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Bayesian single change point detection in a sequence of
multivariate normal observations

YOUNG SOOK SON† and SEONG W. KIM*‡

†Department of Statistics, Chonnam National University, Kwangju 500-757, Korea
‡Division of Applied Mathematics, Hanyang University,

Ansan 426-791, Korea

(Received 5 March 2004; revised 5 July 2005; in final form 5 August 2005)

A Bayesian method is used to see whether there are changes of mean, covariance, or both at an
unknown time point in a sequence of independent multivariate normal observations. Noninformative
priors are used for all competing models: no-change model, mean change model, covariance change
model, and mean and covariance change model. We use several versions of the intrinsic Bayes factor
of Berger and Pericchi (Berger, J.O. and Pericchi, L.R., 1996, The intrinsic Bayes factor for model
selection and prediction. Journal of the American Statistical Association, 91, 109–122; Berger, J.O.
and Pericchi, L.R., 1998, Accurate and stable Bayesian model selection: the median intrinsic Bayes
factor. Sankhya Series B, 60, 1–18.) to detect a change point. We demonstrate our results with some
simulated datasets and a real dataset.

Keywords: Change point; Default Bayes factor; Intrinsic bayes factor; Noninformative prior; Posterior
probability

1. Introduction

Change point problems originally arise from quality control or reliability. Nowadays,
these problems cover almost all areas including environmental sciences, hydrology, signal
processing, biology, climatology, economics, etc. There are considerable amounts of work on
change point problems and related topics and these have appeared in the literature. Change
point problems have generally been solved by the maximum likelihood methodology and
the Bayesian procedure based on the parametric method, the nonparametric method, and
the decision theoretic method. Our primary interest is restricted to the parametric Bayesian
method applicable to change point problems in a sequence of independent normal observations.
Suppose that there is a sequence of independent normal random variables, X1, X2, . . . , Xn.
These are observed along with time. This sequence is said to have a change at a time point r ,
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often called a change point if

Xt ∼
{

N(µ1, σ
2
1 ), t = 1, 2, . . . , r,

N(µ2, σ
2
2 ), t = r + 1, r + 2, . . . , n,

(1)

provided at least µ1 �= µ2 or σ 2
1 �= σ 2

2 . All the studies on change point problems are generally
divided into two parts. The first part is to detect the existence of changes, that is, to test the
no-change model.

Xt ∼ N(µ1, σ
2
1 ), t = 1, 2, . . . , n,

against the change model (1) using the Bayes factor or the ‘posterior probability’. The posterior
probability will be explained in section 2. The second part is to obtain parameter estimates
under the assumption that a change has occurred in a sequence. Smith [1] gave posterior
probabilities for five different cases: case 1 with µ1, µ2, σ 2

1 , and σ 2
2 known; case 2 with

µ1 known, µ2 unknown, and σ 2
1 = σ 2

2 = σ 2 known; case 3 with µ1 known, µ2 unknown,
and σ 2

1 = σ 2
2 = σ 2 unknown; case 4 with µ1, µ2, and σ 2

1 = σ 2
2 = σ 2 unknown; and case 5

with µ1, µ2, and σ 2
1 �= σ 2

2 unknown. Note that discrete prior distributions are assumed for
the change point. Lee and Heghinian [2] studied a mean change problem in a sequence of
independent normal random variables with unknown common variance σ 2. They derived the
posterior distribution of the change point under the uniform prior for the change point r ,
normal conjugate priors for means µ1 and µ2, and the noninformative prior for variance σ 2.
A study of Menzefricke [3] is similar to that of Smith [1], except prior assumptions. As a case
study on the univariate normal change model, Perreault et al. [4] conducted a Bayesian change
point analysis under conjugate priors for a mean change model in a sequence of independent
normal random variables. It was applied to hydrometeorological sequences and precipitation
and runoff data series over eastern Canada and the US during the 20th century. Perreault et al.
[5, 6] provided a Bayesian methodology under conjugate priors to test existence, types, and
strength of changes in a sequence of hydrometeorological random variables. In their method,
four univariate normal models were considered: a no-change model, a mean change model, a
variance change model, and a simultaneous change model both in mean and variance. Bayesian
model selection was performed by the posterior probability through the usual Bayes factor and
parameters estimation via Gibbs sampling for the selected change models. The mean change
model for a sequence of independent p × 1 multivariate normal vectors, (X1, X2, . . . , Xn)

considered by Booth and Smith [7] is

Xt ∼
{

Np(µ1, �), t = 1, 2, . . . , r,

Np(µ2, �), t = r + 1, r + 2, . . . , n,
(2)

where µ1 and µ2 (µ1 �= µ2) are p × 1 unknown mean vectors and � is a p × p unknown
common covariance matrix. They derived the Bayes factor for testing the mean change model
(2) with the prior π(µ1, µ2, �) = |�|−(p+3)/2 against the no-change model with µ1 = µ2 in
equation (2). Perreault et al. [8] applied a Bayesian change point procedure under conjugate
priors for a mean change model of a sequence of multivariate normal vectors. The results
were applied to hydrological time series such as streamflow data for six rivers situated in the
Northern Québec Labrador region.

