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COMPARISON OF EWMA, CUSUM AND SHIRYAYEV-ROBERTS 

PROCEDURES FOR DETECTING A SHIFT IN THE MEAN1 


University of Toronto 

Pollak and Siegmund compared the Shiryayev-Roberts procedure with 
the CUSUM procedure for detecting a change in the drift of a Brownian 
motion based on the conditional average delay time. In this paper, the 
exponentially weighted moving average (EWMA) procedure proposed by 
Roberts is compared with the Shiryayev-Roberts and CUSUM procedures. 
The comparison is based on the stationary average delay time as advocated 
by Shiryayev. The optimal design for the EWMA procedure and its asymp- 
totic properties are studied when the average in-control run length is large. 
The results show that the EWMA procedure is less efficient than the other 
two procedures. 

1. Introduction. An important application of statistics lies in the area of 
quality control in which we are interested in detecting a shift in the mean of a 
production process as soon as it occurs. Shewhart's (1931) f charts, with 
various modifications, have been very popular in the past. This procedure, 
however, has been found to be somewhat inefficient in detecting small shifts. 
To overcome this shortcoming, several procedures have been developed over 
the past few decades. Among them, the CUSUM procedure [Page (1954)l seems 
to be the most popular one. Its properties have been thoroughly studied in the 
literature [see, for example, Van Dobben de Bruyn (1968)l. Another procedure, 
called the Shiryayev-Roberts procedure [Shiryayev (1963) and Roberts (196611, 
was studied and compared with the CUSUM procedure by Pollak and 
Siegmund (1985). This comparison is based on the conditional average delay 
time in detecting the change point, given that no false alarm was mdde. The 
results showed that the Shiryayev-Roberts procedure is as powerful as the 
CUSUM procedure. In a more recent paper, Pollak and Siegmund (1991) 
further considered the case in which the initial level is unknown. 

In this paper, we study the EWMA (exponentially weighted moving average) 
procedure proposed by Roberts (1959). The EWMA procedure has recently 
received considerable attention in the literature. A numerical comparison with 
the CUSUM procedure by Lucas and Saccucci (1990) showed that the EWMA 
procedure is quite competitive in most practical situations. However, its 
theoretical properties have not been studied as thoroughly as for the CUSUM 
and Shiryayev-Roberts procedures. 
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The purpose of this paper is to study the properties of the EWMA procedure 
under the continuous time model and to compare it with the CUSUM and 
Shiryayev-Roberts procedures. Our comparison, however, is different from the 
one made by Pollak and Siegmund (1985), since it will be based on the 
stationary average delay time (SADT), which was advocated by Shiryayev 
(1963). Thus, it will be assumed here that the change only occurs after many 
false alarms. This seems appropriate in quality control when the cost of false 
alarm is relatively less important than the delay-time in detection. In Section 
2, we first introduce several standard notations and some results from diffu- 
sion theory used in our study. We shall see that under the continuous time 
model, all three detecting processes can be formulated as certain diffusion 
processes with a changed drift parameter. In Section 3, we study the properties 
of the EWMA procedure. The optimal design which minimizes the SADT for 
fixed average in-control run length (ARLO) is considered. Approximate formu- 
lae for the optimal weight factor and the corresponding control limit are given. 
The corresponding results for the CUSUM and Shiryayev-Roberts procedures 
are given in Section 4. The comparison of the EWMA procedure with the 
CUSUM and Shiryayev-Roberts procedures is carried out in Section 5. The 
results show that the EWMA procedure is less efficient than the other two 
procedures when ARLO + a.An interesting result, however, is that the EWMA 
procedure is less sensitive to the reference value when the shift amount is 
unknown. Further discussions are given in Section 6 where we shall briefly 
show that the comparison based on the conditional average delay time (CADT) 
as done in Pollak and Siegmund (1985) can also be carried out asymptotically. 

2. Definitions and some preliminary results. We consider the follow- 
ing change-point problem in a Brownian motion. Let B, be the standard 
Brownian motion with drift 0 and diffusion 1.We shall assume that Bo = 0. 
Suppose the observation process is given by 

dW, = 61,t2,, dt + dB,, 

where 6 is the change point and 6 is the amount of shift, both are assumed to 
be unknown. Let H t  = a(W,, 0 I s I t) be the history of the observation 
process up to time t, and T a stopping time adapted to {H,}.At 7, an alarm will 
be made; if it is a false alarm, a new procedure starts again. This procedure 
continues until the detection of the change point. 

