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Abstract

For parameters of single and multiple threshold autoregressive models of order one, sequential
procedures are proposed for constructing fixed size confidence ellipsoids. Sequential procedures
are also proposed for constructing fixed proportional accuracy confidence ellipsoids and fixed
width confidence intervals for linear combination of parameters. The confidence ellipsoids and
intervals are shown to be asymptotically consistent and the associated stopping rules are shown
to be asymptotically efficient as the size/width of the region becomes small. (©) 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

It is well documented in the literature that sequential sampling methods provide
a useful way of constructing confidence intervals/regions (for parameters) with fixed
size and prescribed coverage probability. In a seminal paper, Chow and Robbins (1965)
proposed a recipe for constructing a sequential fixed width confidence interval for an
unknown mean with prescribed probability. Their ideas have been used to develop
sequential fixed size confidence regions for higher dimensional cases and regression
models; see, for example, Gleser (1965), Albert (1966), Srivastava (1967, 1971) and
Finster (1985). More recently, sequential confidence regions based on maximum likeli-
hood estimators have been constructed by other authors, for example, Grambsch (1983,
1989), Yu (1989) and Chang and Martinsek (1992). Grambsch (1989) and Chang and
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Martinsek (1992) construct sequential fixed size confidence regions for parameters of
a logistic regression model using different stopping rules.

For over a decade or so, there has been a steadily growing interest in using se-
quential methods to estimate parameters in linear time-series models. See for ex-
ample, Lai and Siegmund (1983), Sriram (1987, 1988), Greenwood and Shiryaev
(1992), Fakhre-Zakeri and Lee (1992, 1993) and Lee (1994). There are many sit-
uations, however, where one would not expect linear time-series models to be the best
class of models to fit a real data set, although one may tacitly assume that the lin-
ear time-series model under consideration provides a close approximation to physical
reality.

One class of non-linear time-series models which is generally agreed to be useful
is the class of threshold autoregressive (TAR) models introduced by Tong (1978)
and discussed extensively in Tong and Lim (1980). Recently, Lee and Sriram (1999)
considered the problem of sequential point estimation of the parameters in a TAR(1)
model where they studied the first-order properties of the risk of sequential procedures
involved.

In this paper, we, once again, consider a TAR(1) model defined by

)([:01)(1-4;1—"92)(1»:1“"8[, i:132>"'7 (11)

where the real parameters 0; and 6, are not necessarily equal, {¢} is a sequence
of independent and identically distributed (i.i.d.) random variables (r.v.’s), and x* =
max(x,0) and x~ = min(x,0) for a real number x. The distribution of error ¢; is
unspecified but it is assumed throughout that Ee; =0 < E¢} = 6> < oo, where ¢° is an
unknown constant.

Our aim here, however, is to construct a sufficiently precise confidence ellipsoid
for 6 = (61,6,)" in the two-dimensional Euclidean space. That is, we wish to con-
struct an ellipsoidal region R, such that the length of the major axis is equal to
2d(d > 0), and such that the coverage probability, P(0 € R,), is approximately equal
to 1 —a (0 <a < 1) for sufficiently small values of d.

It has been shown by Petruccelli and Woolford (1984) that the process {X;;i>0}
defined in (1.1) is ergodic if and only if

0cO={(0,,0,): 0, <1,0, <1and 0,0, < 1}. (1.2)

This implies the existence of an invariant probability distribution for {X;}. Chan
et al. (1985) have extended the above-mentioned result of Petruccelli and Woolford to
a multiple-threshold AR(1) model. Furthermore, Chan et al. (1985) have shown that
Ele)|f < oo for some integer k>1 implies that the invariant probability distribution
for the chain {X;} has finite kth moment for each @€ @; see Chan et al. (1985),
Theorem 2.3 and the remark following it. In what follows we shall assume that Xj
has as its distribution 7(-), the invariant probability distribution for {X;}, so that the
process is strictly stationary. Also, we will denote (XOi )¢ and (Xii ) by Xoik and Xl-ik ,
respectively, for k>1.
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Suppose we estimate the parameters 0, and 0, in (1.1) by their least-squares
estimators

and
O =32 XXy /32 X5 (14)

Then the corresponding estimator of ¢ is 62 =n~' S0, (X; — 01X, — 02X )%

Note that the estimators defined above are also the maximum likelihood estimators for
0y, 0, and o2, respectively, under the assumption of normal error distribution.

