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ABSTRACT
We develop in this paper an efficient way to select the best subset threshold
autoregressive model. The proposed method uses a stochastic search idea.
Differing from most conventional approaches, our method does not require
us to fix the delay or the threshold parameters in advance. By adopting
the Markov chain Monte Carlo techniques, we can identify the best subset
model from a very large of number of possible models, and at the same time
estimate the unknown parameters. A simulation experiment shows that the
method is very effective. In its application to the US unemployment rate,
the stochastic search method successfully selects lag one as the time delay
and five best models from more than 4000 choices. Copyright  2003 John
Wiley & Sons, Ltd.
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INTRODUCTION

Non-linear time series modelling has attracted much attention in recent years. The threshold autore-
gressive (TAR) model proposed by Tong (1978, 1983) and Tong and Lim (1980) is one of the
popular non-linear time series models that shows wide application in many areas. An important spe-
cial case of TAR is the self-exciting threshold autoregressive (SETAR) model. Given the maximum
autoregressive (AR) orders p1 and p2, the SETAR�2 : p1; p2� model is stated as

yt D
{

��1�
0 C ��1�

1 yt�1 C ��1�
2 yt�2 C Ð Ð Ð C ��1�

p1
yt�p1 C a�1�

t if yt�d � r

��2�
0 C ��2�

1 yt�1 C ��2�
2 yt�2 C Ð Ð Ð C ��2�

p2
yt�p2 C a�2�

t if yt�d > r
�1�

where r is the threshold parameter, d is commonly referred to the delay (or threshold lag) of the
model, a�1�

t and a�2�
t are zero mean white noise with variances �2

j , j D 1, 2. The SETAR model has
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two different AR processes in the two regimes defined by the threshold variable yt�d and r. One
important issue in fitting the SETAR model is to select the best subset model. In other words, we
need an efficient way to identify values of d and subsets of ��i�

k , i D 1, 2 and k D 0, . . . , pi that are
‘important’, given the maximum AR orders of p1 and p2 for the two regimes. The identification
problem can be highly complicated because it involves a very large number of possible models.
Taking a simple example of p1 D p2 D 3 and the maximum delay of 4, the total possible models
is 4 ð 23C3C2 D 1024 which is already very large. In general, we have d0 ð 2p1Cp2C2 models to
consider, where d0 is the maximum possible delay.

The orders of SETAR models are commonly identified by considering some information criteria
such as the Akaike information criterion (AIC). For each possible delay parameter, Tong and
Lim (1980) use the AIC to estimate r and find suitable autoregressive orders in both regimes of
the threshold model. The delay parameter is then determined by minimizing the AIC. However,
their method considers a selected number of r only and no best subset model is determined.
Tsay (1989) proposes methods for building a SETAR model by using arranged autoregression.
As in Tong and Lim (1980), the delay and threshold parameters have to be estimated prior to
finding the autoregressive orders. Thanoon (1990) proposes a two-stage procedure which fits a full
SETAR�2 : p1; p2� model in the first stage to obtain preliminary estimates of r and d. Then, a
method of finding the best subset autoregressive model is applied to the two regimes defined by
the estimates of r and d. Overall, one major difficulty in identifying the best subset SETAR model
is the specification of the threshold and delay parameters, especially the latter. When the threshold
or delay parameters are changed, the best subset of SETAR derived from existing methods can be
substantially different. Even worse is that in typical real applications, the number of models under
consideration, i.e. d0 ð 2p1Cp2C2, is large enough to prevent us from comparing all possible models
directly using traditional methods, such as the AIC.

In this paper, we develop a selection method for SETAR models that can simulate the unknown
parameters, including r and d, and identify the best subset SETAR model simultaneously. We
formulate the identification problem in a Bayesian framework and adopt the Markov chain Monte
Carlo (MCMC) methods. Previous applications of the MCMC methods to time series models can be
found in Chen (1992, 1999), Chen and Lee (1995), Geweke and Terui (1993), McCulloch and Tsay
(1993, 1994a, b). In particular, Chen and Lee (1995) adopt the idea of Carlin et al. (1992) to trans-
form a SETAR model into a changepoint problem in linear regression via arranged autoregression
and then make inference for all the parameters via a Bayesian approach. This paper generalizes the
work of Chen and Lee (1995) and utilizes the stochastic search variable selection (SSVS) method
proposed by George and McCulloch (1993) to select important subsets of SETAR models for fur-
ther consideration. Two-component mixture of normal priors are assumed for ��i�

k , k D 0, . . . , pi,
i D 1, 2. The binary indicator variables that indicate which component of the normal mixtures is
used to determine whether the corresponding ��i�

k are included in the SETAR models. By applying
the MCMC methods to generate a posterior sample of the indicator variables, we can identify the
best subset SETAR model by referring to those with the highest posterior probability. In this way,
our method can select important subsets of SETAR models as well as making inference for the
unknown parameters including r and d.