Let N denote the number of false alarms before 6 and {ri} for i = 

1 ,2 , .. . ,N + 1,be the consecutive alarm intervals until the detection of the 
change point. Thus, 

The average delay time for 6 = t is thus 

ADT(t) = + T ~ + ~t ] ,aEt[T1 + . -
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where EJ.1 denotes the expectation when the place of shift is at a fixed time t. 
When t = 0, it becomes the out-of-control average run length 

ARL, = ADT(0) = Ear .  

In this paper, we are mainly interested in the situation in which there are 
many false alarms before the change point, although in Section 6, we also 
briefly consider the case in which there is no false alarm. There are two main 
reasons for this consideration. First, the change-point rarely occurs. Second, 
the cost of false alarm is relatively small compared to the loss due to delay in 
detection. Thus, we shall consider the stationary average delay time 

SADT = limADT(t), 
t + m  

as the main measure for evaluating the performance of a detecting procedure. 
By using renewal theory, we know that 

lim P,(t - ( r ,  + . +T,) c u )  = l U p W ( r> x)  dx/E,r, 
t + m  0 

where Pm(.) and Em(.) denote the probability and expectation when there is no 
change. In particular, 

ARLO= EJ, 

usually called the average in-control run length. Thus, 

SADT = Iim [E, 
[ 
7, + . . . +r,+, - tit - (7, + . . . +T,) = U ]  

t + m  

where 

CADT(u) = E,[T - U ~ T> u ] ,  

and is called the conditional average delay time. This is another measure used 
to assess the performance of a detecting procedure, and has been used for 
comparison in Pollak and Siegrnund (1985) when u + co and ARLO + co. For 
simplicity, we shall use CADT to denote CADT(co). However, it is usually 
difficult to find CADT(t) and the distribution of T under P,. 

To overcome this difficulty, we shall show that all three detecting .processes 
are time homogeneous diffusion processes. Thus, we can use the results of 
diffusion theory as given in Karlin and Taylor (1981) to evaluate SADT and so 
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on. We shall now define these three procedures for detecting a shift in a 
Brownian motion. 

To define the EWMA procedure under the continuous time model, we first 
consider the procedure under the discrete time model. Suppose {z,), k = 

1 ,2 , .. . , is the observation process which is a normal sequence with unit 
variance and shifted mean. Then the detecting process is defined by yk = 

$k/(varm($m))1/2,where 

$k = ( 1  -P)$k-l  + P z k ,  fork 2 l , fO= 0 , 0  I P  I 1 

The process is stopped and checked at  the smallest value of n for which y, 
exceeds a given value, called the control limit. 

The continuous time process corresponding to 5, can be written as 

dpt = -@Edt + p dWt, for Pt = 0, 

which is an Ornstein-Uhlenbeck process when the process is in control. The 
integral solution for < can be written as pt = dW,. The variance of ~pl:e-~(~-") 
pt and its limit when there is no change can easily be obtained as [see Karlin 
and Taylor (19811, pages 1711 

P P
var,(%) = ( 1  - eP2Pt) and lim Varm(pt) = --.

2 t +m 2 

As in the discrete time case, we define the EWMA process Y , = c / ( ~ a r , ( P ~ ) ) ~ / ~  
by normalizing pt, that is, 

(1) dYt = -PY,dt + \ / 2 p d ~ ,  for Yo = 0. 

Thus, the stopping time is given by 

T = inf{t > 0: Y , > b), 

where b is the control limit determined from a specified ARLO. 
The Shiryayev-Roberts procedure is obtained as a limit of a sequence of 

Bayes procedures for detecting a shift in the mean of a Brownian motion. The 
detecting process is given by 

where the integrand is nothing but the likelihood ratio of the observation up to 
time t {W,, 0 < s 5 t) when the change is at  s with respect to no change. The 
stopping rule is given by 

T = inf{t > 0: R, 2 T ) ,  
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for a given control limit T such that ARLO is a given specified number. Using 
ItG's formula, R, can be written as the following differential form: 

(2) dR, = dt + 6Rt dWt for R o  = 0 

The CUSUM process is defined as 

which can be obtained from the maximum likelihood ratio process. The 
stopping rule is given by 

T = inf{t > 0: X, > d} ,  

for a specified control limit d such that ARLO is a specified number. 
To write the CUSUM process in a stochastic differential form, we use the 

property for a reflected Brownian motion [see Karlin and Taylor (1980, page 
3851 which is given in the following lemma. 