In our article, an objective Bayesian method is used for detecting a mean change, a covari-
ance change, or both changes in a sequence of independent multivariate normal vectors.
Noninformative priors are assumed for a set of parameters of a multivariate normal distribu-
tion and for the change point. Because we use improper priors, as is well known, the ordinary
Bayes factor is not well defined. Berger and Pericchi [9] introduced the intrinsic Bayes factor
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(IBF) using a data-splitting method, which makes the Bayes factor well defined. There have
been several articles which use the IBF. Varshavsky [10] discussed some problems in a sta-
tionary autoregressive process. Lingham and Sivaganesan [11] conducted a test for the shape
parameter of the power law process. Kim [12] analysed comparisons of two exponential means.
Kim and Ibrahim [13] dealt with model selection problems in generalized linear models. In
particular, we use several versions of the IBF of Berger and Pericchi [9, 14]: the arithmetic
intrinsic Bayes factor (AIBF), the geometric intrinsic Bayes factor (GIBF), and the median
intrinsic Bayes factor (MIBF). They are derived to test whether there are any changes. If there
are any, the next interesting feature is to see what kind of changes they are.

The rest of this article is organized as follows. In the next section, the definitions of default
Bayes factors are reviewed. In section 3, we compute the IBFs in order to choose one among
the four models, a no-change model, a mean change model, a covariance change model, and a
mean and covariance change model. In section 4, we present some numerical results through
a simulation study and real data analysis. We provide a brief discussion in section 5.

2. Default Bayes factors

Let X = (X1, X2, . . . , Xn) be a sequence of random variates from a multivariate normal
distribution. We consider four types of models to check whether there is any kind of change
in the sequence. The competing models are a no-change model (M0), a mean change model
(M1), a covariance change model (M2), and a mean and covariance change model (M3). Let rj

be a single change point of each change model Mj (j = 1, 2, 3). The models are constructed
as follows: 



M0: Xt ∼ Np(µ1, �1), t = 1, 2, . . . , n,

M1,r1 : Xt ∼
{

Np(µ1, �1), t = 1, 2, . . . , r1,

Np(µ2, �1), t = r1 + 1, r1 + 2, . . . , n,

M2,r2 : Xt ∼
{

Np(µ1, �1), t = 1, 2, . . . , r2,

Np(µ1, �2), t = r2 + 1, r2 + 2, . . . , n,

M3,r3 : Xt ∼
{

Np(µ1, �1), t = 1, 2, . . . , r3,

Np(µ2, �2), t = r3 + 1, r3 + 2, . . . , n,

where Xt is a p × 1 normal vector, µ1 and µ2(µ1 �= µ2) are unknown p × 1 mean vec-
tors, �1 and �2 (�1 �= �2) are unknown p × p covariance matrices of multivariate normal
distributions, and rj ∈ I with I being a set of positive integers to be constructed in order
that all the parameters in the model Mj,rj

(j = 1, 2, 3) can be estimated. Now, we review an
important role of Bayes factors as a useful tool for hypotheses testing or model selection in
Bayesian inference. Let x = (x1, . . . , xn) denote an observed sequence of X. For models
M0 and Mj,rj

(j = 1, 2, 3), let θ0 = (µ1, �1), θ1 = (µ1, µ2, �1), θ2 = (µ1, �1, �2), and
θ3 = (µ1, µ2, �1, �2). Here, θj ∈ �j , where �j is the parameter space for θj (j = 0, 1, 2, 3).
A usual Bayes factor Bj0 of comparing model Mj,rj

against model M0 is given by

Bj0(x|rj ) = mj(rj , x)

m0(x)
, j = 1, 2, 3, (3)

where

m0(x) =
∫

�0

π0(θ0)l0(θ0|x)dθ0, (4)



376 Y. S. Son and S. W. Kim

and

mj(rj , x) =
∫

�j

πj (θj , rj )lj (θj , rj |x)dθj , j = 1, 2, 3. (5)

