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SUMMARY 
On-going public health surveillance is essential to the detection and monitoring of epidemics. We present statistical 
methods for determining the sample size that is required to detect unacceptable deviations from existing secular trends 
in prevalence with specified power. Between 1958 and 1969, a large study was conducted for providing surveillance of 
the prevalence of infection for a well-known disease. Data from this study indicated that the prevalence of infection in 
the mid-1960s increased significantly over previous secular trends among important demographic groups tested. These 
data are used to illustrate the statistical methods that we propose for detecting departures from existing temporal 
trends, estimating the year in which the changepoint occurred and specifying sample sizes for on-going active 
surveillance studies. 
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1. Introduction 

Epidemiologic surveillance is the on-going and systematic collection, analysis and interpretation 
of health data in the process of describing and monitoring a health event. This information is 
used in planning, implementing and evaluating public health interventions and programmes. 
Surveillance data are used both to determine the need for public health action and to assess the 
effectiveness of programmes (Centers for Disease Control, 1988). 

Many of the published guidelines for active surveillance surveys have been concerned 
primarily with the difficulties in administering screening tests that are used in assessing health 
status. Statistical specifications for the design of these surveys are customarily simple and 
rarely linked to the objective of discerning deviations from existing trends in prevalence or 
incidence. Bleiker et al. (1988) provided one example of this type of approach. 

The purpose of this paper is to provide statistical methods for specifying sample sizes that 
achieve the specified power for detecting deviations from existing secular trends estimated 
from independent cross-sectional surveys that are conducted regularly for conducting active 
epidemiologic surveillance. Within this context, cohort and period effects receive special scru- 
tiny since a deviation from monotonic declines in prevalence and incidence over time in either 
effect signals the possibility of a growing public health problem. Surveillance methods based 
on tracking age, period and cohort (APC) effects have been popular since Frost (1939) em- 
ployed them in his analysis of tuberculosis mortality rates. Excellent reviews providing a 
summary of the statistical literature on APC methods are given by Kupper et al. (1985) and 
Holford (1985, 1991). However, there is little guidance in the literature that enables researchers 
in public health to link the choice of sample sizes directly to the use of these models that are 
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tailored for addressing the objective of discerning deviations from existing trends in prev- 
alence. 

Marschner (1994) provided methods for determining sample sizes for estimating incidence 
for a single, one-time survey. These methods are based on Keiding's (1991) models for inci- 
dence and prevalence. However, information from data obtained from a one-time survey is not 
sufficiently rich to distinguish cohort from period effects or period from age effects. Con- 
sequently, conclusions from such data must be interpreted carefully. In this regard, these 
methods are not entirely suitable for on-going active epidemiologic surveillance in which data 
are obtained from independent and serial cross-sectional surveys. 

This paper is organized as follows. In Section 2, we sketch a cohort-period model for 
estimating prevalence. Also, we designate one type of departure fiom this model that is of 
particular interest in conducting surveillance. In Section 3, the power function is derived for 
specifying sample sizes that enable the departures from trends in cohort and period effects to 
be detected with specified probability. In Section 4, we illustrate our methods by using data 
from the survey of infection conducted between 1958 and 1969. The paper concludes in Sec- 
tion 5 with a brief discussion of the special statistical difficulties faced by designers of statist- 
ical surveillance systems. 

2. Changepoint model for infection prevalence 

Consider a hypothetical active surveillance programme that consists of serial and inde- 
pendent cross-sectional surveys that are conducted annually. Also, let us assume that people 
who are in the scope of the survey are within a specified age range. In this case, each annual 
wave of sampling is restricted to people who belong to specific birth cohorts. We shall assume 
that equal numbers of people are sampled from each of these birth cohorts in each year of the 
study. Further, we assume that interest focuses on trends in infection prevalence over the most 
recent T consecutive years of the surveillance programme. For convenience, we shall denote 
the years that are under study by t = 1, . . ., T and the set and number of birth cohorts that are 
in the scope of the survey in year t by F,and n ~ ,respectively. 

