
A nonparametric changepoint model for stratifying
continuous variables under order restrictions and
binary outcome
Georgia Salanti and Kurt Ulm Institute for Medical Statistics and Epidemiology, Munich,
Germany

Modelling using monotonic regression can be a useful alternative to parametric approaches when optimal
strati�cation for continuous predictors is of interest. This method is described here in the context of binary
response. Within this framework we aim to address two points. First, we propose a method to enhance the
parsimony of the model, by applying a reducing procedure based on a sequence of Fisher exact tests and a
bootstrap method to select between full monotonic and reduced model. Secondly, we discuss the case of
multiple predictors: an iterative algorithm (an extension of the Pool Adjacent Violators Algorithm) can be
applied when more than one predictor variable is taken into account. The resulting model is a monotonic
surface and can be applied alternatively to the additive monotonic models as described by Morton-Jones
and colleagues when the explanatory variables are assumed to interact. The monotonic-surface model
provides also a multivariate extension of the monotonic likelihood ratio test. This test is discussed here and
an approach based on permutations to assess the p-value is proposed. Finally, we combine both ideas
(reduced monotonic regression and monotonic-surface estimation) to a simple and easy to interpret model,
which leads to a combination of the predictors in a few constant risk groups. Despite the fact that the
proposed approach becomes somewhat cumbersome due to the lack of asymptotic methods to infer, it is
attractive because of its simplicity and stability. An application will outline the bene�t of using bivariate
step functions in modelling.

1 Introduction

Categorizing continuous variables arises as an important issue in statistical analysis,
particularly in studies concerning exposure–effect problems. Usually a single cutpoint is
used, which is determined by the maximization of a test statistic.1 ,2 A binary split is
simple to use and to interpret, but its simplicity is gained at the expense of throwing
away a lot of information, increasing the bias and losing power. An optimal strati�ca-
tion of the predictor into more than two groups can often be more informative,
especially if the shape of the dose–response relationship is of interest. Once the decision
to categorize is taken, it is not obvious how many groups should be built and where the
cutpoints should be placed. The pattern of the response, the underlying biological
mechanism and the sample size should be taken into account. Equally spaced or equally
sized cutpoints suggested by the sample size are used in practice. However, rather than
grouping according to the distribution of the explanatory variable, a better strategy is to
base the selection of the cutpoints on the outcome. If there is more than one explanatory
variable, the application of a statistical model is necessary.
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Creating meaningful groups for the predictor variables regarding the outcome is
desirable in many studies. A representative example is the MAK (Maximal Arbeitsplatz
Konzentration) study.3 One of the goals of the statistical analysis has been to test
whether the inhalable dust concentration in the workplace has adverse effects for the
health of the workers. Apart from inhalable dust, additional parameters such as the
time since �rst exposure and smoking habits need to be taken into account. The end
point of the study has been chronic bronchitis. In the statistical analysis of this data, the
proof of a dose–response relationship, that is, increasing risk with increasing dust
concentration, was an important task in order to establish causality. In the case of
evidence, the strati�cation of dust concentration into certain risk groups was of great
interest. According to the established risk categories the MAK commission could take
decisions to protect workers against the dust effects and to assess an overall threshold
for dust concentration in the workplace.

On analysing the results of this study, parametric models such as the probit and logit
as well as nonparametric models have been applied. A common assumption made
behind the parametric models is that the relationship is linear either directly or after
some transformation. This approach turns out often to be inadequate as it is too
restrictive. More �exible models, such as the generalized additive one, �tted by
smoothing splines or fractional polynomials, are useful but they are not always helpful
when the establishment of a dose–response relationship needs to be proven. Moreover,
these models make the assessment of cutpoints rather cumbersome. Usually the
investigator needs to decide on the number and location of cutpoints on a subjective
base, after screening the graph of the �tted model. Then, modelling using step functions
provides a reasonable alternative. Classi�cation trees are the most popular model in this
situation.

Motivated from this special case we propose a model based on monotonic regres-
sion.4 ,5 This approach is adequate when the goals of the analysis are to prove a
monotonic trend between a binary response and one or more predictor variables, and
further to assess an optimal strati�cation of the explanatory variables for practical
purposes. This method retains the monotonicity assumption but relaxes the linearity
requirement, and results in �tting step functions without any a priori assumption about
the location of the shifts.

The simplicity of monotonic regression has recently turned its use into a popular tool.
Among the many bene�ts it provides, one of the most important is the monotonic test
for trend. This test has attracted a lot of attention and its advantages compared to
standard tests for trend have been outlined in several papers.6 –9 Nevertheless, there is
some controversy about it. The large sample approximation used does not always hold
(as we will outline later) and one has to apply permutations to infer for the effect of the
predictors.

An important improvement of the monotonic model has been reduced monotonic
regression.1 0 This focuses on reducing the level sets in a one-dimensional monotonic
regression by detecting cut points that do not correspond to an important change in the
response. Up to now, reduced monotonic regression has been described only for one
explanatory variable and continuous response variable.
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Regarding multidimensional monotonic modelling, Bacchetti1 1 and later Morton-
Jones1 2 proposed the additive monotonic regression. This model is an extension of the
generalized additive model1 3 where the monotonic ‘smoother’ is used in the partial �t.