Here, l0(θ0|x) and lj (θj , rj |x) are the likelihood functions of model M0 and model Mj,rj
,

respectively, and π0(θ0) and πj (θj , rj ) are the corresponding prior densities. Further, we call
m0(x) and mj(rj , x) the marginal densities or the predictive densities. In the beginning of
Bayesian experiment without any prior information on parameters, default priors such as non-
informative priors can be used. Objective Bayesian methods based on noninformative priors are
called ‘default’ or ‘automatic’ Bayesian methods in comparison with the subjective Bayesian
method with subjective prior information (cf. [15]). Most of the noninformative priors are
improper, so caution is needed according to whether priors are proper or improper because of
unspecified constants incorporated into the Bayes factor. Thus, prior specifications are quite
important in Bayesian analysis, especially in hypothesis testing or model selection. The IBF of
Berger and Pericchi [9] is classified as a default Bayes factor which is free from arbitrariness of
noninformative improper priors. Their default Bayes factors are simpler and more automatic
to use in the sense that they do not need to specify hyperparameters under conjugate priors
nor to consider the imaginary constant as appeared in Spiegelhalter and Smith [16].

The IBF uses the minimal training sample to convert the improper prior to the proper
posterior density. The minimal training sample represents a part of the full sample to guarantee
the finiteness of marginal densities for all models. Let x(l) be the lth minimal training sample
and let L denote the total number of minimal training samples. Then, the AIBF, the GIBF, and
the MIBF of Berger and Pericchi [9, 14] for testing model Mj,rj

to model M0 are defined as
follows:

BAIBF
j0 (rj ) = Bj0(x|rj ) · 1

L

L∑
l=1

B0j (x(l)|rj ), (6)

BGIBF
j0 (rj ) = Bj0(x|rj ) ·

{
L∏

l=1

B0j (x(l)|rj )

}1/L

, (7)

and

BMIBF
j0 (rj ) = Bj0(x|rj )· Median

1≤l≤L {B0j (x(l)|rj )}, (8)

where B0j (x(l)|rj ) = m0(x(l))/mj (rj , x(l)), and mj(rj , x(l)) is defined by replacing the full
sample x by the lth minimal training sample x(l) in equation (5). The posterior probability
of each model is more useful than the Bayes factor for selecting one model among more than
two models. That is, we can select the most plausible model, which has the largest posterior
probability. The posterior probability of model Mj,rj

with a fixed change point rj is defined
by

P(Mj,rj
|x) =




3∑
i=0

∑
ri∈I

{
pi

pj

} {
B∗

i0(ri)

B∗
j0(rj )

}


−1

, j = 1, 2, 3, (9)

where B∗ denotes the AIBF, the GIBF, or the MIBF, and p0 and pj are the prior model
probability of M0 and Mj,rj

, (j = 1, 2, 3) respectively. Finally, the posterior probability of
each change model Mj is computed by

P(Mj |x) =
∑
rj ∈I

P (Mj,rj
|x), j = 1, 2, 3. (10)
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3. Computation

We compute several IBFs such as the AIBF, the GIBF, and the MIBF to choose one model
among the four models, M0, M1, M2, and M3. For the moment, we assume that the change
point rj is known for j = 1, 2, 3. We use noninformative improper priors for each model to
reflect initial diffuseness. They are denoted by πj , j = 0, 1, 2, 3. Then the priors are




π0(µ1, �1) = c0|�1|−(p+1)/2, �1 > 0,

π1(µ1, µ2, �1) = c1|�1|−(p+1)/2, �1 > 0,

π2(µ1, �1, �2) = c2{|�1| · |�2|}−(p+1)/2, �1 > 0, �2 > 0,

π3(µ1, µ2, �1, �2) = c3{|�1| · |�2|}−(p+1)/2, �1 > 0, �2 > 0,

where cj is an undefined normalizing constant. Throughout this article, we use the following
notations:

V e
d =

e∑
j=d

(xj − x̄e
d)(xj − x̄e

d)
′,

Ue
d (µ) = V e

d + (e − d + 1)(µ − x̄e
d)(µ − x̄e

d)
′,

W(d, e, f ) =
∫

{1 + (µ − x̄e
d)

′ (Se
d)