Let mt,bdenote the number of subjects examined in year t that belong to birth cohort b and 
let Yt,bdenote the number of people among these subjects who are found to be infected. We 
shall assume that Yt,bhas a binomial distribution with mean mt,b,ut,bwhere pr,b denotes the 
prevalence of infection among these subjects. Further, we shall assume that p , ,  is related to 
linear predictor v , , ~by the logistic link function. 

Clayton and Schifflers (1987a, b) described models that allow the secular trend to be easily 
modelled as a regression on cohort and period effects. This model includes p- and q-order 
polynomial effects for cohort and period effects respectively and is given by 

Here, = (1, b, b2, . . ., b P ,t ,  t 2 , . . ., tq)* and l is a vector of regression coefficients that can 
be interpreted as how the logit of the probability of infection is modified by changes in 

To investigate whether there is a change in the period effect immediately after year Y t h a t  
deviates from treids existing before year F+ 1, let el be a binary indicator that defines the 
time periods following and preceding time .qi.e. 

if t>Y, 
otherwise. 

Then, a model that accounts for a deviation from existing period trends immediately after 
year Y i s  
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where Z, = (e,, e, X t, e, X t2, . . ., e, X tq)T and V is a vector of regression coefficients. We 
shall refer to equation (2) as the 'changepoint' model. Zacks (1983) provided a survey of 
classical and Bayesian statistical approaches to the changepoint problem. Also, Simkin and 
Downham (1988), Zaidi et al. (1989), Stroup et al. (1989), Yao (1993), Frisen and De Mare 
(1991) and Nobre and Stroup (1994) have provided other statistical methods that are tailored for 
identifying changepoints for passive epidemiologic surveillance studies in which data consist of 
counts without denominators. 

In the next section we give the power function for detecting a deviation from the existing 
secular trend. 

3. Power function for detecting changes in period trend 

We wish to investigate the plausibility of a deviation from an existing secular trend by 
testing the null hypothesis li, = 6,.within this context the null value Vo is usually 0 (denoting 
no deviation from existing trend) and it is of interest to choose a sample size such that it is 
possible to detect a specified alternative value of ly with prescribed probability. 

The log-likelihood ratio statistic is given by 

wherg I , ,  denotes the log-likelihood function based on a sample of size n, and (9 ,  i )  and 
(Vo, A,) denote the maximum likelihood estimators of (V, A) uqder the alternative and null 
hypotheses respectively, and A,* denotes the limiting value of A, as described by Self and 
Mauritsen (1988). The statistical test for investigating a deviation from an existing trend in the 
period effect is obtained by comparing the log-likelihood ratio statistic to its asymptotic distri- 
bution under the null hypothesis, which is a central x2-distribution with q + 1 degrees of 
freedom. 

For a specified alternative value of I$, say I$', the power function of the test may be 
approximated by a non-central x2-distribution on q + 1 degrees of freedom. For statistical 
models belonging to the class of generalized linear models, Self et al. (1992) have provided an 
approximation to the non-centrality parameter by equating the expected value of a non-central 
x2 random variable to the expected values of lead terms in the asymptotic expansions for each 
of the three terms on the right-hand side of equation (3). 

Let n denote the size of the sample obtained during the T years that are under investiga- 
tion and let x,denote the fraction of the samole that is obtained in vear t. Also. let A denote 
the vector of'values of the logistic regression coefficients describing the birth cohort and 
period effects before year .7+ 1. Further, let V' denote a specified alternative value of V. 
Then, 

and 
O t , b  = logit{pt.h) 

denote the associated values of the linear predictors, prevalences and logits of the prevalences of 
the alternative model that we would like to detect with designated statistical power. Further, let 
p:, and q:, be the fitted mean and linear predictor respectively that are obtained from the 
logistic regression of on X,,with prior weight n , / n y , , and let o:, = logit{p:,). The values 
,u:~, and 0; correspond to the limiting values under the null hypothesis I$ = 0 discussed by 
Self and Mauritsen (1988). 