LEMMA1. Xt has the same probability structure as I x , ~  where X, is a 
diffusion process with the differential form 

6 
d x t  = - sgn(t - 0)  sgn(xt)  dt + dB,.

2 

Thus, the stopping rule in this case becomes 

From the above definitions, we see that all three detecting processes are 
diffusion processes. However, the CUSUM and Shiryayev-Roberts processes 
are not linear. A more important observation is that the change occurs only in 
the drift parameters of the three processes while the diffusion parameters 
remain unchanged. Thus, we consider the following general change-point 
problem in a diffusion process [,, 

with the drift parameter changed from to after the change point. 
Let 

be the first time 5, exits the interval (a,  b). Assume that after each stopping, 
the process is forced back to the initial state x if it is a false alarm. We shall 
use the Green function for the random stopped process (6,; 0 < t < 7 ) .  
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Let 

i
( x )  = exp(/x - ?@? du and S,(x)  = /xsi(u) du ,  = 0 ,1 ,  
a 2 ( 4  

Then the Green function is defined as 

for i = 0 , l .  

Then G,(x, z) dz measures the total expected time spent in the infinitesimal 
interval [z, z + dz) in a cycle, i = 0 , l .  

Note that 

b 
(5) ARL,(x) = / Gi(x, z) dz for i = 0 , 1  

a 

are the average run lengths with initial state x when the process is in control 
and out of control, respectively. When x = 0, we shall write ARL,(O) = ARL,, 
for i = 0 , l .  

Under our consideration, the instantaneous return process which we shall 
call the controlled process will be at the stationary state when the change 
occurs. Using renewal theory, this stationary density can be written as 

which is just the proportion of time spent by 6, in state y in a cycle; see Karlin 
and Taylor [(1981), page 2601. We shall write ao(y) for ao(ylO). By using the 
strong Markov property of a diffusion process, we get 

(7) SADT(X)= l b a 0 ( y x )  ARL~(Y)  dy. 

When x = 0, we shall write SADT for SADT(O1. 
Using the above result, we can find the required characteristics for all three 

procedures. In this paper, we shall compare the SADT's of the three proce- 
dures for fixed ARLO = T. In other words, we shall choose the control limits 
for the three procedures in such a way that they all have the same ARLO. Our 
emphasis is, however, on the EWMA procedure. 

3. EWMA procedure. In this section, we first obtain the operating char- 
acteristics of the EWMA procedure, such as ARLO, ARL, and SADT. We then 
consider the optimal design for the EWMA procedure by searching for the 
optimal value of P which minimizes the SADT for fixed ARLO = T when the 
true shift value 6 is assumed to be known. Finally, we study the behavior of 
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SADT when the true shift value is unknown. The control limit for the EWMA 
procedure is b, and the stopping time is 

T = inf{t > 0: Y , > b).  

3.1. Average run lengths and SADT. To apply the results from diffusion 
theory given in Section 2, we let a -t -m. When the process is in control, Yt 
has the diffusion parameters 

,u(x) = -px and a ( x )  = ( 2 ~ ) " ~ .  

From (4), the corresponding Green function with Yo = x is thus 

Thus, from (5 ) ,  

b 	 1 b 
ARLo(x) = / Go(x, z)  dz = -/ [$(z)]  -'@(z) dz, 

-m 	 xP 

where 4( . )  and a(.)denote the standard normal pdf and cdf, respectively. The 
stationary density for the controlled process can be written from (6) as 

4 ( y ) l b  [ [mu)l- 'du 

(8) 	 ~ o ( Y I x )= 
max(y,x )  

for y I b, 
f [ 4 ( z ) l  l @ ( z )  dz 

which is functionally free of P. 
Now by taking the stationary state y as the new initial state with shifted 

drift, the process after the change can be written as 

dYt = (-PY, + ( 2 p ) 1 / 2 ~ )  d~~ y ,dt + ( 2 ~ ) " ~  for YO = 

with 

Thus, the corresponding Green function can be written from (4) as 

From (5), we get 

1 /2  -1 '/2 

1 = 4 - sj] @ ( u- 8 j  du :  (;I
 (;) 
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Finally, the SADT can be obtained from (7) as 

b-s ( ~ / p ) l / ~  

x (1 [4(x) l  -'@(XI dx) d ~ .  
Y -S ( Z / P ) ~ / ~  

Letting x = 0, we obtain the following results. 

