', = T-1/2V ' + op(Tr 
- 

1/2) (A.25) 

uniformly in r. Because V1 = [V: Z1] these results give 

T-1/2V Vl = T-1/2V'IS + Op(Tr -1/2) (A.26) 

uniformly in r. Let et denote the tth component of 8 and note that et = St + 
T-(c - c)vt-_. Similarly to (A.14) we therefore have maxl t<Tl|et = op(Tt). Using 
this fact, the definition of sT, and (A.12) one thus obtains 

Z2T(o0) 'T Z2T(s6)'S + O(1) = op(Tn) (A.27) 

uniformly in r (cf. (A.13)). From (A.26) and (A.27) we find that 

T-1/2V + op(T79-1/2) 
DT W,(0))'T o= (A.28) 

_op(rt 
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uniformly in r. Because T-1/2V'S = Op(l) (see the proof of Lemma A. 1 of Liitkepohl 
et al., 2001) we can combine (A.20), (A.21), and (A.28) and obtain 

b~ - bo 
T1/2 = b (T- V' V)-' T- /2V'S + op(T27,-1/2) (A.29) 

and 

y - yo = Op(TXr) (A.30) 

uniformly in r. The latter result implies (3.14), whereas (3.13) holds trivially by the 
assumed compactness of the parameter space ?. To prove (3.15)-(3.17), define the 
(p X p) matrix 

Ip-1 0 
B= 

' 1 

where lp-1 is a ((p - 1) X 1) vector of ones. Then, a premultiplication of equation 
(A.29) by B yields 

T 1/2 T= (T-'B -'VV V 1 B- )-1T- 1/2B-' V' + op(T2- 1/2), (A.31) 

where the term op(T2rl-1/2) = Op(l) is uniform in r. Now, partition the matrix that is 
inverted on the r.h.s. conformably with B and note that a typical element of the off- 
diagonal block is given by 

T 

T-1 I (Yt-i 
- 

PTYt-i- 
- 

Zlt l)Zlt = Op(T-1/2), (A.32) 
t=1 

where the equality is a straightforward consequence of (A.23) and the properties of the 
sequence ktr and the process ut therein. Thus, Lemma A.2 of Saikkonen and Liitkepohl 
(1996) implies that the error of treating the off-diagonal blocks of the matrix 
T-1B-I'Vl V1 B-1 as zeros is of order Op(T-1/2). This fact and arguments used to jus- 
tify (A.19) and (A.20) of Liitkepohl et al. (2001) imply (3.15)-(3.17). This completes 
the proof of Lemma 3.2. A 

Proof of Theorem 4.1. 

First note that 

-t = x, - (i, - Io)t - gtA( O)'y + gto(Oo)' Yo. (A.33) 

Recall that max1<t<rTg,gt(O)| is bounded uniformly in 0, r, and T. From this fact and 
(3.6) of Lemma 3.1 it follows that 

(A.34) max \ gtt()'T\ max ||gt()| (11 , - 
yo + yo ) = op(T1/2). 

1 t'<T 1 t'T 
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Thus, we can conclude from (A.33) that 

[Ts] T-1/2[T] = T-1/2X[Ts] - 2(2 - ) () 

[Ts] = T--/2X[]-,_uT T + op(l) 

t-4 wG (s; c). (A.35) 

Here the latter equality is based on (3.8) and the weak convergence is obtained from 
(3.9) and the argument used to obtain (A.18) of Saikkonen and Lutkepohl (2001). 

Next note that Axt = T-lcxt-I + b(L)-le, by (2.2). Using this, (A.34), Lemma 3.1, 
and Assumption A(b) it is not difficult to conclude from (A.33) that 

T T 

T 1 / At_Xi/,j_- = T-1 x AX_,A/xt_j + op(1) 
t=p t=p 

T 

= u(i ut(j + o (1) (i,j = 0 ....,p -1), (A.36) 
t=p 

where again u(?) = bo(L)-lst. Thus, (A.35), (A.36), and the consistency of the estimator 
b/ (see (3.7)) imply that we can repeat the argument used to obtain (A.20) and (A.21) of 
Saikkonen and Liitkepohl (2001). Hence, we have 

r1 
T-2X', (b)X- 1 c2 G c)2ds (A.37) 

and 

2 2 T- X' (b)-(X- X_1) - 0- 2Gc(s;C)2 _ _ -2. (A.38) 
2 2 

These results imply = 1 + Op(T-1) and further -2 = rJ2 + op(l) so that the stated 
result follows in the same way as in Saikkonen and Liitkepohl (2001). A 

Proof of Theorem 4.2. 