Within the context of specifying a suitable sample size for investigating a deviation in the 
trend of the period effect, the approximation to the non-centrality parameter based on a sample 
size of n is 

Y n = n A + q + l - E  

where 

Let ~ 2 , + ~ , ~ - ,denote the upper 100(1 - a )  percentage point of a central x2-distribution with 
q + 1 degrees of freedom. On the basis of a sample size of n,  the approximate power of a test 
of size a for the null hypothesis 1// = 0 of no deviation from the existing trend may be 
obtained by evaluating 1 - 9 , + 1 , y ~ ~ ~ + 1 , 1 - a ) ,where 9 ,+l ,yn( . )  is the cumulative non-central x2-
distribution function with q + 1 degrees of freedom and non-centrality parameter y,. 

Zelen and Severo (1970), p. 942, provided a highly accurate and easily computed approx- 
imation to this distribution that is based on the Wilson and Hilferty (1931) approximation 

TABLE 1 
Number of people tested 

Year of Numbers for the following years that the test was conducted: 
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to the *x2-distribution. Letting a = 2 + y ,, b = y,/a,  v = (2/9)(1+ b ) / a  and z = ~ ~ + l , l _ , / a ) ' ~ 3  
the approximation to the power function is 

where a(.)denotes the standard normal cumulative distribution function. Using expression ( lo ) ,  
the power may be determined for any sample size. 

For a specified year 5 let mt,hdenote the number of respondents in year t that belong to 
birth cohort b, let denote the estimated prevalence for these subjects under the changepoint 
model (2 )  and let PI,, = mt,hPt,h.Then, 

denotes the deviance associated with the changepoint model (2 ) that accounts for a deviation in 
the existing trend in the p%-iod effect after year F Letting .T*denote the year such that 
min?{D(y; F))= D(y;F ), a 100(1 - a)% profile confidence interval (McCullagh and 
Nelder (1989), pages 254-255) for the time at which the changepoint occurred is given by the 
set of all .Tsuch that the scaled deviance 

TABLE 2 
Numbers of infected people 

Year of Numbers for the following years that the test was conducted: 
birth 

I958 I959 I960 I961 I962 I963 I964 I965 I966 I967 I968 1969 
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4. Surveillance for 1958-69 survey 

Tables 1 and 2 list the numbers of people tested and the numbers determined to be infected 
for each birth cohort sampled between 1958 and 1969. 

In Fig. 1 we show a plot of the smoothed secular trends of the prevalence of infection 
estimated for selected birth cohorts. These smoothed trends are estimated using the change- 
point model (2) when the polynomial birth and period effects are of the order p = 1 and 
q = 2 respectively. Plots for all birth cohorts show that after 1966 (i.e. 1967 and thereafter) the 
observed prevalence exceeds the expected trend in 20 cases out of 27 (74.1%). This systematic 
lack of fit is confirmed by a sign test that yields a p-value of 0.006 and lends evidence that 
the trend in rates after 1966 deviate from the earlier trend. Fig. 2 shows a plot of the scaled 
deviance (1 1) from which we infer that a 95% profile confidence interval for the time of the 
change in trend is between 1963 and 1967. Our findings of increased prevalence in the mid- 
1960s agree with other independent reports by Hanzel (1967) of outbreaks and increased 
incidence of the disease experienced in the mid-1960s in the population under study. 

A deviance test comparing the null model (1) with the changepoint model (2) incorporating 
a changepoint after 1966 yields a deviance change of = 33.56. This test statistic corres-
ponds to a p-value less than 0.001 and provides little evidence in favour of the null hypothesis 
that there was no deviation in the secular trend of the prevalence of infection after 1966. 