THEOREM1. For the EWMA procedure, the ARLO, ARL, and SADT are, 
respectiveiy, given by 

1 

SADT = (r m( .)I - I  


~ j ~ [ m ( u ) ~ - ' @ ( u ) 
du 
0 

(11) 

3.2. Asymptotic properties for optimal design. For any detection rule, it 
would be desirable to have the average delay time in detecting the change as 
small as possible, and among all the procedures with the same ARLO, the one 
having the smallest average delay time should be preferred. Traditionally, the 
comparison between two detecting procedures is usually based on ARL, [see 
Roberts (1966)], and a procedure with smaller ARL, is preferred. Thus, many 
efforts have been made to reduce ARL, such as the fast initial response (FIR) 
technique [see Lucas and Crosier (1982)l. However, in the following theorem, 
we shall show that for the EWMA procedure, one can always find a sequence of 
p + 0 for which ARL, + 0. Thus, measures, other than ARL,, such as SADT 
and CADT, should play more important role in selecting a procedure. 

THEOREM For any fixed ARLO = T, a sequence of /? + 0, can be chosen 2. 
such that ARL, + 0. 
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PROOF.Let 

P 
Po = j5 and To = TS2.  

Since S is assumed known and fixed, we may use Po and To instead of P and 
T whenever convenient. Thus for fixed T ,  we should choose Po  to minimize 

1 
A R L ~= p l b [ 4 ( xo - J ~ / P , ] ]-'@(x - dx, 

subject to the condition that 

Now we let Po + 0. By expanding the integrand around zero, we find that for 
fixed To < m, 

In the next step as well as in the proof of followingtheorems in this section, we 
shall repeatedly use the following well-known approximation for the tail 
probability of the standard normal distribution 

1 3 15 
(12) 1- ( x )  = - 4 )  1- - + - + 0( x z xX x 

see Feller [(1957), page 1791. Thus, as Po + 0, 

Thus, as P -+ 0, ARL, -+ 0, which completes the proof. 

In the following, we obtain the optimum value of P which minimizes the 
SADT for the EWMA procedure when the shift value 6 is known. Our 
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discussion will be mainly focused on the most interesting case in which 
ARLO--+ m. In the following theorem, we state the main result which gives the 
asymptotic form for the optimal parameter P* as well as the corresponding 
SADT. The proof of the result will be completed after two lemmas. 

THEOREM3. AS T --+ m, the optimal P* that minimizes the SADT of the 
EWMA procedure is approximately 

and the corresponding m in imum SADT is approximately 

where c* = 0.5117 and k* = 2.4554. 

Before we prove the theorem, we first give two lemmas which establish 
certain properties of the optimum p* for large T. 

LEMMA2. AS T --+ m, the optimum P* + 0. 

PROOF. We shall use the negative method to prove the result. From 
Theorem 1, our objective is to minimize SADT given in (11) under the 
constraint 

We now show that p* --+ 0, as T + co. In fact, if p* does not go to zero, then 
there must exist a subsequence of p, such that p + c > 0 as T + m, where c 
may be equal to infinity. For notational convenience, we still denote this 
subsequence as well as its corresponding control limit as P and b, respectively. 
As T + m, from (131, b + co. Since the left-hand side in (13) is dominated by 
f i b e b 2 / ' ,  we have, as T --+ m, 

b = @ G G m .  

Hence from (10 ,  we have as T + m, 

2 0(fl) ,  

which is obviously not the optimal choice. Thus, Po u 0. 
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PROOF.We have already shown that as To -+ m, the optimum P: -+ 0. We 
again prove the result by contradiction. Suppose POTodoes not go to infinity. 
Then, there must exist a subsequence of P such that pT I c < a, for some 
finite number c, as T + w. Consequently, there exists a convergent sub-subse- 
quence in the above subsequence. To avoid notational confusion, we shall still 
denote this sequence as p and its corresponding control limit as b. Thus, we 
may assume that POTo-+ c < m. We first show that c cannot be equal to 0. We 
know from (13)that if POTo 0, 

and hence b -+ 0 as well. Thus, since Po + 0 and b + 0, for y s b, we have 
from (12) 