The structure of the remaining sections is as follows. The next section gives the Bayesian set-up
for the threshold autoregressive time series models. The idea of the SSVS and the prior distributions
for the unknown parameters are described. In the third section we show how the MCMC methods
are implemented to generate posterior samples of the indicator variables for identifying the best
subset SETAR model. In the fourth section we study the performance of our methodology using
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simulated data. The results obtained from the simulation experiments tell us that our method can
effectively pick up the true model as the best subset. In the fifth section we apply our method to
the US unemployment rate where the time delay of lag one and five best models are successfully
selected from more than four thousand choices. The final section presents some concluding remarks.

THE BAYESIAN SET-UP FOR SETAR MODELS

The likelihood
Consider the SETAR�2 : p1; p2� process in (1). Let p D maxfp1, p2g. We assume that the first p
observations y1, y2, . . . , yp are fixed. Let �i be the time index of the ith smallest observation of
fypC1�d, ypC2�d, . . . , yn�dg. By conditioning on the first p observations, we can write the likelihood
function as

L�21,22, �2
1 , �2

2 , r, djY� / ��s
1 ���n�p�s�

2

ð exp

{
� 1

2�2
1

s∑
iD1

�y�iCd � ��1�
0 �

p1∑
kD1

��1�
k y�iCd�k�

2

� 1

2�2
2

n�p∑
iDsC1

�y�iCd � ��2�
0 �

p2∑
kD1

��2�
k y�iCd�k�

2

}

where s satisfies y�s � r < y�sC1 , Y D �y�1Cd, y�2Cd, . . . , y�n�pCd�0, 21 D ���1�
0 , ��1�

1 , . . . , ��1�
p1

�0, and
22 D ���2�

0 , ��2�
1 , . . . , ��2�

p2
�0. The parameters of the SETAR�2 : p1; p2� model to be estimated are

21,22, �2
1 , �2

2 , r, and d. Let YŁ
1 D �y�1Cd, y�2Cd, . . . , y�sCd�0 be the observations in regime I and

YŁ
2 D �y�sC1Cd, . . . , y�n�pCd�0 be those in regime II. So YŁ

1 and YŁ
2 are vectors of data arranged in the

ascending order. Define XŁ
1 D �x1,�1Cd, x1,�2Cd, . . . , x1,�sCd�0, XŁ

2 D �x2,�sC1Cd, . . . , x2,�n�pCd�0, where
x1, t D �1, y�tCd�1, . . . , y�tCd�p1�

0 and x2, t D �1, y�tCd�1, . . . , y�tCd�p2�
0. An arranged autoregres-

sion is formed with the first s cases of Y in the first regime and the last n � p � s cases in the
second regime. Using the arranged autoregression, the likelihood function is simplified to

L�21,22, �2
1 , �2

2 , r, djY� / exp

{
�

2∑
iD1

1

2�2
i

�YŁ
i � XŁ0

i 2i�
0
�YŁ

i � XŁ0
i 2i�

}
��s

1 ���n�p�s�
2

A mixture specification
The primary objective of this paper is to identify the best subset SETAR model. Based on the idea
of George and McCulloch (1993), we introduce the binary indicator variables υi,k , i D 1, 2 and
k D 0, . . . , pi, which can take values of either 0 or 1. Each value of υi,k determines the distribution
of ��i�

k . When υi,k D 0, ��i�
k has the mean 0 and variance �2

i,k . The variance of ��i�
k will be scaled

by c2
i,k if υi,k D 1. We represent our prior assumptions on a single ��i�

k by the normal mixture
distribution,

��i�
k jυi,k ¾ �1 � υi,k�N�0, �2

i,k� C υi,kN�0, c2
i,k�

2
i,k� �2�

and

υi,k D
{

1 with probability �i,k

0 with probability 1 � �i,k
�3�
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where �i,k are the prior probabilities of having υi,k D 1. In the general specification which allows
correlations among ��i�

k , the mixture in (2) can be stated as the following multivariate normal prior
for the slope parameters 2i in regime i,