Year 

Fig. 1. Smoothed secular trend for selected birth cohorts 
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year 

Fig. 2. Scaled deviance for estimation of the date of the start of the epidemic 

4.1. Power calculations to detect similar epidemics 
To determine the sample size required to detect similar epidemics as we have seen in the 

1958-69 survey, we shall assume that annual surveillance is desired in the T = 10 years 
immediately preceding 1969 (i.e. 1960-69) for n,, = 8 birth cohorts with ages between 18 
and 25 years each year. In Table 3 we list the estimated logistic regression coefficients for the 
changepoint model (2) where the birth cohort effect is a linear effect and the period effect is 
given by an orthogonal polynomial of order q = 2. In particular, the logistic parameters for the 
linear predictor (4) correspond to A = (2.6, -0.11, 1.6, -2.1)T. Also, the null hypothesis is 
I# = 0 and the sample size that yields the desired power is required to detect the alternative 

TABLE 3 
Logistic regression estimates for the changepoint model 

Effect Estimate Standard error t-statistic 

Intercept 2.6 
Cohort effect b -0.11 

0.3 
0.007 

8.4 
-16 

Period effect t 1.6 
Period effect squared, t2 -2.1 
Epoch e 0.049 
Epoch X period effect, e X t 6.9 
Epoch X period effect squared, e X t2  12 

2 
1.4 
1.5 

68 
22 

0.77 
-1.5 

0.033 
0.1 
0.52 
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7)' = (0.049, 6.9, 12)T. As illustrated in Fig. 1, this alternative corresponds to a steady increase 
in the prevalence of infection from approximately 15% between 1960-66 to approximately 
40% in 1969, depending on which birth cohort is under consideration. 

Using equations (4)-(9) we find that A = 0.0048 and Z = 0.99. Using these values the non- 
centrality parameter (7) and the power function 1 - ~,+1,,n~24+1,1-,)can be computed for any 
sample size n. 

Fig. 3 shows the resulting power curve and shows that, for size a = 0.05 tests, to achieve 
0.80 probability of detecting the type of deviation as estimated among subjects in the 1958-69 
study would require 23 subjects per birth cohort per year over the 10-year period 1960-69. 

5. Discussion 

The purpose of this paper is to provide statistical methods for specifying sample sizes 
tailored for detecting important deviations from existing secular trends in an active public 
health surveillance system. In particular these sample size specifications are derived from 
statistical models which are designed to investigate how age, period and cohort effects modify 
secular trends. Brown et al. (1975) described alternative models for testing the constancy of 
regression relationships over time. 

In important related literature, Frisen (1992) described methods for evaluating statistical 
surveillance systems as they are used continuously over time. Within this context, the rate at 
which a surveillance system yields a false positive indication of a deviation from acceptable 
secular tends is called the 'false alarm' rate. Because statistical tests in these systems are 
regularly and repeatedly over time, the overall false alarm rate of the system necessarily 

I 

0 
I 

10 
I 

20 
I 

30 

I 

40 

I 
I 

50 

Sample Size per Birth Cohort Per Year 

Fig. 3. Power curve for the changepoint model (sample size for 80% power, 23) 
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exceeds the false alarm rate that would be expected from a single application of the statistical 
test to assess whether a deviation has occurred. 

The decision to declare a significant deviation from existing secular trends is never based 
on purely statistical considerations. However, it seems reasonable to design a surveillance 
system so that the false alarm rate over a time frame of specified duration is controlled and 
known with precision. In this regard the false alarm rate for a single assessment during the 
time frame can be adjusted downwards using any of a variety of conventional statistical 
methods so that the specified overall false alarm rate for the larger time frame is attained. The 
effect of this adjustment is to require larger sample sizes each year to maintain statistical 
power over the time frame. 

The methods described in this paper are based on the assumption that inference regarding a 
potential deviation in the secular trend is desired over the most recent T years, where T is 
specified. Also, it is assumed that the objective of the statistical design is to detect a potential 
deviation that begins immediately after year 3 ( 1  S . T  < T - 1) where T i s  specified. As we 
specify .Tincreasingly closer to T - 1 the inlplication is that we wish to specify a sampling 
design that is sensitive to more recent changes in the secular trends. In this case, we would 
naturally expect that the sample size requirements would increase. 

As a final note, Self et al. (1992) have provided comprehensive simulation studies that 
indicate that deviance tests based on the sample size derived from using the approximation to 
the non-centrality parameter (7) of the x2-distribution yield tests with nominal power. 
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