At this point, two important remarks need to be made regarding the monotonic
framework. First, some problems arise when one deals with binary response problems.
In this case, the consistency of the large sample approximation for the provided test for
trend derived in ref. 14 is poor and the procedure proposed by Schell1 0 for reducing the
model cannot be applied because it makes use of an F-test that requires normality in the
response. Secondly, dif�culties arise when more than two predictors are included in
the analysis, for both the monotonic test and the reduced regression. The additive
monotonic model offers a potential solution, but a lot of work remains to be done on
introducing adequately an elimination algorithm in the model-�tting procedure.

In the present paper, restricted to the case of binary response, an alternative will be
presented when modelling with multiple predictors. We propose to use a monotonic-
surfaces model and we will present the corresponding multidimensional monotonic test
for trend. After modifying the procedure of Schell for the case of binary outcome, we
extend it to more than one predictor variable and we will use it to eliminate the
‘needless’ level sets of a monotonic-surfaces model. The obtained result is a combina-
tion of the predictors in constant risk groups.

The paper is structured as follows: in the methodology part, the basics about
monotonic regression are revised and dif�culties arising for the monotonic test for
trend when the response is binary are discussed. Then, reduced monotonic regression is
adapted for binary response and a limited simulation study is presented. Section 4
describes the monotonic-surfaces model and the implementation of the reducing
procedure. In the application, we will analyse the MAK data and we will compare
the obtained results to those taken from an additive monotonic model and a classi�ca-
tion tree.

2 Methods

2.1 The monotonic method: estimation and test for trend
The only assumption underlying these models1 4 is monotonicity: either increasing

(monotonic) or decreasing (antitonic) trend. Without loss of generality, we will
consider only the monotonic case. Starting from the assumption that a monotonic
dose–response relationship exists, a maximum likelihood estimator under order restric-
tions is assessed for the response. This estimator can be provided by several equivalent
algorithms: either the Minimum Lower Sets Algorithm, the Maximum Upper Sets
Algorithm or the Pool Adjacent Violators Algorithm (PAVA),1 4 which is used in the
present paper.

Focusing on binary response the PAVA can be described as follows: consider the
situation of N dose groups where the dose di; …i ˆ 1; . . . ; N† is in increasing order,
ni observations falling in the ith dose and the end point is the probability pi of an event
estimated by the observed proportions p̂pi. We wish to have p̂pi in nondecreasing order,
given that di µ di‡1 ; …i ˆ 1; . . . ; N†. If there is a violator somewhere such that p̂p i > p̂pi‡1
for some i, then the isotonic estimator of both values needs to be found. That is
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provided by their weighted mean p̂p¤
i;i‡1 ˆ … p̂pini ‡ p̂pi‡1ni‡1†=…ni ‡ ni‡1†, where the

weights are the number of observations per dose group. Now the elements i; i ‡ 1
form a block – called the level set (LS) – containing ni ‡ ni‡1 observations. This process
is repeated using the new probabilities and weights until an isotonic set of response
probabilities is obtained. The algorithm assuming a decreasing trend is similar. The
goodness of �t of the isotonic transformation described above is measured by the
likelihood function, taking into account the number of level sets.

The isotonic framework has some advantages compared to parametric methods. No
speci�c assumptions other than monotonicity are required for the form of the dose–
response relationship. Nevertheless, the main advantage is the test for trend connected
with isotonic regression. In search of such an adequate test, recall that many tests for
trend, as for example the commonly used Cochran–Armitage test, give results that
depend on the form in which the dose is used.9 However, isotonic regression not only
provides one of the most reliable tests for trend,6 ,9 but is also expected to have increased
power by setting the isotonic transformation of the response as the alternative
hypothesis to the constant risk assumption H0 as outlined in ref. 8. This test is
known as the isotonic likelihood ratio test1 4 and follows a weighted X2 distribution.

We de�ne the following hypothesis:

H0 : p1 ˆ p2 ˆ ¢ ¢ ¢ ˆ pk ˆ p0 against the alternative
H1 : p1 µ p2 µ ¢ ¢ ¢ µ pk with at least one strict inequality

where p0 ˆ …
PN

iˆ1 nipi†=…
PN

iˆ1 ni†. Now, let T0 1 be the statistic that tests H0 against H1 .
This test has the form

T01 ˆ D… p̂pH0
† ¡ D… p̂pH1

† ˆ 2
XN

iˆ1

nip̂p i ln
p̂pi*
p̂p0

³ ´
‡ ni…1 ¡ p̂pi† ln

1 ¡ p̂p i*
1 ¡ p̂p0

³ ´µ ¶
…1†

where the deviance D… p̂pHi
† is the function 7 2log(Likelihood) under the hypothesis Hi.