Instead of (3.3) we now have 

c 

Ut = x - TXt-I = Axt -T xt-. (A.39) 

In addition to this identity the following proof makes use of the fact that the properties 
of the matrices Z1 and Z27(0) are the same as under local alternatives and the estimator 

b. (and 0,) is bounded for all r. These facts imply, for example, that (A.9), (A.11), and 
the first equation of (A.10) still hold. We shall also make use of approximations similar 
to those in (A.5) and (A. 11). These approximations are always easy to justify and will 
therefore be employed without further notice (cf. (A.9) and (A.14) of Saikkonen and 

Liitkepohl, 2001). 
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We shall next demonstrate that 

sup | 2, 
- 11 = o (T7-1) (A.40) 

TENT 

and 

sup |y - 
YTo | =p(T r), (A.41) 

TENT 

where 1/a < r7 ' , as in Lemma 3.1. To this end, we first show that the last term on 
the r.h.s. of (A.10) can be replaced by Op(T-1/2). Because we already noticed that the 
first equality in (A.10) still holds, it suffices to consider 

T 

T-'/2Z' (b,)-U = T-1/2 [b,(L)Z,t][b7(L)ut] + Op(T-12), (A.42) 
t=p 

where the term Op(T-1/2) is uniform in r. Now write b-(L) = b(1) + Ab/(L) and 
observe that 

b,(L)Z,l = b(l)ZIlt- b(1), t = p,..., T. 

Using this identity in conjunction with (A.39) and the definition of Zlt, it can be seen 
that the first term on the r.h.s. of (A.42) can be replaced by Op(T-1/2), so that we have 
shown that 

T- /2ZI(b-)-14 =- O(T-1/2) (A.43) 

uniformly in r. 
Next, using (A.39) and the fact that now x, is stationary, we can repeat the arguments 

leading to (A.14) and see that this result also holds under the alternative. Consequently, 
we still have (A.15), whereas (A.9) was noticed to hold previously. Thus, we can use 
(A.9), (A.43), and (A.15) to conclude from (A.2) that instead of (A.16) we now have 

DlT(4T +) T"/2(y 1) op(T 12/2) D ITW 
- 

Oo) 
= 

7T -o Op (TN) 

uniformly in r. This gives (A.40) and (A.41). 
For bT we now have 

sup /1 -a | = Op(1), (A.44) 
rENT 

where a = [al,...,ap]' is obtained by minimizing the function 

E(Ax - b Ax, - ... 
-bp,_, Axt_p+)2 = E[b(L)Ax,]2 

with respect to bI,..., bp_. As is well known, this function is continuous and has a 
unique minimum. One can justify (A.44) in a straightforward manner by making ap- 
propriate changes to the proof given for (3.7). Thus, consider the decomposition 
QTr,(4, O,b) = Ql(b) + Q2TT(0, k, b) + Q3Tr(,,O, b) defined in the proof of Lemma 
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3.1. Using (A.40) and (A.41) it is not difficult to check from the proof of Lemma 3.1 
that (A.17) holds even under the alternative and further that (A.44) follows if we have 
T-'QlT(b) -4 E[b(L)Axt]2 uniformly in b. To see this last point, notice that 

T-lQr(b) = T-'U'E(b)-'U 

T 

=T-1 E [b(L)u] + o,(l) 
t=p 

T 

= r-1 [b(L)zx.]2 + o,(l) 
t=p 

-E[b(L)axA]2 + op(l), 

where the terms Op(l) are uniform in b. Here the last two equations are based on the 
stationarity of the process xt and equation (A.39). Thus, we have justified (A.44). 

The next step is to note that 

T T 

T1 - 't_it_j = T-1 E x_ixt_, + op(T21), i,j 0...p 1. (A.45) 
t=p t=p 

This can be justified by using equation (A.33) in conjunction with (A.40), (A.41), and 
the boundedness of the sequence g,,(O) discussed preceding (A.3). Details are straight- 
forward but rather tedious and will be omitted. Note, however, that the second term on 
the r.h.s. of (A.45) is due to the second sample moments of (/l, - to)t and gt~(6)'yT 
and their lagged values. When xt-j on the l.h.s. of (A.45) is replaced by A,t-j, Assump- 
tion A(b) can be used instead of the mere boundedness of the sequence gtr(O) so that 
then arguments otherwise similar to those used for (A.45) yield 

T T 

T-1 E t_ i At_j = T-1 Xt_i Ax_ + Op(1), i,j = 0..., p-1. (A.46) 
t=p t=p 

Now consider the test statistic T1. Writing a(L) = 1 - all- ... - ap_L- we 
first note that 