2ijdi ¾ N�0, DυiViDυi �

where di D �υi,0, υi,1, . . . , υi,pi �
0
, Vi is the prior correlation matrix and Dυi is the diagonal matrix

diagfai,0�i,0, . . . , ai,pi�i,pig with ai,k D 1 if υi,k D 0 and ai,k D ci,k if υi,k D 1. In particular when we
do not have any prior information about the relationship among ��i�

k that Vi D I, the covariance
DυiViDυi reduces to a diagonal matrix with elements a2

i,k�
2
i,k , k D 0, . . . , pi. In other words,

p�2ijdi� D
pi∏

kD0

p���i�
k jυi,k�

We choose �i,0, . . . , �i,pi to be small so that those ��i�
k associated with υi,k D 0 are likely to be small

in magnitude. We choose ci,0, . . . , ci,pi to be large and greater than 1 to make c2
i,k�

2
i,k substantially

greater than �2
i,k . Then, those ��i�

k associated with υi,k D 1 will have high variability. The above
set-up fits well to our model selection framework. Variables associated with υi,k D 1 are regarded
as ‘useful’ because the corresponding ��i�

k are likely to be away from zero. In contrast, the variables
having zero υi,k are taken to be unimportant. Once we have created a posterior sample for di, we
can identify a good model by referring to a particular combination of d and di which has a high
posterior probability. For example for p1 D p2 D 2, the model

yt D
{

��1�
0 C ��1�

1 yt�1 C ��1�
2 yt�2 C a�1�

t if yt�1 � r
��2�

0 C ��2�
1 yt�1 C a�2�

t if yt�1 > r

is selected as a good model if the posterior probability for the event fd D 1, υ1,0 D 1, υ1,1 D 1,
υ1,2 D 1, υ2,0 D 1, υ2,1 D 1, υ2,2 D 0g is high. To implement the above procedures, suitable choices
of �i,k and ci,k are required. We consider setting ����i�

k
/�i,k, ci,k� as (0.5, 5), (0.5, 10), (1, 5) and (1,

10) where ���i�
k

represents a measure of variation of ��i�
k . Note that the last two sets of values were

suggested by George and McCulloch (1993) while the first two sets are found to have superior
performance from our simulation studies later in the paper. In our subset threshold autoregression,
we can set ���i�

k
as the standard error of the kth slope coefficients in fitting an ordinary AR process.

Prior distributions
To facilitate the sampling of 2i, �2

i , di, r and d by using Monte Carlo Markov chain methods, we
need to set their prior distributions. In this paper, we employ the inverse gamma conjugate prior
for �2

i ,

�2
i jdi ¾ IG�	i/2, 	i
i/2�

i.e.
	i
i

�2
i

¾ �2
	i

Note that in the above inverse gamma distribution, 	i and 
i are constants. Nevertheless, if we
want to allow prior dependence between 2i and �2

i , we can also let the hyperparameters 	i and 
i
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depend on di. For the threshold value r, we assume that it follows a uniform distribution on �a, b�.
We further let the delay parameter d have a discrete uniform distribution on integers 1, Ð Ð Ð , d0,
recalling that d0 is the maximum possible delay. Since it rarely happens that d is greater than
2, we set d0 D 4 in our study. Finally, we assume prior independence of υi,k’s with the marginal
distributions given in (3). Therefore,

p�di� D
pi∏

kD0

�υi,k

i,k �1 � �i,k�
1�υi,k

i D 1, 2. In particular, we can have the flat prior p�di� D 2��piC1�, in which each lag k has an equal
chance ��i,k D 1/2� of being included.

POSTERIOR DISTRIBUTIONS

To calculate the posterior probabilities of all d0 ð 2p1Cp2C2 subsets, SSVS uses MCMC to generate
a sequence of

υi,0, υi,1, . . . , υi,pi

Under some regularity conditions (see for example, Tierney, 1994), the MCMC sequences of di

converge in distribution to p�dijY�. From the posterior sample of di, we can estimate the posterior
probability of a particular model. Important subsets of SETAR models can then be identified via the
MCMC sequences with the corresponding di’s occurring with high probabilities. In implementing
the MCMC method, 2i and �2

i are initialized at their least squares estimates when fitting an
autoregressive process while di is initialized as �1, 1, . . . , 1�0. The MCMC iterates of 21, 22, �2