Then, the large sample approximation of the distribution for T0 1 under H0 is

P…T01 ¶ c† ˆ
XN

lˆ2

P…l; N; w†P‰X2
l¡1 ¶ cŠ …2†

where P…l; N; w† (having
P

l P…l; N; w† ˆ 1† denote the probabilities that under H0 and
given N distinct dose levels, the isotonic regression will build l level sets. For a more
detailed description of the weights P…l; N; w† see section 2.4 in ref. 14.

However, this approximation does not always hold for a binary response. We
consider the situation where k ˆ 8 proportions are compared and the sample size in
each group is 50. The response rate is assumed to vary by 5, 10 and 25%. Table 1
shows the theoretical critical values estimated from equation (2), and these assessed
from 10 000 permutations. Simulations under different scenarios for k and sample size,
showed similar results: the large sample approximation fails, especially for small
response rates. Note that in this simulation study we assumed that the number of
observations is equal in each group, which is unlikely to occur in practice. The
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calculation of the level probabilities P…l; N; w† becomes very cumbersome when the
weights in each dose level are unequal. Moreover, when more than one explanatory
variable is taken into account the likelihood ratio test does not follow any known
distribution. Thus, the approximation derived by Robertson and colleagues1 4 is not
useful here.

We now present a permutation test for accepting or rejecting H0 . Given an observed
value for the isotonic likelihood ratio test Tobs

01 , the outcome variable (the events for the
case of binary response) is permuted while the predictor variable is kept constant. In
each permutation b ˆ 1; . . . ; B, the change in the deviance applying equation (1) after
isotonic regression is assessed. Then, the proportion of deviance improvements
(denoted Tb

01 ) that exceed the observed value, provides the p-value of the test. This is
given by

p-valueB¡perm ˆ
PB

bˆ1 I‡…Tb
01 ¡ Tobs

01 † ‡ 1
B ‡ 1

…3†

where

I‡…x† ˆ 0 if x < 0
1 if x ¶ 0

»

In equation (3) we have also taken into account the observed value Tobs
01 . Following the

same idea, one can construct pointwise con�dence intervals for the estimates. The B
isotonic estimates from the permuted data sets form a pointwise distribution of the data
under H0 . We construct a 95% CI by simply picking the 2.5% smallest and 2.5%
largest estimations. The width of these con�dence surfaces provides useful information
additional to the test result; that is, in case of a nonsigni�cant result, examination of the
intervals can help us to distinguish between imprecise estimates of p̂pi for which the
nonsigni�cant result may leave opened the possibility of an important variation in
the true risk (wide con�dence band), and estimates where statistical consistency of risk
coincidence is true (narrow con�dence band). In the case of a signi�cant result, one can
additionally assess con�dence intervals by simulating under the assumption that the
isotonic estimates are true, in order to estimate the adequacy of the transformation
against any other possible shape. That would be equivalent to a test T1 2 where H1 : the
isotonic transformation is tested against any other possible shape H2 : no restrictions for
the p is.

Table 1 Simulations (10000) under H0 assumption (constant risk). Isotonic Likelihood
Ratio (R) test: signi� cance levels and 95% critical values for comparing K ˆ 8 does groups
and sample size 400 (50 in each dose group) when the response rate is 5, 10 and 25%

Nominal signi� cance level
(theoretical critical values)

Estimated signi� cance level if the theoretical critical
value is used (estimated critical values for the nominal

levels)

p0 ˆ 5% p0 ˆ 10% p0 ˆ 25%

0.05 (6.088) 0.067 (6.526) 0.055 (6.355) 0.052 (6.200)
0.01 (9.640) 0.015 (10.142) 0.013 (9.963) 0.011 (9.711)
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2.2 Reduced isotonic regression
In the previous section, we described how PAVA detects violators of the isotonicity

assumption and builds level sets by amalgamating adjacent groups until there are no
more violators. However, some of the resulting level sets can be pooled together,
especially those with few elements or those whose estimated values do not differ much
from their neighbours. Moreover, it has been shown that the use of isotonic regression
over�ts somewhat the data whereas a model with fewer level sets (and therefore fewer
degrees of freedom) may �t better.1 0 Thus, once isotonic regression is �tted, we need to
proceed with a backward elimination in order to improve the parsimony of the model.

In order to compute the eliminated isotonic regression, two steps have to be
considered: �rst, which level sets can be pooled together and, second, when should
the pooling procedure be stopped? Several methods can be applied to answer these
questions. Schell and Singh1 0 propose an F-test when the response is continuous. For
binary response Bacchetti1 1 reduces the partial �tted functions in the additive isotonic
model by comparing the change in the likelihood to a considered but ad hoc amount.

In contrast to Bacchetti we propose a reducing procedure for binary response based
on Fisher’s exact test for contingency tables: to identify the level sets that do not
signi�cantly differ, one has to look at all 2 £ 2 tables for the adjacent level sets. The
‘pairs’ that are not proven to differ signi�cantly are pooled together. The procedure
ends when all pivotal tables give signi�cant p-values. To clarify the elimination
procedure, we will describe the backward algorithm used to reduce the degrees of
freedom in a one-dimensional isotonic regression.