−1(µ − x̄e
d)}−(e−d+1)/2

× {1 + (µ − x̄
f

e+1)
′ (S

f

e+1)
−1(µ − x̄

f

e+1)}−(f −e)/2dµ, (11)

where x̄e
d = ∑e

j=d xj /(e − d + 1), Se
d = V e

d /(e − d + 1). The likelihood function lj (·|x)

under each M0 model and Mj,rj
(j = 1, 2, 3) model is given by




l0(µ1, �1|x) = (2π)−np/2|�1|−n/2 exp

{
−1

2
tr{�−1

1 Un
1 (µ1)}

}
,

l1(µ1, µ2, �1, r1|x) = (2π)−np/2|�1|−n/2 exp

{
−1

2
tr{�−1

1 U
r1
1 (µ1)}

}

× exp

{
−1

2
tr{�−1

1 Un
r1+1(µ2)}

}
,

l2(µ1, �1, �2, r2|x) = (2π)−np/2|�1|−r2/2|�2|−n−r2/2 exp

{
−1

2
tr{�−1

1 U
r2
1 (µ1)}

}
× exp

{− 1
2 tr{�−1

2 Un
r2+1(µ1)}

}
,

l3(µ1, µ2, �1, �2, r3|x) = (2π)−np/2|�1|−r3/2|�2|−(n−r3)/2 exp

{
−1

2
tr{�−1

1 U
r3
1 (µ1)}

}

× exp

{
−1

2
tr{�−1

2 Un
r3+1(µ2)}

}
.

PROPOSITION 1 The marginal densities for the full sample are given by

m0(x) = c0
∏p

i=1 �((n − i)/2)

np/2πp(2n−p−1)/4|V n
1 |(n−1)/2

,
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m1(r1, x) = c1 · π1(r1) ·
{ ∏p

i=1 �((n − i − 1)/2)

r
p/2
1 (n − r1)p/2πp(2n−p−3)/4|V r1

1 + V n
r1+1|(n−2)/2

}
,

m2(r2, x) = c2 · π2(r2) ·
{

W(1, r2, n)
∏p

i=1 �((r2 − i + 1)/2)�((n − r2 − i + 1)/2)

πp(n−p+1)/2|V r2
1 |r2/2|V n

r2+1|(n−r2)/2

}
,

m3(r3, x) = c3 · π3(r3) ·
{ ∏p

i=1 �((r3 − i)/2)�((n − r3 − i)/2)

r
p/2
3 (n − r3)p/2πp(n−p−1)/2|V r3

1 |(r3−1)/2|V n
r3+1|(n−r3−1)/2

}
.

Proof The proof is fairly simple, and thus is omitted. �

Now, let the change point rj be unknown. If we use the uniform priors for rj , then the
predictive density for the change model Mj is

mj(x) =
∑

rj ∈I
mj (rj , x), j = 1, 2, 3.

Also, the posterior probability density fj (rj |x) of change point rj for given data x is

fj (rj |x) = mj(rj , x)

mj (x)
, j = 1, 2, 3. (12)

PROPOSITION 2 The size of the minimal training sample x(l) is 2(p + 1).

Proof Note that model M3,r3 is the encompassing model in the sense that other models M0,
M1,r1 , and M2,r2 are nested within M3,r3 . So, it is sufficient to check how many training samples
are needed in order for mN

3 (r3, x) to be finite. We use Result 3.3 of Johnson and Wichern [17].
If r3 ≤ p, that is, sample size ≤ number of variables, then |V r3

1 | = 0. Hence, the size of a
minimal training sample is 2(p + 1). �

Remark 1 Our minimal training sampling plan is the simple random sampling for which
each p + 1 observations are chosen at both sides centering the change point.

Remark 2 A uniform prior πj (rj ) = 1/drj
for the change point rj is assumed, where rj (ra ≤

rj ≤ rb) is an integer and drj
= rb − ra + 1. The support [ra, rb] of πj (rj ) is restricted in

order that the predictive density of the minimal training sample can be finite. Thus, we set
ra = p + 1 and rb = n − p − 1 according to our minimal training sampling scheme.

We need the marginal densities m0(x(l)) and mj(rj , x(l)) (j = 1, 2, 3) to compute the IBFs
in equations (6), (7), and (8). These can be easily obtained by simple replacement in m0(x)

and mj(rj , x). That is, replacing n by 2(p + 1), rj and n − rj by p + 1, and x by x(l) yields
predictive densities of the minimal training sample. We note that the marginal densities of
M2,r2 for both the full sample and the training sample do not have closed forms. We need to
compute the following integral

W(d, e, f ) =
∫ ∞

−∞
g(µ)dµ =

∫ ∞

−∞
g(µ)

fµ(µ)
· fµ(µ)dµ = Efµ(µ)

[
g(µ)

fµ(µ)

]
, (13)

where g(µ) = ∏2
k=1(1 + Qk)

−Nk/2, Q1 = (µ − x̄e
d)

′(Se
d)

−1(µ − x̄e
d), Q2 = (µ − x̄

f

e+1)
′

(S
f

e+1)
−1

(µ − x̄
f

e+1), N1 = e − d + 1, and N2 = f − e. Here, µ is the random vector with
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pdf fµ(µ), called the importance sampling density function. Then, the Monte Carlo estimate
of the integral in equation (13) is

Ŵ = 1

N

N∑
i=1

g(µi)

fµ(µi)
,

where {µ1, µ2, . . . , µN } is a sample of size N generated from the density fµ(µ).