Hence, 

~ [ B ( x ) IIYrn4 ( y ) d K P ( b- Y ) d y d ~- I  -

SADT = + o ( 1 )  

That means, 

SADT 4 6 
- =  n ( ~ 0 ~ 0 ) ~ ' ~  

which is not the optimal choice. Thus c > 0. Next, suppose POTo-+ c > 0. 
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Then b converges to a constant. Thus, by using (141, we have 

( [ + ( x ) l l  /' +(Y)J W ( b  -Y)dydu 
SADT = 

-m 
+ O(1) 

P / ~ [ + ( x ) I-l@(x) dx 
0 

This is not a good choice either. Thus, we have shown that @:To + m. 

The above two lemmas show that the optimal P* goes to zero in an order 
slower than 1/T. The main problem is to find the rate of convergence which is 
given in Theorem 3. 

PROOFOF THEOREM3. Let us recall that our objective is to minimize (11) 
under the constraint (13). By carefully checking the expression given in (11) 
and following the steps of Lemmas 2 and 3, we see that to minimize SADT, b* 
and p: must satisfy 

b - Jm+ - m ,  

that is, 

From Lemma 3, we know that DOTo--+ m and hence from (13) 

b = (2 1 0 ~ ( p , ~ , ) ) ~ ' ~ .  

Thus, p: and b* should satisfy 

pob2/2 5 1, 

when T is sufficiently large. Thus, there must exist a subsequence of P such 
that p0b2/2 + c with 0 Ic I1. It is easy to see that if we can show that c is 
unique, then the theorem will be proved. As was the case with the proof of 
Lemma 3, we still denote this subsequence by P. We first show that c # 0. In 
fact, if c = 0, then by using (121, we have, 
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Thus, 

(pob2/2)1/2/ b [ 6 ( u ) 1 1  IU d ( y ) ( l  - y/b) dydu 
SADT = 

0 -m + 4 1 )  
~ ~ P , / ~ [ m ( x ) l- l@(x)  dx 

0 

But b2 = 2 log To,and thus 

SADT 1 
-- + o(1) -+ 

(1% To) 

That means, c = 0 will not give the optimal Pt .  Similarly, we can show that 
c # 1.Therefore we must have 0 < c < 1. 

By taking p, = 2c/b2, we have by using (12) again 

Thus, 

1 - f iy /b  

-m 

SADT = + O(1) 
~ $ o / b [ d ( x ) l-l@(x) dx0 

Therefore, to the first order of b2, we should choose c to minimize 
- log(1 - &)/c. The minimum value is 2.4554 and the c that minimizes it is 
obtained by numerical search as c* = 0.5117. The result is obtained by noting 
that 

For moderate values of T, the approximation given in Theorem 3 is often 
too crude to apply directly as it is only up to the first order. In the following 
corollary, we give some higher order approximations for calculating SADT and 
the optimal value of P*, which will be used in our comparison of the EWMA 
procedure with the CUSUM and Shiryayev-Roberts procedures. 



658 M. S. SRIVASTAVA AND Y. WU 


COROLLARY For the EWMA procedure, as T + cn,
1. 


p* = -
2c*S2 

b*2 

with 

PROOF. In the final step of the proof for Theorem 3, if we take higher order 
expansion for @(XI as x --+ - m  as given in (121, we get for Po = 2c/b2, 

Thus, 
r 

b2 ( [ d ( u ) l - '  jU~ ( Y Il o g ( l -
-mSADT = - - log(1 -6)+

2cS2 
( [m(u) l - l@(u)  du 

-



DETECTING A SHIFT 

Now we take Taylor series expansions for the functions log(1 - XI, 1/(1- x ) ~  
and 1/(1 - xI4 around x = 0, and substitute them in the above equation. 
Because of the symmetric property of 4(x), the terms with odd powers of y 
will go to zero in the exponential order of b. Thus, only the terms with even 
powers of y remain. By using the l7H6pital rule, we obtain 

c 3c2 C 
SADT = -

2cs2 

3c2 6c 15c3 

- ih* (I + 3)- 6b6(l -6) 
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By substituting the asymptotic optimal value c* = 0.5117 into the above form, 
we get the approximate formula for SADT as 

The approximation for b* is obtained by expanding I , ~ [ ~ ( x ) ] - ' @ ( x )dx  in the 
form ( l / b ) [ 4 ( b ) l - ' [ l+ . . . I as b + co and then solving 

We carried out a numerical check and found the approximation for P* quite 
satisfactory. However, it can be seen that the approximation for SADT is not 
good for small T because of the large coefficients and the lower order of 
convergence. However, we can obtain simple upper and lower bounds for 
SADT by taking the first term and the first two terms, respectively. The next 
theorem gives the results for small T .  