Let the isotonic regression summarize the dose in L constant risk groups and
estimated proportions p̂pl*; i ˆ 1; . . . ; L and nl observations falling at the lth level set.
The aim of the elimination procedure is to reduce the groups to S level sets (S < L) with
respect to the outcome. The algorithm for elimination can be described as follows.

2.2.1 Algorithm for reduced isotonic regression

1) Construct all L 7 1 contingency tables for the adjacent level sets and calculate L 7 1
exact Fisher tests and their corresponding p-values.

2) If all p-values < E*, where E* is a prede�ned signi�cance level, then stop. Else, go to
step 3.

3) From the set of level pairs resulting in a p-value > E* select the one with the greatest
p-value and pool it. This reduces the number of level sets by one. Go to step 1.

Obviously the reduced isotonic regression depends on the choice of E*. For E* ˆ 1 the
reduced isotonic regression is identical to the isotonic level sets whereas for E* ˆ 0 we
get a single level set. The use of E* ˆ 0:05 in the backward elimination will not yield an
overall 0.05-level test as usual i.e., if the H0 assumption of constant risk holds, the
elimination procedure will not yield a single level set with probability greater than 5%.
This is not surprising since we base the elimination procedure on a maximal selected
p-value and we face a multiple comparison problem.

Isotonic framework is poorly supported by asymptotic theory, especially in the case
of binary response. We lack a theoretical solution, thus we will use simulations to assess
the E* that will yield an overall signi�cance level of 5%. All we need to do is to simulate
by producing random noise data (no association between dose and response) and then

356 G Salanti and K Ulm



to assess in each data set the isotonic estimators and their reduced equivalents using
E* ˆ 0. In each replication we retain the p-value from the last Fisher test when only two
level sets remain to be pooled. The corrected E* is the 5% value from the distribution of
all those ‘end’ p-values. A similar approach1 0 has been used in order to correct the
signi�cance level in the F-test used to reduce a continuous response regression.

Another crucial point in reduced isotonic regression is whether the reduced model or
its parent isotonic model should be used. Up to now, no distribution theory is available
for these models, so the AIC, BIC or the determination coef�cient R2 must be used to
choose between simple and more complex models. Alternatively, one can apply a sort of
parametric bootstrap.1 5 The term ‘parametric’ refers to the idea that the data set at
hand is assumed to be extracted from a population whose distribution F is known,
although here the underlying model (reduced isotonic regression) is not parametric. To
be more precise we claim that under the assumption that the reduced model is the
correct one, the reduced p̂p i*s are an estimator of F. Following the notation of Efron
and Tibshirani,1 5 the measured function of interest for a data set x is
y…x† ˆ Dreduced…x† ¡ Dfull…x† with D denoting the deviance. The procedure can be
described as follows.

2.2.2 Parametric bootstrap for selecting model

1) Generate B simulated data sets x¤
j from F.

2) In each x¤
j assess tine isotonic and the reduced model and the corresponding

deviances.
3) Assess y…x¤† ˆ Dreduced¤

j
¡ Dfull¤j for j ˆ 1; . . . ; B.

4) If the 95% interval of y…x¤
j †s contains the observed value from the original sample

y…xobs† ˆ Dobs
reduced ¡ Dobs

full , prefer the reduced isotonic model to the full isotonic
model, since the observed improvement in the �t for the full model can be expected
by its higher number of level sets.

The elimination procedure can be implemented to more sophisticated monotonic
models, as for example the additive isotonic model. In ref. 11, an additive model for
binary response is �tted and the need to reduce the degrees of freedom in the monotonic
partial �tted functions is discussed. However, the elimination is accomplished by
comparing the loss in the �t to an arbitrary amount. The reduced monotonic regression
could be used instead, although that would potentially increase the computational
complexity. It is intuitively simpler to combine the elimination procedure with a
monotonic-surfaces model, as will be described in section 4.

3 Simulation study

3.1 Estimation of e*
3.1.1 Design A simulation study is conducted to explore the parameters that can
in�uence E* . We simulate under different values for sample size (N ˆ 100, 200, 300,
600, 900) and positive response rate (p ˆ 0.02, 0.05, 0.10, 0.15, 0.25). The desired
signi�cance level has been set to the nominal value a ˆ 0.05. We applied the algorithm
described in the previous section to 5000 samples from random noise data with
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predictor Xi ¹ U‰0; 1Š and response Yi ¹ B…p†. The exact signi�cance level has been
estimated through permutations as described in the previous chapter. The results are
depicted in Table 2.