PROPOSITION 3 For the integral (13) an approximate optimal importance sampling distri-
bution, minimizing var(Ŵ ), is set as a multivariate normal distribution with mean µ0 and
covariance matrix J−1, where

µ0 = Kx̄e
d + (I − K)x̄

f

e+1, K = N1(S
e
dJ )−1, and J = N1(S

e
d)

−1 + N2(S
f

e+1)
−1

.

Proof It can be proved by similar arguments in the proof of Proposition 3 of Kim and Kim
[18].

�

4. Numerical studies

In this section, we present some simulation results and a real data analysis to check the perfor-
mance of default Bayes factors and the posterior probability density of change point appeared
in section 3. We refer to simulation schemes in Marks and Dunn [19], who conducted a test
on the equality of two independent multivariate normal distributions. All experiments are per-
formed on the basis of the sequences of independent quad-variate normal random vectors with
a sample size n = 50. We use a change point rj = n/2 = 25 (j = 1, 2, 3). We set µ1 = 0p and

µ2 = [τ(1 + √
λ) , 0′

p−1]
′
, where 0p is a p-variate column vector of zeroes. Without loss of

generality, we set �1 = I and �2 = 	, where I is an identity matrix and 	 is a diagonal matrix
with all λ’s being diagonal elements. This setting is based on the simultaneous diagonaliza-
tion theorem and the invariance property: suppose that Xi(i = 1, 2, . . . , r3) ∼ Np(µ1, �1) and
Xi(i = r3 + 1, r3 + 2, . . . , n) ∼ Np(µ2, �2). Consider the transformations X∗

i = CXi + v1,
i = 1, 2, . . . , r3 and X∗

i = CXi + v2, i = r3 + 1, r3 + 2, . . . , n, where C is a nonsingular
matrix and v1 and v2 are any vectors. Then, X∗

i (i = 1, 2, . . . , r3) ∼ Np(µ∗
1, �

∗
1 ) and

X∗
i (i = r3 + 1, r3 + 2, . . . , n) ∼ Np(µ∗

2, �
∗
2 ), where µ∗

1 = Cµ1, µ
∗
2 = Cµ2, �

∗
1 = C�1C

′ ,
and �∗

2 = C�2C
′. Also, there exists a nonsingular matrix C such that C�1C

′ = I and
C�2C

′ = 	. Hence, BAIBF
j0 (rj ), BGIBF

j0 (rj ), and BMIBF
j0 (rj ) are all invariant for these transfor-

mations. Here, τ(λ) is called the measure of degree for separation between means (covariances)
of two populations. We use different choices of τ = 0, 0.5, 1, 1.5, 2 and λ = 1, 2, 4, 6, 8 to
generate random variates from a multivariate normal distribution. We randomly select 30 sets
of minimal training samples of each p + 1 on both sides centering the change point by sim-
ple random sampling. We use the importance samples of size 100 in order to compute the
marginal for M2,r2 . We calculated the average posterior probabilities for each model on the
basis of 1000 replications. They are computed under the assumption of equal prior model prob-
ability. Numerical values are given in table 1. Because of space limit, the results of the GIBF
and the MIBF are omitted. However, as a substitute for comparing three IBFs, we compute
the ‘acceptance rate’ of each model provided in figure 1. This acceptance rate is the measure
for which the posterior probability supports the true model.

From table 1 and figure 1, we conjecture that (i) generally the AIBF is almost equal to or
better than the GIBF or the MIBF except for the true model M0 in the sense of high accurate
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Table 1. Simulated averages and standard deviations in parentheses of posterior probabilities of each model
computed through the AIBF.