1 ,
�2

2 , r, d, d1, and d2 are then generated from suitable full conditional distributions. Using standard
Bayesian techniques (e.g. DeGroot, 1970 or Box and Tiao, 1973), we obtain the following full
conditional distributions:

(1) The conditional posterior distribution of 2i is independent of 2j for i 6D j,

p�2ijY, �2
i , di, r, d� ¾ N�2Ł

i , VŁ
i � �4�

where

2Ł
i D VŁ

i XŁ0
i XŁ

i
O2i

�2
i

and

VŁ
i D

(
XŁ0

i XŁ
i

�2
i

C D�1
υi

V�1
i D�1

υi

)�1

with O2i D �XŁ0
i XŁ

i ��1XŁ0
i YŁ

i .
(2) The conditional posterior distribution of �2

i is independent of �2
j , for i 6D j,

p��2
i jY,2i, di, r, d� ¾ IG

(
	i C ni

2
,

	i
i C nis
2
i

2

)
,

i.e.
	i
i C nis

2
i

�2
i

¾ �2
	iCni

, i D 1, 2 �5�
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where

n1 D
n�p∑
tD1

Ify�t �rg, n2 D
n�p∑
tD1

Ify�t >rg, s2
i D n�1

i �YŁ
i � OYi�

0�YŁ
i � OYi�, with OYi D XŁ0

i 2i.

(3) The conditional posterior probability function of r is

p�rjY, d,2i, �2
i , di, i D 1, 2�

/ exp

{
�

2∑
iD1

1

2�2
i

�YŁ
i � XŁ0

i 2i�
0
�YŁ

i � XŁ0
i 2i�

} /
�n1

1 �n2
2 �6�

Note that n1 and n2 are functions of r.
(4) The conditional posterior probability function of d is a multinomial distribution with probability

p�djY, r,2i, �2
i , di, i D 1, 2�

D L�r, d,2i, �2
i , di, i D 1, 2jY�

/ d0∑
jD1

L�r, j,2i, �2
i , di, i D 1, 2jY�

where d D 1, 2, . . . , d0 and

L�r, d,2i, �2
i , di, i D 1, 2jY� D exp

{
�

2∑
iD1

1

2�2
i

�YŁ
i � XŁ0

i 2i�
0
�YŁ

i � XŁ0
i 2i�

} /
�n1

1 �n2
2

(5) Finally, the vector di is obtained by sampling υi,k individually from the conditional distribution,

υi,k ¾ p�υi,k jY,2i, �2
i , di,��k�, r, d�

where di,��k� D �υi,0, . . . , υi,k�1, υi,kC1, . . . , υi,pi �
0. The conditional posterior probability function

of υi,k is a Bernoulli distribution with the probability

P�υi,k D 1jY,2i, �2, di,��k�, r, d� D ˛i,k

˛i,k C ˇi,k
�7�

where

˛i,k D p���k�
i jdi,��k�, υi,k D 1��i,k and

ˇi,k D p���k�
i jdi,��k�, υi,k D 0��1 � �i,k�

In particular if Vi D I and the uniform prior is specified for υi,k , i.e. �i,k D 0.5, then ˛i,k and
ˇi,k are simplified to p���k�

i jυi,k D 1� and p���k�
i jυi,k D 0� respectively.

All conditional distributions except that of r are standard and easy to sample. For simulating r,
we employ the Metropolis et al. (1953) algorithm. A symmetric random walk kernel is adopted
to obtain a trial point at each iteration. Let f�r� be the conditional density in (6), suppressing the
conditioning variables for notational simplicity. The resulting random walk Metropolis algorithm
works as follows:
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Step 1: At iteration j, generate a point rŁ from the random walk kernel,

rŁ D r�j�1� C ε, ε ¾ N�0, a2�

where r�j�1� is the �j � 1�th iterate of r.
Step 2: Accept rŁ as r�j� with the probability p D minf1, f�rŁ�/f�r�j�1��g. Otherwise, set r�j� =

r�j�1�.