3.1.2 Results The estimated E* decreases as long as the sample size and the response
rate increase. While the decrease is sharp for small p , it �attens out with greater
response rate. For this simulation study, we assumed that the predictor variable X has
no duplicates. The E* is slightly greater if there are some, and it becomes clearly greater
if the variable X is categorical. For example, with sample size 100 and event rate 10%
the estimated E* is 0.0227 when X is in four categories, i.e., about double the value
when X is used as continuous (tabulated value 0.0126 in Table 2). Moreover, when the
iterative algorithm for isotonic matrix data is used instead of PAVA (see section 4), the
values in Table 2 no longer hold. Thus, we do not �nd it useful to estimate an
approximate formula for E* , although that could potentially facilitate the elimination
procedure. Instead, we propose to apply simulations to estimate it for every data set at
hand.

3.2 Comparison of isotonic and reduced isotonic regression
3.2.1 Design We performed a limited simulation study to explore the bene�ts of
using reduced isotonic regression instead of the full isotonic model. Two criteria were
used: �rst, the number of level sets LS as a measure of model complexity (LSred and
LSfu ll); and secondly, as a measure of the model �t, while several criteria are possible,
we used the coef�cient of determination ·RR2 as de�ned in ref. 16 for binary response
models:

·RR2 ˆ R2
LR

R2
max

ˆ 1 ¡ e¡…LR=n†

1 ¡ e¡…D0 =n† …4†

where LR is the difference in the deviance between reduced and full model and D0 the
deviance for the null model. ·RR2 measures the ‘variation explained by the model’. The
better model is the one with greater ·RR2 and less complexity, i.e., less LS. Reduce isotonic
regression decreases the model complexity, but it is also expected to reduce ·RR2 . With
this simulation study we want to estimate if the decrease in the complexity is worth the
loss of �t.

Table 2 Estimation of E* based on 5000 simulations for different sample sizes and response rates. The overall
signi� cance level was 5%

N

p0 100 200 300 600 900

0.02 0.0398 0.0218 0.0120 0.0117 0.0093
0.05 0.0188 0.0129 0.0097 0.0071 0.0066
0.10 0.0126 0.0089 0.0074 0.0064 0.0053
0.15 0.0103 0.0080 0.0074 0.0059 0.0057
0.25 0.0101 0.0077 0.0077 0.0055 0.0043
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Three parameters have been studied: regression shape, sample size, and R2
max . We

consider again a predictor variable X ¹ U‰0; 1Š. Four regression lines have been
analysed: a) linear LIN: logit(p) ˆ aX; b) quadratic QUA: logit(p) ˆ aX2 ; c) hockey-
stick HOK: logit…p† ˆ c ‡ aX ¢ IfX>median…X†g; and d) step function STE:
logit…p† ˆ c ‡ a ¢ IfX>median…X†g, where I{cond ition} is an index that takes the value 1 if
condition is satis�ed and 0 otherwise. We simulate these functions under sample size
N ˆ 100, 300, 500. In each shape the parameter a has been determined such that the
maximum coef�cient of determination would be R2

max ˆ 0:3, 0.5, 0.7. That is actually
equivalent to different assumptions about the positive response probability (about
p0 ˆ 4, 11, and 29% respectively).

3.2.2 Results Regarding the complexity of the model, the number of LSfu ll increased
with sample size and R2

max (range of mean value: 3.23–14.34). The same trend was
observed for the number of the reduced LSred , but the variation was not very important
(range of mean value 1.23–3.88). The elimination procedure reduces the number of
level sets to about one third of the starting isotonic level sets. It is important to note that
fraction LSred=LSfu ll becomes smaller with icreasing sample size.

Figure 1 presents the results regarding the change in ·RR2 . On the x-axis is the sample
size and on the y-axis is the relative ‘loss’ of �t ‰ˆ … ·RR2

full ¡ ·RR2
red†= ·RR2

fullŠ when the reduced
model is used. Recall that we wish to have as similar ·RR2

full and ·RR2
red as possible, that is,

small loss of �t.
The difference between the coef�cients of determination for the two models becomes

smaller with increasing sample size. However, the in�uence of the maximum value of
the coef�cient, or the response probability is very important. While for smaller R2

max the
isotonic model has considerably better �t than the reduced model, its advantage is not
important when R2

max ˆ 0:7 (the reduced model reduces the coef�cient ·RR2 only by 7%).
Regarding the different underlying shapes, the linear regression clearly presents the
worst tolerance on reducing the model, whereas the results of HOK and STE were the
best for every R2

max .
These �ndings, together with the results in model complexity reduction, enable us to

conclude that when R2
max is at least 0.5 and the investigator believes that the regression

line is segmented, reduced isotonic regression controls quite successfully the trade-off
between model complexity and �t.

4 The isotonic-surfaces model

The multiple regression setting: consider we have N observations on a dependent binary
variable Y denoted by p ˆ …p1 ; p2 ; . . . ; pN†T measured at N designed vectors
di ˆ …di1; di2 ; . . . ; diP†, assuming P predictor variables Dj; j ˆ 1; . . . ; P. We want to
model the dependence of Y on D1; . . . ; DN having two principal goals: to describe, for
learning more about the process that produces the outcome, and to infer, i.e., assess the
relative contribution of each variable to the response probability.