T 

T-1X' 1,(bT)-1X_ = T-1 E [lb(L)xt ]2 + op(1) 
t=p 

T 

T= -1 [a(L)xt_ ]2 + op(T27) 
t=p 

= E[a(L)xt_ ]2 + op(T2'7). (A.47) 

Here the second equation is a straightforward consequence of (A.44) and (A.45), whereas 
the third equation is due to a weak law of large numbers. Using (A.46) instead of (A.45) 
we similarly find that 

T-X' _l,(b) '(X- k_ ) = E[a(L)x,_][a(L)Ax,] + op(l) 

K + = K + Op (1), (A.48) 
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where, by the Cauchy-Schwarz inequality, K < 0. From (A.47) and (A.48) it follows 
that p - 1 = Op(1) and furthermore that -2 = Op(l). This latter result can be justified 
by writing 

-(T- 1)- (X-X _)'5(b)-X-l(-X1) 

and observing that (A.46) also holds with xt-i and xt-i replaced by their differences. 
Thus, using this fact in conjunction with (A.47) and (A.48), we find that 

r-/2X ()-(x - , 1) T-/2(K q- Op(])) T 1 (b) 1(X X _) T ( 1 (A.49) 
(T -X_ (b,) -X_)/)' 

2 
(Op(1) + op(T 2))1/2' 

A 

Hence, T7-1/2I -> - oo in probability as T -> oo because K < 0. Thereby we have 
established Theorem 4.2. 1 

Proof of Theorem 4.3. 

Using the representation b(L) = b(1) + b*(L)A we can show in the same way as at the 
beginning of the proof of Theorem 1 of Lutkepohl et al. (2001) that 

,t = v - (fi - b(l)bo(1)-~1o)t + b*(1)bo(1)-'1to 

+ b,(L)k~t + (b(l)- bo(l))xt + (b,,(1l) - b(L))xt- g- (7)'Y/,, 

where kt is as in (A.23). Thus, this equality, Lemma 3.2, an analog of (A.34), and ar- 
guments similar to those in the proofs of Theorem 4.1 and Theorem 1 of Ltitkepohl 
et al. (2001) yield 

T-1/2U[TS] = T-1/2V[Ts]- T /2( - b(l)bo(l)-l1to) 
T 

+ op(l) 

o- G ,(s; ). 

Hence, proceeding in the same way as in the proof of Theorem 4.1 we can complete the 
proof. Details are omitted. C 

Proof of Theorem 4.4. 

In the same way as in the proof of Theorem 4.2, the first step is to obtain asymptotic 
properties of the nuisance parameter estimators. This can be done by making appropri- 
ate changes to the proof of Lemma 3.2. The assumption vt = 0, t -< , used in that proof 
will also be made here. We begin by considering (A.21). Because under the alternative 
the properties of the matrices Z1 and Z27(0) are the same as under local alternatives this 
amounts to showing that (A.22) still holds. This can be done in exactly the same way as 
under local alternatives by using the representation (A.23) and the fact that the process 
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ut therein satisfies (A.39) except for differences due to initial values. Because (A.24)- 
(A.26) are based on (A.3) and (A.22) and both of these hold under the alternative we 
also have (A.24)-(A.26). To see that (A.27) still holds, notice that 

c 

et= Avt-T t-i, (A.50) 

where vt is asymptotically stationary by assumption. Thus, maxl,t<Tretl = op(Tr) by 
the argument used to show (A.14), and therefore (A.27) follows in the same way as in 
the proof of Lemma 3.2. 

Next consider a typical component of the vector T-1/2V'S, which is 

T T 

T-1/2 (Yt-i- PYt-i-, )et = T-1/2 E uti-et + Op(T-1/2) 
t= t=p 

= (T 1/2) ( i p - 1). 

Here the first equality can be justified by using the representation (A.23) and (A.50). 
The second one follows from (A.39) and (A.50) and the asymptotic stationarity of the 

processes xt and et. We also have to consider 

T 

T-1/2ZrS = T- 1/2 Zlt et = O(rT -1/2), 
t=l 

where the latter equality is a straightforward consequence of the definition of Z1, equa- 
tion (A.50), and the asymptotic stationarity of the process vt. The preceding two results 
can now be combined with (A.24), (A.25), and (A.27) to show that 

- 
T-1/2V' + op(T7-1/2)- - Op(T1/2) - 

DT- W(O.)'T = T-1/2Z + OP(T-1/2) = Op(T-1/2) (A.51) 