The positive scalar a controls the step size in the Metropolis move. In practice, we can tune the
step size a to yield fast convergence of the MCMC. The larger the value of a, the smaller is the
acceptance rate. A suitable value of a with good convergence properties can usually be achieved
by having an acceptance rate of 25–50%. In summary, we use the following iterative sampling
scheme to construct the desired posterior sample:

(1) Draw 2i from the multivariate normal distribution in (4).
(2) Draw �2

i from the inverse Gamma distribution in (5).
(3) Draw r using the random walk Metropolis algorithm.
(4) Draw d from a multinomial distribution with probabilities proportional to the likelihood

function.
(5) Draw υi,k from the Bernoulli distribution with the probability given in (7).

This completes one iteration. Of course, we can change the order in sampling the variables. Our
experience tells us that fast convergence is attained irrespective of the order.

SIMULATIONS

In this section, we perform simulation experiments to investigate the performance of the subset
selection method for SETAR models. The following hyperparameters are set, namely Vi D I, vi D 3
and 
i D Q�2/3 for i D 1, 2, where Q�2 is the sample variance. The parameters �i,k and ci,k are
constants independent of i and k. Uniform priors are adopted for di. In the first experiment, we
simulate n D 1000 observations from

Model 1 yt D
{ �0.5 yt�1 C a�1�

t , a�1�
t ¾ N�0, 2� if yt�1 � 0.4

0.5 yt�1 C a�2�
t , a�2�

t ¾ N�0, 1� if yt�1 > 0.4

This is the model used in the simulation study of Chen and Lee (1995). We run the MCMC
for 10,000 iterations and discard the first 4000 burn-in iterates. To assess for the convergence to
stationarity, we produce autocorrelation plots for the last 6000 MCMC iterates in Figures 1 and 2.
The autocorrelations of the MCMC iterates decay very quickly, indicating fast convergence. The
only variable that is of concern is r but it only exhibits moderate autocorrelations in the first 20
lags. In summary, we are very confident that the number of burn-in iterations are large enough to
arrive at stationarity and so we keep this number together with the total iterations of 10,000 fixed
throughout the simulation study.

As �i,k and ci,k are important in the subset selection, we focus on the choices of ����i�
k

/�i,k, ci,k)
in the simulation. We set the maximum AR orders as 4 in both regimes, i.e. p1 D p2 D 4, and so
there are altogether 4 ð 24C4C2 D 4096 possible models. We choose ���i�

k
’s to be the standard errors

of the least square estimates of ��i�
k obtained from fitting the AR(4) model to the simulated data.
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Figure 1. Autocorrelation plots of the MCMC iterates of ��1�
i , i D 0, . . . , 4, in the case ����i�

k
/�i,k, ci,k� D �0.5,

5) for the data simulated from Model 1

Four sets of (���i�
k

/�i,k, ci,k) are tested. They are (0.5, 5), (0.5, 10), (1, 5) and (1, 10). The latter two
are proposed by George and McCulloch (1993) and the former two are our suggestions. The true
model can be expressed as

�d1, d2�0 D
(

0 1 0 0 0
0 1 0 0 0

)

The two ‘1’s mean having the coefficients ��1�
1 and ��2�

1 in the true model. We report in Table I
the best three models selected based on the posterior probabilities P�d, �d1, d2�0jY�. Note that all
the twelve models are associated with d D 1. For (1, 5), the best model is(

1 1 1 1 1
1 1 0 0 0

)

with d D 1 and the posterior probability of 0.013. Clear overestimation in the AR orders is observed.
When we scan from the best model to the third best model, we find closer models to the true one.
The same problem is also recorded in (1, 10). Besides ��1�

1 and ��2�
1 which are in the true model,

the best model also includes ��1�
0 and ��1�

3 . There is some improvement in (1, 10) compared with
(1, 5). Higher posterior probabilities are also recorded in (1, 10) but the overestimation still persists
in this case. The problem is probably due to the use of a too small �i,k . It is because setting �i,k too
small can include unimportant variables in the best model. So we suggest using (0.5, 5) and (0.5,
10) as supplements to (1, 5) and (1, 10) in this paper. The results from using the two priors are also
presented in Table I. We see marked improvement over the two sets with ���i�

k
/�i,k D 1 in the sense

that the true model is correctly selected as the best. In addition, the highest posterior probabilities
0.018 and 0.046 are substantially larger than that of (1, 5) and (1, 10), probably indicating that
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Figure 2. Autocorrelation plots of the MCMC iterates of ��2�
i , i D 0, . . . , 4, �2

1 , �2
2 and r in the case ��

��i�
k

/�i,k,
ci,k� D �0.5, 5� for the data simulated from Model 1

good models are sharply identified. Indeed, the second and the third best models are very close to
the true model in both cases.