It is shown in Petruccelli and Woolford (1984) that if § € ® defined in (1.2), then
the estimators OAM, (52,,1 and &i are strongly consistent for 0;, 0, and o2, respectively.
Furthermore, if @ € @, then it can be concluded using the result n=' 327 | X2 — EX;™
almost surely (a.s.) as n— oo (follows from ergodicity) and Theorem 3.2 of Petruccelli
and Woolford (1984) that for I}, =diag(>_, X;3, 3", X,_1), a diagonal matrix, and
0, = (01.,,02,) we have

o 20, — 0)T,(0, —0) > 1> asn— oo, (1.5)

where y3 is a y* random variable with two degrees of freedom. Now, for any d > 0,
let

R, ={z: (z = 0,)T(z — 0,) <d”Jmin(T}))} (1.6)

where Jin(I;,) = min(>"7_, X2, 37 | X, 7) is the smallest eigenvalue of I, defined
above. Then, R, defines an ellipsoid with length of the major axis equal to 2d and it
is in this sense that the size of the ellipsoid is fixed. Moreover, for any « € (0,1) and
no(d) determined by

no(d) = smallest integer > o2a®/[d* min(EX,, EX, )], (1.7)
where @ satisfies P[y3 <a?]=1— a, we have from (1.5) that for 6 € ©
Jim P(0€ Ryya)) =1 - 2. (1.8)

The result in (1.8) shows that, for small values of d, the sample size ny(d) yields
an ellipsoidal confidence region of fixed size and prespecified coverage probability.
However, the sample size ny(d) cannot be used in practice because it depends on the
unknown parameters. To over come this, we define a stopping rule

Ty =inf{n=m: Imn(I},)=62a*/d*}, (1.9)

where Apin(I,) is as defined in (1.6), 6% is defined as above and m(>=2) is the initial
sample size. The stopping rule in (1.9) is somewhat similar to the one defined in Chang
and Martinsek (1992). The confidence ellipsoid Ry, has length of the major axis equal

to 2d. Moreover, we have the following theorems.
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Theorem 1.1. Suppose 0 € @ defined in (1.2). Then, for the stopping rule T,; defined
in (1.9) the following hold.

(i) for eachd >0, Ty << as. and T;— o0 as. asd— 0, (1.10)

(i) Tq/no(d)—1 as. asd—0, (1.11)
where no(d) is as in (1.7), and

(iii) dlimo P[0 € Ry,] =1 — o (asymptotic consistency). (1.12)

Theorem 1.2 (Asymptotic efficiency). Assume that 0 € © and E|e;|*P*7 < oo for p >2
and some y > 0. Then, for T; and no(d) defined in (1.9) and (1.7), respectively, the
following hold:

(1) {T4/no(d);0 < d < 1} uniformly integrable (1.13)
and

(i) lim E(Ty/no(d)) = 1. (1.14)

The stopping rule defined in (1.9) is very different from the one defined in Lee and
Sriram (1999) for the sequential point estimation of 6. The difference is essentially
due to the presence of r.v. Amin(I,) in (1.9) in place of n that appears in Lee and
Sriram’s rule. This necessitates obtaining rate of convergence of n‘lflmm(F ») to its
limit in probability. This rate of convergence result is of independent interest and is
given in a Lemma in Section 2. This result is crucial to prove (1.13) and (1.14).

The theorems stated above are proved in Section 2. In Section 3, we construct fixed
proportional accuracy confidence ellipsoids for @ and fixed width confidence intervals
for a linear combination of 0. In Section 4, the results stated above are extended to a
multiple-threshold AR(1) model. We end this section with some notations which will
be used throughout the rest of the paper. Let

Jon = dmin( L) = min< 1 X2, Zl )(,._21) and /. =min(EX,?, EX; ).

l

(1.15)

2. Proofs

Proof of Theorem 1.1. Since n~' Y0 X*? — EX*? as. as n— oo it follows from
(1.15) that

n ', — ) as. asn—oo. 2.1)

2

This, the result o:ﬁ — ¢~ a.s. and routine arguments yield (1.10) and (1.11).
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Assertion (1.12) follows from (1.5), (1.11) and the Anscombe’s theorem (see, for
instance, Woodroofe, 1982, Theorem 1.4) because the sequence

{720, — 0)'T;,(0, — 0);n>1} is uniformly continuous in probability (u.c.i.p.).