Additive isotonic models start from the assumption that the risk (response) does not
decrease as long as any of the predictors increases, and extend generalized additive
models1 3 by letting isotonic transformation act in the partial �tted functions. The local
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scoring algorithm usually used in generalized additive models is replaced here by PAVA
and the contribution to the risk of each isotonic variable is a nondecreasing step
function. The additive isotonic model takes the form:

h…pi† ˆ
XP

jˆ1

~ff*…di†; …5†

where h is a link function and ~ff* denotes a P-dimensional isotonic function
~ff* ˆ …f1*; f2*; . . . ; fP*†. Each fj* is estimated by PAVA, which replaces the local scoring
algorithm commonly used for estimation in generalized additive models. The estimation
proceeds via the back�tting algorithm.

An alternative approach can be motivated by the fact that the isotonic procedure can
be thought of as a ‘scatterplot smoother’. This consideration raises the question: How
can isotonic regression be extended to ‘smooth’ a plot when one sets restrictions over
multiple axes? In other words, following the same logical pattern as in the univariate
case, how can we produce isotonic estimates in a three- (or even higher) dimensional

Figure 1 Results from simulation study: comparing monotonic regression and reduced monotonic regres-
sion regarding the relative loss in the � t as function of the regression shape
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plot? The isotonic ‘smoothing’ through PAVA and the reducing procedure can be
extended to more than one dimension (p predictors), applying an iterative algorithm.
The idea is to �t a model of the form

p i ˆ f*…di1 ; di2 ; . . . ; diP† …6†

where f* is the isotonic transformation and dij the ith observation of the jth predictor.
Consider, for example, the case of two explanatory variables and imagine the data in

a form of a matrix M. In the (i, j) cell falls the outcome p̂p ij of the individual being in the
ith category of the �rst variable and the jth category of the second one. Note that a
matrix is isotonic with respect to the partial order if and only if the elements p̂p ij of M
ful�l the restriction p̂p ij µ p̂pkl for i µ k and j µ l. The algorithm to assess the isotonic
estimators works as follows.

4.1 The isotonic-surfaces algorithm

Step 1: Let M¤1 denote the isotonic regression of M over rows. Let R1 ˆ …M¤1 ¡ M† be
the �rst set of row increments.
Step 2: Let M denote the isotonic regression over columns of M ‡ R1 . Call
C1 ˆ M¤¤1 ¡ …M ‡ R1† the �rst set of column increments.
Step 3: At the beginning of the nth cycle M¤n is obtained by isotonizing M ‡ Cn¡1 over
rows. The nth set of row increments is de�ned by Rn ˆ M¤n ¡ …M ‡ Cn¡1†. Next, obtain
M¤¤n by isotonizing M ‡ Rn over columns.

Both M¤n and M¤¤n converge to the isotonic regression M¤¤¤, with respect to the
partial order. The result of a two-dimensional isotonic regression can be visualized as a
surface that is nondecreasing as long as any of the predictors increases. The algorithm
combines both the explanatory variables in l constant risk groups (the level sets), and
therefore each step in the response variable corresponds to a speci�ed bivariate group
for the predictors.

In theory, the algorithm for isotonic surfaces can be extended to more than two
variables. For a third factor in t-ordered levels the result would be a sequence of t-
isotonic surfaces, each of them lying above the previous one or touching each other.
However, in practice, if more than three isotonic predictors need to be included in the
model, the use of this approach is not recommended due to its great computational
complexity.

A main problem arising from this algorithm is that the convergence is not guaranteed
in the case where the data contains many zero-weighted cells. Therefore the predictor
variables need to be in preselected groups. Even if those groups are many, very thin and
selected objectively (for example, using quantiles) we suspect that their choice can affect
the results somewhat because of the decrease in the number of the candidate
changepoint locations. However, this procedure captures interactions between the
explanatory variables, a feature that the additive isotonic model described in ref. 12
does not provide.

The signi�cance of any predictor included in the model is assessed again by the
likelihood ratio test. There is no known large sample approximation for its distribution,
so once more permutations are used to calculate the p-value of the overall �t and
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conditional permutations for the effect of each variable included in the model adjusted
for the other predictors. The term ‘conditional’ for the two-dimensional case refers to
the following: given the observed marginal distribution of the events to the level sets of
one predictor A to be true (the likelihood estimated, say, at the columns), we assess the
probability to have the observed distribution at the cells (overall likelihood).

The permutation procedure for partial signi�cance can be summarized as follows: In
each response p i corresponds to the vector di ˆ …di1 ; di2; . . . ; diP†. To test the effect of
the jth predictor adjusted for the remaining P 7 1 predictors, we split vector di after the
jth variable Dj and then combine (pi; di1 ; . . . ; di;j¡1 ; di;j‡1 ; . . . ; diP) and di;j randomly. In
each combination the isotonic regression is �tted and the corresponding test T0 1 is
computed. To reject then the H0 assumption, the 95th quantile of the empirical
distribution of the deviance is compared to the observed T0 1 value. Of course one
can test all predictors at once if so desired by randomly combining Yi to xi and to follow
the same procedure as described above. As in the univariate case, one can construct
con�dence surfaces for the estimates, simulating under H0 or H1 .