To further investigate the differences in the performance among the four (���i�
k

/�i,k, ci,k), we plot
the posterior probabilities for all the 4096 models in Figure 3. We record the least variation in
the probabilities in (1, 5), indicating that good models cannot be well-separated from others. We
observe some improvements in (1, 10) by having more variation in the probabilities but the extra
variation is still not enough to identify useful models. Higher dispersion exists in (0.5, 5) where the
first two models are obviously outstanding. The one with (0.5, 10) is the best scenario that has the
highest dispersion in the probabilities. More importantly, six models are easily sorted out with the
probabilities >0.02 while the others may not deserved of immediate attention. Overall, the above
demonstration suggests that (0.5, 5) and (0.5, 10) are superior to (1, 5) and (1, 10) in the subset
threshold autoregression. The one with (0.5, 10) is obviously the best.

To gain more evidence about the relative performance, we run another set of simulation on two
more complicated models. The first one is Model 2 which consists of two AR(2) processes in the
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Table I. The best three models expressed in terms of �d1, d2�0 obtained from applying
the four sets of (�

��i�
k

/�i,k, ci,k) to the simulated data generated from Model 1

Best Second best Third best

(0.5, 5)
( 0 1 0 0 0

0 1 0 0 0

) ( 1 1 0 0 0
0 1 0 0 0

) ( 0 1 0 0 1
0 1 0 0 0

)
[0.018] [0.016] [0.014]

(0.5, 10)
( 0 1 0 0 0

0 1 0 0 0

) ( 0 1 0 1 0
0 1 0 0 0

) ( 1 1 0 0 0
0 1 0 0 0

)
[0.046] [0.029] [0.029]

(1, 5)
( 1 1 1 1 1

1 1 0 0 0

) ( 1 1 1 1 0
1 1 0 0 0

) ( 1 1 0 1 0
0 1 0 0 0

)
[0.013] [0.012] [0.012]

(1, 10)
( 1 1 0 1 0

0 1 0 0 0

) ( 1 1 1 1 0
0 1 0 0 0

) ( 1 1 0 1 1
0 1 0 0 0

)
[0.016] [0.015] [0.014]

Note:
The square brackets show the corresponding posterior probabilities. All the twelve models are
associated with d D 1.
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Figure 3. Plots of the posterior probability for all possible models in the four sets of (�
��i�

k
/�i,k, ci,k) when

fitting the simulated data of Model 1

regimes.

Model 2 yt D
{

0.2 � 0.4 yt�1 C 0.3 yt�2 C a�1�
t , a�1�

t ¾ N�0, 0.64� if yt�2 � 0.4
0.2 C 0.4 yt�1 C 0.3 yt�2 C a�2�

t , a�2�
t ¾ N�0, 0.25� if yt�2 > 0.4

The second one is Model 3 which is defined as

Model 3 yt D
{

0.3 C 0.4 yt�1 C 0.3 yt�4 C a�1�
t , a�1�

t ¾ N�0, 0.64� if yt�1 � 0.5
0.6 � 0.4 yt�2 C a�2�

t , a�2�
t ¾ N�0, 0.25� if yt�1 > 0.5
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The major difference between the two models is that some coefficients in the SETAR(2 : 4;2)
specification are zero in Model 3 whereas Model 2 is a full SETAR(2 : 2;2). As advised in the
first experiment, we fix 10,000 and 4000 as the total MCMC iterations and burn-in iterations. We
consider two sample sizes; n D 500 and n D 1000 with 100 replications. In other words, 100 series
from Model 2 and Model 3 are simulated and the SSVS method is then applied. The results are
given in Tables II and III. We present the proportions (in percentages) of correctly selecting the true
model. We also enumerate the proportions of times that the true model is declared as the best or
the second best according to the posterior probabilities. Obviously, the proportions that include the
first and the second best should be greater than that for the first best. The worst case is clearly (1,
5) where all the proportions for selecting the best are less than 25%. Even if we count the second
best, the proportions are still less than 40%. Comparing with (1, 5), (1, 10) shows better results
but the proportions for selecting the best are still small. In addition, increasing n does not seem to
get any improvement. Obviously, (0.5, 5) and (0.5, 10) outperform (1, 5) and (1, 10). Using (0.5,
5) successfully selects the true model at least 62% of the trials while (0.5, 10) hits the best at least
87% of the trials except for n D 500 in Model 2. Taking into account the second best model, the
minimum proportions of hitting the true model increase to 84 and 82 respectively for (0.5, 5) and
(0.5, 10). Generally speaking, increasing n tends to do better when ���i�

k
/�i,k D 0.5. This second

simulation experiment confirms the remark in the first part that (0.5, 5) and (0.5, 10) are preferable.