(2.2)

The result in (2.2) follows from Lemma 3.1, display (2.2) of Lee and Sriram (1999).
U

Lemma. Assume that 0 € © defined in (1.2). If Elei[*P*" < oo for p > 2 and some
y > 0, then for any 6 >0

(i) P { n! E X - EXP| > 5} =0(n"?) (2.3)
i=1
and hence
(ii) P{|n"' %, — i] > 6} =O(n~??) (2.4)

as n— oo, where )tn and 2 are as defined in (1.15).

Proof. It is shown below that the result in (2.3) follows from a result on moment
bounds for stationary, strong mixing sequences which is due to Yokoyama (1980). To
this end, first observe that if 0 € @, then {X;;i>0} is geometrically ergodic (see Chan
et al,, 1985, Theorem 2.3). From this, Theorem 2.1 and Remark 2.2 of Nummelin
and Tuominen (1982), and results in Doukhan (1994, p. 88, display (1)) it follows
that {X;;i>0} is (geometrically) fp-mixing with mixing coefficient 8, = O(p") for
some 0 < p < 1. Since f-mixing implies strong mixing (or, equivalently, o-mixing,
see Doukhan, 1994, pp. 3, 4 and 20) we have that the a-mixing coefficient &, =O(p").
This implies that condition (3.1) of Theorem 1 in Yokoyama (1980) is satisfied. Now,
let S, =", Xltzl — EX*?). By the moment assumption (also see (1.2)) and an
application of Theorem 1 of Yokoyama (1980) we have that there exists a constant
M > 0 such that

E|S,|? <Mn??, n>1. (2.5)

For the sequence {X;"?}, the result in (2.3) now follows from the Markov inequality
and (2.5). Similarly, the result in (2.3) holds for the sequence {X,%}.

As for (2.4), the algebraic identity min(a,b)={a+ b — |a — b|}/2 and the inequality
|| = Iyl <|x = y| imply that

+ ' X - EX 2. (2.6)

i
i=1

n X - EXT
i=1

The result in (2.4) now follows from (2.6) and (2.3). Hence the lemma. [

Proof of Theorem 1.2. Define another stopping rule 7, by

Ty :inf{n>m: Jn=d2d? <n—1 zé)}, (2.7)
i=1
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where in is as in (1.15). Since OA]jn and OAz’,, in (1.3) and (1.4) are least-squares
estimators of 0, and 0,, respectively, we have that ¢2<n~! %, &, where 6% is as
defined in Section 1. From this and (1.9) it follows that

Ti< fd. (2.8)

Now, let Ky =[d2a?*(6?/A)(1 + )]+ 1 for some & > 0 and / defined in (1.15). Then,
for k=K, and some n > 0 it can be shown that

P[T; > k] <P{‘ [(k—l fef)/(k“ik)} —(62//1)‘ >'7}
i=1

= O(k~"?), (2.9)
where the last step follows from (2.4), the result P{|k~' S2¢ &2 —¢?| >0} =0(k~72)
which follows from Corollary 10.3.2 of Chow and Teicher (1978), and an application
of Lemma 1 of Sriram (1987). Now, (2.9) implies that Zk>1p(fd > k) < oco. From
this and arguments as of Woodroofe (1982, display (4.9), p. 47) it follows that

{d*T4;0 < d < 1} is uniformly integrable. (2.10)

Hence, the assertion in (1.13) follows from (2.8),(2.10) and the definition of ny(d) in
(1.7). The assertion in (1.14) follows from (1.11) and (1.13). Hence the theorem. [