THEOREM For the EWMA procedure, as T + 0 ,  the optimal value P* 4. 
approximately satisfies 

and the corresponding m in imum SADT is approximately 

SADT .= A * T ( l  + o ( l ) ) ,  

where 

a* = /" [ [ m x ) ]- ' @ ( x )  dx  
0 

and b* is the m in imum point for 

( [ 4 ( u ) 1 ' / ~rn4 ( ~ ) / ~ [ 4 ( ~ ) 1Y - ' @ ( X I  d x d ~ d ~-

A* = min 2 
b 

PROOF. The proof is similar to Theorem 3. We first note that j3: -+ co. 

Otherwise, as in the proof of Theorem 3, we may assume that p -+ c < co for 
notational convenience. If po -+ 0 ,  then it is easy to see that b + 0.  Hence, as 
in the proof of Lemma 2, we get 

Similarly, if Po + c, a finite constant, then we can easily show that the SADT 
also goes to a constant, which is not the optimal choice. 
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Next, we show that Top:  -+ a > 0. As in the argument above, we show that 
T o p odoes not go to either zero or infinity. We only give the details in the first 
case. If ToPo-+ 0, then since Po -+ a ,  

b .= ToPo -+ 0 
and thus 

Hence, 
SADT-- 1--

To 6 2 ~ o T o  
-+ 

which is not the optimal choice either. 
Now by taking T o p o-+ a > 0, that is, 

with fixed b. Then, we have, 

I jU ~ ( Y Ij b ~ d ( ~ ) ~ - l ~ ( ~ )d ~ d ~ d u
To 0 -m

SADT .= - Y 

6' 2 

( [ 1 6 ( x ) l  - ' @ ( X I  d x )  

Thus, if we choose b such that it minimizes the ratio of the two integrations, 
we obtain the optimal value of P and the minimum value for SADT. 

3.3. The case of 6 unknown. The above discussion and results are based 
on the assumption that 6 is known. Now we consider the case in which 6 is 
unknown. In other words, we study in this subsection the effect of the true 
unknown p on the wrong choice of 6,  usually called the reference value. 
Suppose that the value P* is the optimum choice corresponding to the 
reference value 6 when the true shift is in fact p. We shall write ARL, and 
SADT, to denote the average run length and SADT when the true shift value 
is p. Using the method of Section 2, we can obtain: 

THEOREM5. For the EWMA procedure, as T -+ a, 

log(' - (%44@)b*2 - s2 1
SADT, = ,-' [ 2c*6 I - ( a / , ) r ~ " Y  + ~("i] 

for p2 > c*a2 

for p2 < c*a2, 
where c* and b*' are as given i n  Corollary 1. 
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PROOF.The proof is similar to that of Corollary 1.We first consider the 
case in which p2 > S2c*. In this case, b* - p d m  + -m.  Thus, for fixed y, 

= log 

Hence, 

In the case of p2 < 6 2 ~ * ,we note that as T --+ m, b* -pdm--+ m. Thus, for 
fixed y, 

The results are obtained by substituting the above approximation into (2). 

REMARK1. From Theorem 4, we know that as T + 0, the asymptotic 
result for SADT has the same form up to the first order no matter what the 
true shift value is. 

4. CUSUM and Shiryayev-Roberts procedures. In this section we 
briefly give the results on CUSUM and Shiryayev-Roberts procedures. Several 
results are known and some are derived. We first consider the case in which 6 
is known. 

4.1. 6 known case. In this subsection, we briefly study the other two 
procedures for the case of known 6. Suppose the control limits for the CUSUM 
and Shiryayev-Roberts procedures are d and T, respectively. The exact 
formulae for ARL, and SADT can be obtained similarly as for the EWMA 
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~rocedure.For the CUSUM procedure, we need to use Lemma 1with a = -d ,  
b = d .  For the Shiryayev-Roberts procedure, we let a = 0 and b = T. 