The algorithm described in section 2.2 for reducing the number of level sets, can also
be applied in an isotonic surface. Each level set is compared to its neighbouring using
the Fisher test. Those who do not differ are pooled together until the estimated E* level
is achieved. The estimation of E* and the method to choose between isotonic model and
reduced model are as described for the univariate case. Note that assuming a ‘multiple’
order restriction and applying the iterative algorithm, one obtains more isotonic level
sets than applying PAVA over one dimension. Therefore, the estimated E* for a two-
dimensional (or higher) elimination procedure is dramatically smaller than those in
Table 2 depending on the number of restrictions. That is simply because E* decreases
while the number of comparisons increases, and one has more LS (and thus more
pivotal tables) when multiple predictors are taken into account.

Note that we outlined multivariate monotonic methodology considering only
increasing trend can be extended for a given mixture of isotonic and antitonic
explanatory variables. The algorithms described above with the corresponding tests
are implemented in S language and are available from the �rst author on request.

5 Application

The data used to exemplify the proposed methods are taken from a study conducted by
the German Research Foundation.3 The aim of the study was to investigate the
in�uence of dust concentration (in mg=m3) in the working area on chronic bronchitic
reaction. The time since �rst exposure (in years) was also taken into account, and a two-
dimensional model (6) was �tted. The amount of dust was categorized in 17 quantiles
and time in 10 quantiles. As noted in the methodology part, this decision can effect the
results. It would be more adequate to construct more than 17 quantiles, but the data are
not that precise.

We depict the result of isotonic regression in Figure 2. The permutations procedure
was applied to perform an overall test for the model and conditional permutations as
described in section 4 were used to assess the statistical signi�cance of the effect of dust
given the effect of time. For the overall test the p-value for the observed value
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T0 1 ˆ 98.3 (see Table 1) was less than 0.001 based on 1000 permutations. The
conditional test for the improvement in the �t after entering the dust in the model
(1008.65 7 959.87 ˆ 48.78) results in a p-value ˆ 0.002. On �tting the reduced model,
we used simulations to assess the E*-level. For this purpose we produced 5000 random
permutations of the response variable as if it was independent on the explanatory
variables (170 pairs). In each permutation we �tted the isotonic and reduced isotonic
regression. Then to get the E* that leads to a 0.05-signi�cance test, we picked the 250th
smallest p-value when only two level sets remain. The estimated E* was 0.00038. Figure
3 presents the reduced model.

The change in the deviance between isotonic and reduced model is 16.58 (Table 3).
The number of level sets has been reduced from 40 (isotonic) to 3 (reduced isotonic).
The cutpoints for dust in the reduced model were at concentrations 0.9, 4.5, 5.5 and
5.8mg=m3 . We conduct a last step in order to compare these two models: simulating
(1000 simulations) under the assumption that the reduced model is the correct one, we
conclude that such a large change in the likelihood as the observed could have occured
with probability p-value ˆ 0.632 and we choose the more parsimonious model. Thus,
applying reduced isotonic regression we found a useful strati�cation for both variables
time and dust, by combining them in three groups of higher and lower risk.

The additive isotonic model was also applied to the data. The model has deviance
999.94 and summarizes the dust in three groups (cutpoints: 4.5 and 7.4 mg=m3 ), and
time in 4 groups, that is, a total of 12 level sets (Figure 4). In Table 4 we compare the
three models: isotonic, reduced isotonic and additive isotonic. Reduced isotonic
regression controls better the trade-off between �t and model complexity. Recall that

Figure 2 The isotonic-surfaces model (40 level sets)

Nonparametric changepoint model for binary outcome 363



our proposal is rather adequate for strati�cation and thus it would be relevant to
compare the different models using ROC curves. The area under the curve was 0.658
for additive model, 0.690 for the isotonic surface and 0.677 for the reduced surface.

In light of this consideration we also applied a classi�cation tree to the data. The
results are presented in Table 5 and they correspond to a �nal tree with three terminal
nodes, which have been selected after cross validation. The predictors are combined in
three groups. The result is roughly similar to the reduced-surface model result. Note
that the group with the higher risk in the classi�cation tree is de�ned by time ¶ 16.5
and total dust ¶ 4.8. This high risk group is also to be seen in the reduced-surface
model (Figure 3) where the estimated proportion is 0.42. The dust cutpoint of about
5mg=m3 is also present in the additive model.

Figure 3 The reduced-monotonic model (three level sets)

Table 3 The deviance of monotonic and
reduced models

Model Deviance

H0 1058.17
Monotonic (time) 1008.65
Monotonic (dust) 1025.65
Monotonic (dust and time) 959.87
Reduced monotonic 976.45
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6 Discussion

The analysis of a dose–response relationship is an important tool in medicine as well as
in epidemiology. The proof of an association is one of the criteria needed in order to
establish causality. Several methods are available to model association. In recent papers
very �exible ways have been developed, such as fractional polynomials or smoothing
splines.