_ Z2(t)+o() _ o (T) 

uniformly in r. It follows from this, (A.20), and (A.21) that, uniformly in r, 

- 
(T-1V1 V)-iT-1/2VfES + op(T27-1/2)- 

DTo(7 - o) = 
op (TT) 

Using the definitions we find from this result that 

sup || 7 - yJo = op(T'), (A.52) 
TENT 

which is the desired result for the estimator %y. As for the estimators b/ and fiu, a sim- 
ilar argument combined with a multiplication by the transformation matrix B introduced 
in the proof of Lemma 3.2 shows that 

br - bo = (T-'B-"v' v, B- )-1T-1B-1'v;S + o(rT2-- ), (A.53) 
_l-^)! 
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where the term op(T2'7-1) = Op(l) is uniform in r. As in (A.32) we now consider a 

typical element of the off-diagonal block of the matrix that is inverted on the r.h.s. and 
obtain 

T T 

T-1 E (Yt-i 
- 

PYt-i- 
- 

Zlt *)Zlt = T-1 ut-iZlt + Op(T-l) 
= 

Op(T-1). 
t=l t=l 

Here we have used the representation (A.23) and the fact that the process ut satisfies 

(A.39) so that the latter equality is justified by the same argument that was used for 

(A.43). Thus, it follows that the error of treating the off-diagonal blocks of the matrix 
T- B- 'V V B-' in (A.53) as zeros is of order Op(T-~). This result and (A.51) imply 
that 

sup 11/, - b7(1)/,1 = op(T2V-1). (A.54) 
TENT 

Using (A.23), it can be shown from (A.53) and arguments similar to those employed in 
the foregoing discussion that the estimator b, converges in-probability and uniformly in 
r to a fixed constant. Because the explicit expression of this constant is not relevant for 
us we simply denote it by a*. Hence, we have 

sup b, - a* I = op(l). (A.55) 
rENT 

Using (A.52), (A.54), and (A.55) in conjunction with the representation of it given in 
the proof of Theorem 4.3 we can now show that 

T T 

T-1 E 
2 
-_ T-1 E V2 + op(T4) (A.56) 

t=2 t=2 

and 

T T 

T-1 E ut-i A Ft = T-1 vt-i Auvt_ + op(l). (A.57) 
t=2 t=2 

Details are straightforward but tedious and will be omitted. We note, however, that the 
error term in (A.56) is due to the second sample moment of the second term in the 
representation of vt, which dominates the error but is asymptotically negligible in (A.57). 
Using (A.56) and (A.57) it is straightforward to analyze the test statistic T2 in the same 

way as test statistic Ti in (A.49) and obtain the stated assertion. U 


	Cover Page
	Article Contents
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318
	p. 319
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332
	p. 333
	p. 334
	p. 335
	p. 336
	p. 337
	p. 338
	p. 339
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346
	p. 347
	p. 348

	Issue Table of Contents
	Econometric Theory, Vol. 18, No. 2, Apr., 2002
	Front Matter
	Nonparametric Estimation and Testing of Interaction in Additive Models [pp.  197 - 251]
	Consistency and Efficiency of Least Squares Estimation for Mixed Regressive, Spatial Autoregressive Models [pp.  252 - 277]
	A Unified Approach to the Measurement Error Problem in Time Series Models [pp.  278 - 296]
	Asymptotic Robustness in Multiple Group Linear-Latent Variable Models [pp.  297 - 312]
	Testing for a Unit Root in a Time Series with a Level Shift at Unknown Time [pp.  313 - 348]
	Robust Estimation of Structural Break Points [pp.  349 - 386]
	Modeling Cyclical Behavior with Differential-Difference Equations in an Unobserved Components Framework [pp.  387 - 419]
	Nonparametric Estimation with Aggregated Data [pp.  420 - 468]
	An Invariance Principle for Sieve Bootstrap in Time Series [pp.  469 - 490]
	The Properties of L<sub>p</sub>-GMM Estimators [pp.  491 - 504]
	Testing Linear Restrictions on Cointegrating Vectors: Sizes and Powers of Wald and Likelihood Ratio Tests in Finite Samples [pp.  505 - 524]
	Miscellanea
	On a Partitioned Inversion Formula Having Useful Applications in Econometrics [pp.  525 - 530]
	Partial Redundancy of Moment Conditions [pp.  531 - 539]

	Problems and Solutions
	Problem
	ARMA Representation of Squared Markov Switching Heteroskedastic Models [p.  541]

	Solutions
	A Determinantal Inequality: First Solution [pp.  542 - 543]
	The R/S Statistics as a Unit Root Test [pp.  544 - 545]

	Back Matter