τ λ Model P(M0|x) P (M1|x) P (M2|x) P (M3|x)

0.0 1 M0 0.7904 (0.1691) 0.1976 (0.1664) 0.0095 (0.0332) 0.0025 (0.0155)
2 M2 0.7422 (0.2141) 0.2127 (0.1917) 0.0381 (0.1109) 0.0069 (0.0414)
4 M2 0.2092 (0.2846) 0.0867 (0.1665) 0.6839 (0.3664) 0.0203 (0.0592)
6 M2 0.0147 (0.0748) 0.0088 (0.0546) 0.9471 (0.1386) 0.0295 (0.0845)
8 M2 0.0001 (0.0016) 0.0001 (0.0021) 0.9626 (0.0987) 0.0371 (0.0987)

0.5 1 M1 0.3617 (0.2953) 0.6305 (0.3005) 0.0062 (0.0418) 0.0016 (0.0124)
2 M3 0.3451 (0.2852) 0.6247 (0.2958) 0.0215 (0.0875) 0.0087 (0.0446)
4 M3 0.1035 (0.1922) 0.2240 (0.3142) 0.4534 (0.3676) 0.2192 (0.2851)
6 M3 0.0041 (0.0353) 0.0162 (0.0907) 0.6666 (0.3383) 0.3130 (0.3282)
8 M3 0.0001 (0.0016) 0.0012 (0.0283) 0.6787 (0.3271) 0.3200 (0.3267)

1.0 1 M1 0.0066 (0.0330) 0.9933 (0.0333) 0.0001 (0.0010) 0.0001 (0.0016)
2 M3 0.0054 (0.0233) 0.9806 (0.0890) 0.0005 (0.0062) 0.0135 (0.0841)
4 M3 0.0028 (0.0168) 0.3726 (0.4082) 0.0280 (0.0876) 0.5966 (0.4023)
6 M3 0.0002 (0.0030) 0.0266 (0.1252) 0.0657 (0.1587) 0.9076 (0.1975)
8 M3 0.0000 (0.0000) 0.0002 (0.0037) 0.0852 (0.1876) 0.9146 (0.1876)

1.5 1 M1 0.0000 (0.0000) 1.0000 (0.0004) 0.0000 (0.0000) 0.0000 (0.0004)
2 M3 0.0000 (0.0001) 0.9873 (0.0815) 0.0000 (0.0000) 0.0127 (0.0815)
4 M3 0.0000 (0.0000) 0.4084 (0.4237) 0.0004 (0.0032) 0.5913 (0.4234)
6 M3 0.0000 (0.0000) 0.0257 (0.1208) 0.0027 (0.0271) 0.9716 (0.1233)
8 M3 0.0000 (0.0000) 0.0015 (0.0320) 0.0022 (0.0139) 0.9963 (0.0348)

2.0 1 M1 0.0000 (0.0000) 0.9998 (0.0038) 0.0000 (0.0000) 0.0002 (0.0038)
2 M3 0.0000 (0.0000) 0.9907 (0.0601) 0.0000 (0.0000) 0.0093 (0.0601)
4 M3 0.0000 (0.0000) 0.4042 (0.4219) 0.0000 (0.0000) 0.5958 (0.4219)
6 M3 0.0000 (0.0000) 0.0336 (0.1447) 0.0000 (0.0002) 0.9664 (0.1447)
8 M3 0.0000 (0.0000) 0.0025 (0.0453) 0.0001 (0.0008) 0.9974 (0.0453)

rate; (ii) when the degree of separation between covariances is λ = 2, three IBFs are useless
in finding true models, in the sense that the model cannot detect the change of covariance; (iii)
when λ = 4, 6, and 8, the change of covariance overwhelms the change of mean in the mean
and covariance model, which results in selecting the covariance model; (iv) when the degree
of separation between means (covariances) is τ = 0.5(λ �= 1), the acceptance rates by three
IBFs are less than 1/4 or almost equal. When the IBF is weak in detecting the true model, it
could be the case that the competing models are very close together. Thus, it may be better, in
terms of predictions, to act as if the simpler model is the sampling model.

Figures 2–5 are the histograms showing the proportions of the mode that maximize the
posterior density in equation (12). As shown in figure 5, when the degree of change is quite
large (λ = 1.5), the mean change model detects the true change point with proportion over
0.8 regardless of the change of variance. The U-type histograms in figures 3a and 4a result
from the fact that the degree of change is low. However, these U-type histograms should be
moved on to the degenerate histogram with the proportion 1 at the true change point as the
degree of change gets larger.

Sullivan and Woodall [20] used a preliminary control chart to detect a change in the mean
vector, the covariance matrix, or in both on the basis of a sequence of multivariate observations.
In addition, they applied this methodology to a dataset in Holmes and Mergen [21]. This dataset
consists of 56 individual bivariate observations from a European plant producing grit or gravel
for which the percentages of particles (by weight) are large and medium in size.