3. Related fixed size confidence regions
3.1. Fixed proportional accuracy confidence ellipsoids

Suppose 6, and 6, in (1.1) are nonzero but at least one of the parameter values is
near the origin. Then, one may wish to take this into account and construct a smaller
confidence ellipsoid for @ which gives us an improvement in accuracy of estimates of
small coordinates. One approach (see Chang and Martinsek, 1992; Martinsek, 1995, for
instance) is to construct an ellipsoidal region such that the statistical distance between
0, and 0 is less than a certain fraction of the true value of 01y = min(|6,], |62]). This
yields the following ellipsoidal region:

E,={z:(z—0,)T(z — 0,) <A min(1,)01.0 } (3.1)

for d > 0, where OA(I)’,, = min(|0A]7,,\,|0Ag’,,|) with OAl,n and 02,,, as defined in (1.3) and
(1.4), respectively, and Amin(1;) is as in (1.6). E, defines an ellipsoid with length of

the major axis equal to 2d \/é(l),n.
Now, for 4 defined in (1.15), 6y = min(|0,],|02|) and @* as in (1.7), define an
(unknown) sample size

to(d) = smallest integer > a>a®/[d*0(1)/]. (3.2)

Once again, as in (1.8), for any « €(0,1) and the sample size determined by (3.2), if
0 € O defined in (1.2) then we have from (1.5) that

lim P(0 € Eya) =1~ (3.3)
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However, the sample size #,(d) cannot be used in practice since it depends on the
unknown parameters. Therefore, as in (1.9), define a stopping rule

Ny =inf{n=m: /,00),>62a*/d*}, (3.4)
where }t,, is as in (1.15), é(l),,, is as defined in (3.1), 63 is as defined in Section 1,

and m is an initial sample size. We then have the following theorem.

Theorem 3.1. Suppose 0 € @ defined in (1.2). Then, for the stopping rule N, defined
in (3.4) the following hold:

(i) for eachd >0, Ny <ooas. and Ny;— oo as. asd—0, 3.5)

(i) Ny/to(d)—1 as. asd—0, (3.6)
where to(d) is as in (3.2) and

(iii) dhino Pl[OcEy]=1—u. 3.7)
Furthermore, under the conditions of Theorem 1.2

(iv) {Na/to(d);0 < d < 1} is uniformly integrable, (3.8)
and

(v) lim E[Na/to(d)] = 1. (3.9)

Proof of Theorem 3.1. The assertions in (3.5)—(3.7) can be proved using arguments
similar to those in the Proof of Theorem 1.1. As for (3.8), define another stopping rule
]\7 d by

N, = inf {n>m:iné(l),,,>d—2a2 (n—‘ ZeiZ)}. (3.10)
i=1

Once again, as in (2.8) and (2.10), Ny <N, and it suffices to establish the result in
(3.8) for N4 in place of N,.

To this end, first we obtain the rate of convergence (in probability) of él,n and (92,,7
(see (1.3) and (1.4)) to their limits 0; and 0,, respectively. Write

Oy —01=n""3 X" X / (nl > X;z,> — (01 EX;[EXS?). (3.11)
i=1 i=1

l

Now,
n! znj XX — 0 EX)? =n! Z X e+ 0, [nl i(Xfl — EX;)| .
. . . (3.12)
Since E|81|2p < oo for p > 2, by a result of Sriram (1988, Lemma 1, p. 58) and the

Markov inequality we have that

"

n
-1 +
ny X e

i=1

> 5/2} =0 "?) asn—oo (3.13)
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for some 6 > 0. Therefore, from (3.12) and (2.3) we have that
"
Hence, the result

P{|0,, —0,| >3} =0(n""?) asn— oo (3.15)

follows from (3.11), (3.14), (2.6) and Lemma 1 of Sriram (1987). Similarly, it can be
shown that

P{|05, — 0,] >} =0(n"??) as n— . (3.16)

n' X X — 0, EX T
i=1

> 5} =0 "?) asn— . (3.14)

Now, in order to establish the uniform integrability of {d’N40 <d <1}, let
Ky = [d2a*{c?/(J01))}(1 + 8)] + 1 for some & >0, use (3.15), (3.16) and (2.4),
and argue as in (2.9) to (2.10). The assertion in (3.8) now follows. The assertion in
(3.9) follows from (3.6) and (3.8). Hence the theorem. [

3.2. Confidence interval for a linear combination of 0

In addition to constructing a fixed size confidence region for the vector 6, often it
is also of interest to construct a fixed width confidence interval for a particular linear
combination ¢’6 for some known ¢ = (cj,¢2) # 0. In fact, in this context, it would
be of special interest to construct a fixed width confidence interval for 6, — 6, since it
would help differentiate between an AR(1) model (the case 0; = 6,) and the threshold
model in (1.1).