THEOREM For the CUSUM procedure, 6. 

6 - a 2 d 2- (26d + 3)ePsd+ (26d - 3)esd
SADT = 

a2(esd- ( 1  + a d ) )  

As T + 0, 

SADT = gT(1 + 0 ( 6 2 T ) ) ,  

ARL, = ~ ( 1j\lsZT + o ( ~ ~ T ) ) ,-

and as T + m, 

ARL,=, log- -
6i 1 + o(& log?)). 

ARLO and ARL, for the CUSUM procedure are well known [see Taylor 
(1975)l. SADT for the CUSUM procedure is new. Similarly, we can obtain the 
corresponding results for the Shiryayev-Roberts procedure, see Shiryayev 
(1963) or Pollak and Siegmund (1985). 

THEOREM For the Shiryayeu-Roberts procedure, 7. 
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and as T + co, 

4.2. 6 unknown case. In this subsection, we discuss some asymptotic 
properties of the CUSUM and Shiryayev-Roberts procedures. There is no 
basic difficulty to obtain the exact formulae for ARL, and SADT, by using the 
method of Section 2. However, for the purpose of comparison, we only give the 
second order approximation. 

We consider the general change point problem mentioned in Section 2, for a 
diffusion process 5,. If 5, has a proper stationary density function ~ ( z )  when 
there is no change point, that is, 

then we have the following lemma. 

LEMMA4. Suppose 5, is a diffusion process with an interval range [L,U ] .  
Then if its stationary density function ~ ( z )  exits and is proper, 

T(Z)  = lim lim cro(zlx), 
a+L b + U  

where a and b are the exiting boundaries. 

The proof is beyond the scope of this paper but can be proved directly by 
using the Green function or on the lines of Pollak and Siegmund (1985). 

From this lemma, we know that as ARLO + m, the corresponding control 
limit for each procedure will go to co. Thus, from Lemma 1 of Pollak and 
Siegmund (1985), we know that SADT and CADT(co) have the same first order 
approximation as T -+ a .  Therefore, the asymptotic results for the CUSUM 
and Shiryayev-Roberts procedures will be the same in the first order. These 
results are given in Theorems 1 and 2 of Pollak and Siegmund (1985). For 
later comparison, we list the corresponding results for SADT in the following 
theorem. 

THEOREM (i) For the CUSUM procedure, as T + m,8. 

SADT, = 
1 I6 d - 1 -

s2 
6(P - 8/21 2l-42~1.- 6) 
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(ii) For the Shiryayev-Roberts procedure, as T --+ m, 

6 
SADT, = [ l o g s  - 0.5772 -

S(P - 8/21 2 (2(P - 6/21) 

6 
for p > -

2 

REMARK2. AS in the case of EWMA procedure, it can be shown that as 
T -, 0, the SADT for the two procedures will have the same first order 
expansions no matter what the true value of the shift is. 

5. Comparisons. In this section, we compare the three procedures. As 
showed in Theorem 2, we shall not compare the ARL,'s since it is not a 
comparable measure for the average delay time in our discussion. We shall 
therefore concentrate on the comparison of SADT's. The comparison for the 
case in which 6 is known will be considered separately from the case of 6 
unknown in the following two sections. 

5.1. 6 known. First we give some analytical comparisons. It is known that 
both the CUSUM and Shiryayev-Roberts procedures have some optimal prop- 
erties in certain sense. The CUSUM procedure, as shown by Lorden (1971) 
and further by Moustakides (1986), minimizes the essential supremum of 
CADT(t) in t. This minimum value coincidently turns out to be ARL, for both 
the CUSUM and Shiryayev-Roberts procedures. Therefore, the CUSUM pro- 
cedure has smaller ARL, than the Shiryayev-Roberts procedure. However, for 
the EWMA procedure this coincidence does not happen. This is partially a 
reason why ARL, is not comparable in general. 

On the other hand, the Shiryayev-Roberts procedure minimizes the SADT. 
Pollak and Siegmund (1985) made another comparison with the CUSUM 
procedure based on approximated values of ARL, and CADT. Their results 
show that there is very little difference between the two procedures. The same 
conclusion can be obtained from a SADT comparison based on the results of 
Theorem 8 as T -+ a.However, we should note that for small T,  the 
Shiryayev-Roberts procedure becomes much better than the CUSUM proce- 
dure. 