The data with a total of 56 observations are given in the second and the third columns of
table 2. Figure 6 shows a plot of whole data named as Group 0 (observations 1–56). Two
elliptical regions represent 50% and 90% confidence regions. Numerical results from this
analysis are presented in table 3. All Bayes factors strongly prefer a mean change model M1.
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Figure 1. Box-plots of posterior probabilities for each model through the AIBF and the acceptance rate of each
model by the AIBF, the GIBF, and the MIBF.
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Figure 2. Histograms of proportions on 1000 replications of the mode of change point for a mean change model.

Figure 3. Histograms of proportions on 1000 replications of the mode of change point for a covariance change
model.
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Figure 4. Histograms of proportions on 1000 replications of the mode of change point for a mean and covariance
change model with τ = 0.5.

Figure 5. Histograms of proportions on 1000 replications of the mode of change point for a mean and covariance
change model with τ = 1.5.
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Table 2. Posterior probabilities of change points for three data groups with changes.

Group 0 Group 2 Group 3
Observation Large Medium
no. (%) (%) f1(r1|x) f1(r1|x) f3(r3|x) f1(r1|x) f3(r3|x)

1 5.4 93.6 · · · · ·
2 3.2 92.6 · · · · ·
3 5.2 91.7 0.0000 · · 0.0000 0.0000
4 3.5 86.9 0.0000 · · 0.0000 0.0000
5 2.9 90.4 0.0000 · · 0.0000 0.0000
6 4.6 92.1 0.0000 · · 0.0000 0.0000
7 4.4 91.5 0.0000 · · 0.0000 0.0000
8 5 90.3 0.0000 · · 0.0000 0.0000
9 8.4 85.1 0.0000 · · 0.0000 0.0000

10 4.2 89.7 0.0000 · · 0.0000 0.0000
11 3.8 92.5 0.0000 · · 0.0000 0.0000
12 4.3 91.8 0.0000 · · 0.0000 0.0000
13 3.7 91.7 0.0000 · · 0.0000 0.0000
14 3.8 90.3 0.0000 · · 0.0000 0.0000
15 2.6 94.5 0.0000 · · 0.0000 0.0000
16 2.7 94.5 0.0004 · · 0.0004 0.0000
17 7.9 88.7 0.0002 · · 0.0005 0.0000
18 6.6 84.6 0.0000 · · 0.0001 0.0000
19 4 90.7 0.0001 · · 0.0002 0.0000
20 2.5 90.2 0.0002 · · 0.0002 0.0000
21 3.8 92.7 0.0012 · · 0.0013 0.0000
22 2.8 91.5 0.0082 · · 0.0068 0.0001
23 2.9 91.8 0.0858 · · 0.0755 0.0028
24 3.3 90.6 0.7407 · · 0.7359 0.4632
25 7.2 87.3 0.1505 · · 0.1777 0.5158
26 7.3 79 0.0063 · · 0.0012 0.0094
27 7 82.6 0.0014 0.0099 0.0301 0.0001 0.0012
28 6 83.5 0.0010 0.0343 0.0044 0.0000 0.0064
29 7.4 83.6 0.0003 0.0452 0.0053 0.0000 0.0009
30 6.8 84.8 0.0002 0.0500 0.0092 0.0000 0.0001
31 6.3 87.1 0.0001 0.0222 0.0049 0.0000 0.0000
32 6.1 87.2 0.0001 0.0138 0.0035 0.0000 0.0000
33 6.6 87.3 0.0001 0.0069 0.0044 0.0000 0.0000
34 6.2 84.8 0.0001 0.0151 0.0155 0.0000 0.0000
35 6.5 87.4 0.0000 0.0086 0.0255 0.0000 0.0000
36 6 86.8 0.0001 0.0101 0.0441 0.0000 0.0000
37 4.8 88.8 0.0001 0.0153 0.0045 0.0000 0.0000
38 4.9 89.8 0.0003 0.0192 0.0027 0.0000 0.0000
39 5.8 86.9 0.0005 0.0401 0.0090 0.0000 0.0000
40 7.2 83.8 0.0004 0.0761 0.0282 0.0000 0.0000
41 5.6 89.2 0.0005 0.0820 0.0525 · ·
42 6.9 84.5 0.0006 0.1918 0.2611 · ·
43 7.4 84.4 0.0005 0.2556 0.4838 · ·
44 8.9 84.3 0.0001 0.0576 0.0083 · ·
45 10.9 82.2 0.0000 0.0122 0.0001 · ·
46 8.2 89.8 0.0000 0.0019 0.0000 · ·
47 6.7 90.4 0.0000 0.0008 0.0000 · ·
48 5.9 90.1 0.0000 0.0006 0.0000 · ·
49 8.7 83.6 0.0000 0.0008 0.0000 · ·
50 6.4 88 0.0000 0.0008 0.0000 · ·
51 8.4 84.7 0.0000 0.0014 0.0000 · ·
52 9.6 80.6 0.0000 0.0213 0.0025 · ·
53 5.1 93 0.0000 0.0065 0.0005 · ·
54 5 91.4 · · · · ·
55 5.9 87.2 · · · · ·
56 5.9 87.2 · · · · ·
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Figure 6. Plot of gravel data with a 50% and a 90% confidence ellipse.