It follows from Theorem 3.2 of Petruccelli and Woolford (1984) that if 0 € @ (see
(1.2)) then for 6, defined in (1.5)

V(c'6, — '0) 2 N(0,¢*) asn— oo, (3.17)

where ¢? = o2[(c}/EX2) + (c3/EX~?)]. If ¢* were known, then for o€ (0,1) and the
sample size determined by

ko(d) = smallest integer >z, /d°, (3.18)
we have from (3.17) that
lim P(c'0€ [¢'Oka) — d, € Opyay +d]) =1 — o,

where z,, satisfies @(z,2) — @(—z,2) = 1 — a. However, since (,152 is unknown, the
sample size ko(d) cannot be used. As before, Eq. (3.18) suggests the stopping rule

2
1y =inf{n=m: n;d‘zzi/zd)n}, (3.19)
where m is an initial sample size and

bi=a|d(n/Tar)a(n [Ex1)]. (320)
i=1 i=1

We then have the following theorem.
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Theorem 3.2. Suppose 0 € O defined in (1.2). Then the following hold for the stopping
rule t4 and ko(d) defined in (3.19) and (3.18), respectively:

(i) for eachd >0, 15<o0as. and 7153— 00 as. asd—0, (3.21)

(i) ta/ko(d)—1 as. asd—0 (3.22)
and

(iii) lim P{c'0€ [0, —d,c'0,,+d]} =1—a (3.23)
Furthermore, under the conditions of Theorem 1.2

(iv) {za/ko(d); 0 < d < 1} is uniformly integrable (3.24)
and

(v) lim Eryfko(d) = 1. (3.25)

Proof of Theorem 3.2. The assertions in (3.21)—(3.23) can be proved using exactly
the same arguments as in the Proof of Theorem 1.1. Assertion (3.24) can be proved
using similar arguments to those in (2.7)—(2.10) and the lemma in Section 2. Assertion
(3.25) also follows similarly. Hence the theorem. [

4. Extension to a multiple-threshold AR(1) model

The purpose of this section is to construct fixed size confidence regions for parame-
ters in a multiple-threshold AR(1) model. Consider a more general TAR model defined
in Tong and Lim (1980); also see Chan et al. (1985). More specifically, for any integer
I let —co=ry<r < --- <r;=o00 and define

Xi = 0kXio1 + ei(k) if Xioy € (re—1,7%] (4.1)

for 1 <k </. Equivalently, (4.1) may be written as

/
Xi= kZ [0k X1 + (R (Xim1 € (Fr—1,7%])s (4.2)
-

where 1(A) is the indicator function of the set 4. In (4.1) and (4.2), the thresholds
are assumed to be known, {0;,1<k<I} are unknown real parameters which are not
necessarily equal and we assume that for each k, 1<k</, {e:(k)} is a sequence of
i.i.d. random variables with E¢j(k) =0 < E&j(k) = o7 < co. In addition, assume that
{ei(k)} and {&;(j)} are independent sequences for j # k and o7, 1<k </, are unknown
parameters which are not necessarily equal. Incidentally, our notations in (4.1) are
different from those in Chan et al. (1985) and, further, we assume that the intercept
parameter in (4.1) is zero while Chan et al. (1985) assume it to be nonzero.

As mentioned in the Introduction, Chan et al. (1985) have shown that the pro-
cess {X;;i=0} defined in (4.1) is ergodic if and only if one of five conditions on
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{0, 1<k <I} holds; see Theorem 2.1 of Chan et al. (1985) for details. One of the
five sufficient conditions for ergodicity of {X;;i>0} is

0O ={(0,....,0)): 0, <1,0, <1 and 0,0, < 1}. (4.3)

As in the Introduction, let X, have as its distribution 7(-), the invariant probability
distribution of {X;} defined in (4.1). If 0 € © defined in (4.3) then by Theorem 2.3
of Chan et al. (1985), the invariant probability distribution of {X;} has finite pth
moment provided E|¢;(k)|” < oo, 1<k<, for some p> 1. In what follows, let X;(k)=
Xl (X; € (ri—1,r¢]) for 1<k </ and i=0, and X (k) =XI(X € (r;_1,r;]) for X defined
above.