Table II. The proportion of correctly
selecting Model 2 out of 100 replications
in different sets of (�

��i�
k

/�i,k, ci,k)

n D 500 n D 1000

(0.5, 5) 62 [84] 81 [93]
(0.5, 10) 48 [82] 87 [100]
(1, 5) 23 [35] 23 [34]
(1, 10) 47 [70] 46 [65]

Note:
The square brackets show the proportion of times
that the true model is declared as either the best
or the second best.

Table III. The proportion of correctly
selecting Model 3 out of 100 replications
in different sets of (�

��i�
k

/�i,k, ci,k)

n D 500 n D 1000

(0.5, 5) 76 [88] 77 [87]
(0.5, 10) 87 [96] 93 [98]
(1, 5) 12 [16] 8 [11]
(1, 10) 37 [56] 32 [53]

Note:
The square brackets show the proportion of times
that the true model is declared as either the best
or the second best.
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Figure 4. Monthly unemployment rate of the United States from January 1948 to October 2001
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Figure 5. Time series plots of the last 16,000 MCMC iterates of ��1�
k , k D 0, . . . , 4, in the case ��
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/�i,k, ci,k�
D �0.5, 5� for the unemployment data
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We also recommend considering the second best model when doing model selection, as in some
cases the second best is also a promising model choice.

ILLUSTRATIVE EXAMPLE

We apply the best subset selection method to the US unemployment rate from January 1948 to
October 2001. The data set which consists of 646 monthly observations is shown in Figure 4.
As suggested by the simulation studies, we use the two sets of prior parameters ����i�

k
/�i,k, ci,k� D

�0.5, 5� and (0.5, 10) for implementing the stochastic search algorithm where ���i�
k

’s are the standard
errors of the AR coefficients obtained from fitting an AR(4) model. The standard errors are found to
be 0.031, 0.039, 0.056, 0.056 and 0.039 respectively for k D 0, 1, 2, 3, and 4. The hyperparameters
are chosen as Vi D I, vi D 3, and 
i D Q�2/3 for i D 1, 2, where Q�2 is the sample variance of the
data. Moreover, we choose 4 as the maximum possible delay, i.e. d0 D 4. The maximum AR orders
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Figure 6. Time series plots of the last 16,000 MCMC iterates of ��2�
k , k D 0, . . . , 4, �2

1 , �2
2 and r in the case

����i�
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/�i,k, ci,k� D �0.5, 5� for the unemployment data
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in both regimes are set at 4 and so we have altogether 24C4C2 D 1024 possible combinations of
21 and 22. Accounting also for 4 different delay parameters, we have altogether 4 ð 1024 D 4096
possible models to consider. Traditional methods such as AIC for selecting a good model would
be very difficult as there are more than 4000 possible models and estimates of d and r have to be
determined before doing the model comparison.

We iterate the MCMC 20,000 times and discard the first 4000 burn-in iterates. It takes less than
15 minutes in a 1GHz Pentimum PC to complete the iterations. The time series and autocorrelation
plots of all the parameters including ��i�

k , �2
i and r, i D 1, 2, k D 0, . . . , 4, are displayed in Figures 5

to 8. All the plots clearly suggest that convergence is attained after 4000 burn-in iterations. The
time path and the correlograms of most parameters resemble that of a random sample, indicating
that the convergence is fast. The only exception is r which has very mild autocorrelations in the
first 20 lags. Overall, the MCMC sampling scheme adopted in this paper effectively constructs
a sample from the joint posterior distribution of parameters for further statistical inference. The
posterior means and variances of the parameters are given in Table IV. The means and variances for
(0.5, 5) and (0.5, 10) are very similar. So the use of the two different (���i�

k
/�i,k, ci,k) only imposes

minor changes in the posterior densities of the parameters. The threshold value r has means at
around 6.5. The posterior probabilities P�djY� of d D 1, 2, 3 and 4 are 0.596, 0.164, 0.239 and
0.001 for (0.5, 5) and 0.620, 0.181, 0.198 and 0.001 for (0.5, 10). The results from the two sets
of (���i�

k
/�i,k, ci,k) are in good agreement and both indicate that the most appropriate choice of the

delay parameter is 1.
Table V lists the best four models based on the posterior probabilities P�d, �d1, d2�0jY). The

probabilities of the best four models are 0.025, 0.025, 0.021 and 0.017 for (0.5, 5) and 0.020,
0.019, 0.018 and 0.017 for (0.5, 10). All the eight best models have d D 1 which are consistent
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Figure 7. Autocorrelation plots of the MCMC iterates of ��1�
i , i D 0, . . . , 4, in the case ����i�

k
/�i,k, ci,k� D �0.5,

5) for the unemployment data
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Figure 8. Autocorrelation plots of the MCMC iterates of ��2�
i , i D 0, . . . , 4, �2

1 , �2
2 and r in the case (�

��i�
k

/�i,k,
ci,k� D �0.5, 5� for the unemployment data

with the marginal posterior probabilities P�djY� that d D 1 should be the most suitable choice.
Using a smaller value of ci,k , i.e. 5, the searching procedure tends to select more complicated
models. The best model under (0.5, 5) is close to the full SETAR(2 : 4;4) model while the best
choice under (0.5, 10), i.e. M3, has only one parameter less. Since there are some overlaps in
models between the two sets of (���i�

k
/�i,k, ci,k), we end up with only five distinct models which

are denoted by M1 to M5 in Table V. The five models, M1 to M5, look very similar. Indeed,
they have the same structure in the second regime and differ mostly in the two entries, ��1�

0 and
��1�

2 . The results indicate that the selection is robust to the two choices of (���i�
k

/�i,k, ci,k). Our
procedure based on MCMC sampling successfully reduces the models under consideration from
4096 to 5. More importantly, we do not need to fix r and d in advance as in other classical methods.
Therefore, the uncertainty in the threshold value and the delay parameter can be taken into account
while performing the stochastic search for the best model. Further comparisons among the five
promising models identified by our method can be done using standard approaches such as AIC.
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Table IV. Posterior means and standard deviations of the
parameters for the unemployment data using
����i�

k
/�i,k, ci,k� D �0.5, 5� and (0.5, 10)

(0.5, 5) (0.5, 10)

Post. mean Post. sd Post. mean Post. sd

��1�
0 0.08597 0.05018 0.08144 0.05046

��1�
1 1.08736 0.05194 1.10108 0.05237

��1�
2 0.15973 0.07095 0.14241 0.07042

��1�
3 �0.13514 0.07277 �0.13442 0.07174

��1�
4 �0.12722 0.05150 �0.12344 0.05154

��2�
0 0.09837 0.13913 0.10473 0.15030

��2�
1 0.83636 0.09737 0.86542 0.10011

��2�
2 0.40932 0.12659 0.38060 0.13319

��2�
3 �0.01179 0.09821 �0.01663 0.09805

��2�
4 �0.25093 0.07825 �0.24715 0.08064

�2
1 0.04193 0.00295 0.04190 0.00295

�2
2 0.07151 0.00818 0.07174 0.00827

r 6.46688 0.15404 6.45189 0.15743

Table V. The best four models expressed in terms of �d1, d2�0 for the
unemployment data using ��

��i�
k

/�i,k, ci,k� D �0.5, 5� and (0.5, 10)

(0.5, 5) (0.5, 10)

Best M1
( 1 1 1 0 1

1 1 1 0 1

)
M3

Second best M2
( 1 1 1 1 1

1 1 1 0 1

)
M1

Third best M3
( 1 1 0 0 1

1 1 1 0 1

)
M5

( 0 1 0 0 1
1 1 1 0 1

)
Fourth best M4

( 0 1 1 0 1
1 1 1 0 1

)
M4

Note:
All the eight best models are associated with d D 1.

Finding the best model under certain objectives becomes feasible as we can limit our focus to five
models.

CONCLUDING REMARKS

In this paper, we propose a subset selection method for the threshold autoregressive models. An
advantage of our approach is that it can identify the best subset and estimate the model parameters
simultaneously. Our method is feasible even though the number of possible models is very large.
From the simulation experiments, we demonstrate that our two choices of (���i�

k
/�i,k, ci,k), (0.5,

5) and (0.5, 10), perform very well in picking up the correct model. The application to the US
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unemployment rate data effectively limits our consideration to five best SETAR models for further
exploration.
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