The fourth column of table 2 indicates that the change point in Group 0 is r1 = 24 with the
posterior probability 0.7407.

Figure 7 contains several plots of gravel data divided into several groups. First, we assign
the first 24 observations to Group 1 and the rest to Group 2. In figure 7a, 50% and 90%
confidence regions of the two groups depict visually that there is a mean change but almost
no covariance change. All Bayes factors for Group 1 in table 3 select a no-change model M0.
For Group 2, the AIBF selects a mean and covariance change model M3, whereas the GIBF
and the MIBF select a mean change model M1. Columns five and six in table 2 are posterior
probabilities of change points for data of Group 2 under a mean change model and a mean
and covariance change model, respectively. It shows that there are change points r1 = 43 and

Table 3. Posterior probabilities of each model for four data groups.

Group Observation no. Bayes factor P(M0|x) P (M1|x) P (M2|x) P (M3|x)

0 1–56 AIBF 0.0001 0.9963 0.0000 0.0035
GIBF 0.0005 0.9988 0.0000 0.0007
MIBF 0.0003 0.9988 0.0000 0.0009

1 1–24 AIBF 0.3667 0.1963 0.2122 0.2248
GIBF 0.7054 0.1704 0.0904 0.0338
MIBF 0.6278 0.1937 0.1340 0.0445

2 25–56 AIBF 0.0560 0.3209 0.2099 0.4131
GIBF 0.2082 0.4876 0.1672 0.1370
MIBF 0.1581 0.4629 0.2164 0.1627

3 1–43 AIBF 0.0001 0.3446 0.0008 0.6545
GIBF 0.0012 0.7468 0.0015 0.2505
MIBF 0.0010 0.7377 0.0019 0.2594
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Figure 7. Plots of gravel data divided by several groups.

r3 = 43. Figure 7b is the plot of 50% and 90% confidence regions for the two groups, Group
21 (observations 25–43) and Group 22 (observations 44–56). It visually indicates that there
are changes not only in the mean but in the covariance.

Suppose that we consider a portion of the data with observations 1–43 and denote this by
Group 3. It turned out that a mean and covariance change model is selected by the AIBF,
whereas a mean change model is selected by the GIBF and the MIBF. From the seventh and
the eighth columns of table 2, the change point for Group 3 is r1 = 24 on the basis of the result
of the GIBF and the MIBF, and r3 = 25 and r3 = 24 with a little smaller posterior probability
under the selection of the AIBF. It is due to the fact that eliminating observations 44–56 makes
the change point to be shifted from r1 = 24 for Group 0 (the whole data) to r3 = 25 for Group 3.
Plots of Group 31 (observations 1–25) and Group 32 (observations 26–43) in figure 7c indicate
the existence of change in both the mean and the covariance. Finally, three elliptical regions in
figure 7d are 50% confidence regions of three datasets, Group 1 (observations 1-24), Group 21
(observations 25–43), and Group 22 (observations 44–56). On the basis of the results shown
in table 3, for Groups 2 and 3, which seem to be a mixture of shifts in the mean vector and
the covariance matrix, the GIBF and the MIBF are insensitive to detecting covariance change
in the perspective of a combined shift. We can see that the results of Bayesian change point
detection by the AIBF coincide with our visual output and also with those of Sullivan and
Woodall [20] by the control chart.

5. Concluding remarks

In this article, we have identified a no-change model and three change models with a single
change point using the AIBF, the GIBF, and the MIBF. Once a change point model is selected,
the change point is estimated from the posterior probability density of the change point. The
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fractional Bayes factor (FBF) of O’Hagan [22] can also be considered as a default or an auto-
matic Bayes factor. Generally, the FBF is somewhat simpler than the IBF in the sense that
the FBF does not need training sample computation. However, the FBF approach has some
shortcomings in change point problems discussed in this article. That is, the possible range of
the change point is very restrictive as the sample size gets larger. When computing the FBF, the
range of change points must be adjusted to ensure that the arguments of the gamma functions
included in the correction term of the FBF are positive. After analysing gravel data, we can
see that default Bayesian procedure for detecting the change with only one change point is
recursively repeated and can be used in detecting multiple change points.
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