Suppose we estimate the parameters 6;,...,0; in (4.1) by their least-squares
estimators
Ocn = > XiXioa(k) | > X2\ (k) (4.4)
i=1 i=1

for 1<k</. Then, for each 1<k</, the corresponding estimator of o7 is a”in =
n 'S (X — 0 Xi1(k))?. By Theorem 3.1 of Chan et al. (1985), if €@ de-

fined in (4.3), then, for each 1 <k </, OAk,,, and oi,,, are strongly consistent for 0; and

o2, respectively. Furthermore, by arguments similar to those of Theorem 3.2 of Chan

et al. (1985), we have for 0, =(0,.,,...,0,,) that DY*(6, —0) 2 N,(0,1)) as n— oo,
where D, = diag(3, X2 (1)/67 ..., >0, X2 (1)/67,,) and I, is the I x [ identity
matrix. This in turn implies that if § € @, then

(0, — 0YD,(0,—0) > 2 as n— o0, (4.5)
where y7 is a y* r.v. with / degrees of freedom. Now, for any d > 0, let
R, ={z: (z—0,)YDu(z — 0,) <d®Jmin(D)}, (4.6)

where Amin(D,) = min(37, X2 [ (1)/67 ..., >0 X2 1(1)/67,,) is the smallest eigen-
value of D, defined above. Then, R, defines an ellipsoid with length of the major axis
equal to 2d. Moreover, for any « €(0,1) and sample size determined by

mo(d) = smallest integer >a?/[d*1*] (4.7)

with A* =min(EX?(1)/63,...,EX?*(])/a}), we have from (4.5) that if @ € @ defined in
(4.3), then

lim P(0€ R.a)=1—0, (4.8)
where @’ in (4.7) satisfies P[x%<a2] =1 — a. As before, my(d) cannot be used in
practice. Therefore, we define the following stopping rule:

Sy =inf{n=m: Jmin(Dy)=a*/d*}, (4.9)

where Amin(D,) is as defined in (4.6). Then the confidence ellipsoid ksd has length of
the major axis equal to 2d and we have the following theorem.
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Theorem 4.1. Suppose 0 € @ defined in (4.3). Then, for the stopping rule S; defined
in (4.9) the following hold.

(i) foreachd >0, S;<ooas. and S;— o0 as. asd—0, (4.10)

(i) Sy/mo(d)—1 as. asd—0, (4.11)
where my(d) is as defined in (4.7), and

(iii) dlimo POcRs]1=1—a (4.12)
Furthermore, if for each 1<k<l, E|e)(k)|*’*7 < oo for p > 2 and some y > 0, then

@iv) {Sa/mo(d);0 < d < 1} is uniformly integrable (4.13)
and

(v) lim E[Sq/mo(d)] = 1. (4.14)

Proof of Theorem 4.1. The assertions in (4.10)—(4.12) can be proved using
arguments similar to those in the proof of Theorem 1.1. As for (4.13), define
another stopping rule S; = inf{n>m: I >d’2a2(zll(:1 n=' 30 &X(k))}, where o =
min(}>"7_, X2 (1),..., >0 X2 (1)) Since 0y, is the least-squares estimator of 6y,
1 <k<I, wehavethat6; ,<n~'3"_ ¢2(k). From this and the fact that 6; , < 16,
we have that S; <S;. Now, proceed as in the proof of Theorem 1.2 using a result anal-
ogous to (2.3) for n=' Y7 | X2 (k), 1<k<I, and (2.4) to prove (4.13). The assertion

in (4.14) follows from (4.11) and (4.13). O

Remark. As in Section 3, for the multiple-TAR(1) model in (4.1), it is also possible to
construct fixed proportional accuracy confidence ellipsoids and fixed width confidence
intervals for linear combinations of @ and establish their asymptotic properties. Such
constructions, however, are very similar to those in Section 3. Hence, we do not
explicitly state the associated results.
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