Figure 4 The additive-monotonic model (12 level sets, seven parameters)

Table 4 Several criteria to compare monotonic surface, reduced surface and additive monotonic

Model Deviance df AIC BIC R2

Monotonic surface 959.87 40 1039.87 1096.36 0.148
Reduced surface 976.45 3 982.45 986.69 0.085
Additive monotonic 999.94 7 1013.94 1023.83 0.061

Table 5 The � nal classi� cation tree in numbers

Node Covariate Deviance Deviance n Proportion
reduction

1 (root) Time < 16.5 1058.0 43.7 920
2* Time ¶ 16.5 169.50 243 0.111
3 Dust< 4.8 844.80 23.8 677
4* T < 16.5 and D < 4.8 481.90 429 0.249
5* T < 16.5 and D ¶4.8 339.10 248 0.4315
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Although much debated by many statisticians, the use of step functions in modelling
can prove to be very useful in many settings. Step functions are easy to interpret and
they �t changepoint models that summarize the predictors in such a way as to de�ne
groups of constant response. While step function models are attractive, it is not
straightforward how one should select the cutpoints. As a useful alternative, monotonic
regression can be applied which results in a monotonic step function. The method
selects certain intervals with equal response under the constraint of monotonicity, and
the dose–response relationship is of course not smooth. However, the main advantage is
the immediate use for a practical purpose. In medicine there are only a limited number
of treatment options available; for example, in treating high blood pressure the
physician often needs to categorize the patients in several groups regarding the severity
of hypertension. Monotonic models are adequate when the goal of the analysis is to
establish a dose–response relationship and to �nd an optimal strati�cation for the
explanatory variables.

In the paper we used sometimes the term ‘smoother’ for the monotonic procedure.
This may be excessive, since the result is far from being smooth because of the presence
of ‘�at spots’ in an increasing regression. With smoothing we refer here more to the fact
that ‘monotonic regression is connected to conditional expectation and this condition-
ing is referred to as a smoothing process: the values of the variables are regressed and
replaced in the conditioning process by constant values, which is a smoothing
operation’.1 4 In light of this consideration, the monotonic smoother has a global
nature but results in locally �at averaging.

Two multivariate methods are available: the additive-monotonic model and the
monotonic-surfaces model. The additive model, ignoring any interaction, can be used
for continuous variables. The monotonic-surfaces model does allow interaction, but it
cannot handle more than three variables. Owing to the number of possible combina-
tions between the explanatory variables, the continuous ones have to enter the model as
ordinal, but the result may depend on the starting cutpoints. We propose to use
quantiles to categorize the amount of dose, in order to ensure convergence for the
iterative algorithm and to minimize bias that can occur from ‘pretty-cuts’ (as, for
example, by selecting round exposure levels). This approach could be combined to the
additive model: the isotonic surface can be applied to deviance residuals in order to
model interactions and obtain an hierarchical model.

An important advantage of the monotonic framework is the monotonic likelihood
ratio test. The univariate version of the monotonic test [equations (1) and (2)] has
recently gained much attention in applications, despite the fact that its asymptotic
distribution does not hold for binary response. The reason for its popularity is that the
monotonic test results independently of the quanti�cation of the dose and does not
imply the linearity assumption, unlike the widely used Cochran–Armitage test or the
Mantel-extension test for trend. Mancuso et al.8 showed that setting the monotonic
transformation as alternative to the constant risk assumption results in a test with
increased power.

Several proposals have been made so far regarding multivariate tests for trend. The
Mantel-extension test can be modi�ed to handle more than one categorical variable, but
it is expected to present the same drawbacks as in the univariate case. The logistic
regression offers an alternative, but the linearity assumption remains a constraint. The
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T-contrast test and Dosemeci–Benichou test6 can be extended to more than one
variable, but as mentioned in their paper many details remain to be sorted out.
Regarding monotonic regression we propose a test based on the monotonic-surface
model to deal with more than one explanatory variable. It is a likelihood ratio test
where the critical value is computed using permutations, and can be overall (testing all
variables included in the model) or partial (assessing the in�uence of a variable adjusted
for the others). The main problem remains the restriction to a maximum of three
predictors to be used. Another equivalent approach can be accomplished applying
additive-monotonic models and thereafter the same overall and partial permutation
procedure as before. A comparative study of those multivariate tests could provide
useful information. However, we believe the main characteristics of a test are the same,
independently of the number of variables taken into account.

The reduced monotonic regression for binary response has also been introduced. The
extension of the reduced method for two-dimensional monotonic-surface models is
straightforward. The reducing procedure focuses on �nding a subset of the cutpoints
resulting from the monotonic regression, by selecting those that correspond to a
signi�cant increase in the risk. The model becomes more parsimonious but the selection
of the best model (comparison of the monotonic model to the reduced one) should be
based on simulations. That, obviously, is the main drawback arising from the reduced
monotonic framework in binary response: the lack of an appropriate approximation for
the distribution of the likelihood ratio test statistic.
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