We have shown in Theorem 3 that as T -,m, the EWMA procedure is not as 
efficient as the other two procedures in the first order of log T. For the EWMA 
procedure, the coefficient is 2.4554, while it is 2 for the other two procedures. 
However, if we take into account the remaining term, that is, up to the 
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TABLE1 
Comparison of SADT's with 6 known 

EWMA CUSUM Sh-Rob 
T 6 P* b* SADT d SADT SADT 

constant term, we can see that for the EWMA procedure, the remaining term 
is much smaller than those of the other two procedures. This can be verified by 
using the results of Corollary 1. This means that for moderate values of ARLO, 
the difference between the EWMA procedure with the other two procedures 
will be reduced. However, we should note that for the EWMA procedure, the 
remainder term in the approximation is of the order of l/log To, while for the 
other two procedures, the approximations are accurate to the order of 
log To/To. Thus, the approximation for the EWMA procedure is less accurate 
than for the other two procedures. Also, for small T, the EWMA procedure 
becomes less efficient than the other two procedures although this case is not 
of practical significance. 

To show these results, we give some numerical comparisons based on the 
approximations as well as on the exact evaluations of SADT's for the three 
procedures. Table 1gives the values of SADT with T = 100 and 500 for the 
three procedures. For the EWMA procedure, we use the approximate formula 
given in Corollary 1for the optimum P .  However, the SADT is calculated from 
the exact formula given in Theorem 3. For the other two procedures, we 
directly evaluate SADT by using the exact formula. 

From the table, we observe that in the case of 6 known, the EWMA 
procedure appears to be quite competitive especially for moderate ARLo's, 
while the other two procedures are almost indistinguishable. 

5.2. 6 unknown case. In the following, we briefly consider the unknown 6 
case since we rarely know the exact shift value. One important reason for this 
comparison is to investigate the sensitivity of the three procedures to the 
choice of the reference value. The comparison for the three procedures in this 
case is much more complicated. For simplicity, in Table 2, we only give the 
values of SADT when the reference values are taken as 6 = 0.5 and 1.0 with 
T = 100 and 500. For the EWMA procedure, we choose P* and b* as the 
approximated optimal values given in Table 1. The SADT is calculated by 
using the approximation for p > 6 and exactly for p I6. It might be checked 
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TBLE 2 
Comparison of SADT with 6 unknown for T = 500 

T = 100 T = 500 

6 p EWMA CUSUM Sh-Rob EWMA CUSUM Sh-Rob 

numerically that for p > 6, the approximations are very accurate by investigat- 
ing the constant term in the approximate formula for SADT. The same 
argument also applies to the other two procedures by using Theorem 8. 
However, for p I6, the approximation is too crude to be satisfactory especially 
for the EWMA procedure. 

First, we note from Theorem 8 that the difference between the CUSUM and 
the Shiryayev-Roberts procedures is only in the constant term. Roughly 
speaking, for 

that is, p 2 1.186, the CUSUM procedure is approximately better than the 
Shiryayev-Roberts procedure, as noted by Pollak and Siegmund (1985). In the 
opposite case, the Shiryayev-Roberts procedure is slightly better. This can also 
be seen from the table. A partial conclusion from this observation is that if we 
want to balance the two procedures, we should choose smaller reference values 
for the CUSUM procedure and larger reference values for the Shiryayev- 
Roberts procedure if p is totally unknown. 

Second, it is easy to check that for p > 6@, the SADT for the EWMA 
procedure is always larger than the ones for the other two procedures in the 
first order since 

However, as we can see from the table, the difference is not significant. On the 
other hand, from Corollary 1 and Theorem 8, we see that for p < 6@, 
SADT = O(T('-( '"/ ' ) /J~)~)for the EWMA procedure, while it is O(T1-2~ /S  
for the other two procedures. Thus, roughly speaking, for p < 0.40856, the 
EWMA procedure is better than the other two procedures. The results in Table 
2 confirm this point. For example, for 6 = 1.0 and p = 0.5, the EWMA 
procedure has smaller SADT's than the other two procedures. This suggests 

1 
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that if we try to balance the EWMA with the other two procedures, we should 
choose relatively larger reference values for the EWMA procedure if the true 
shift value is totally unknown. For example, for T = 500, if the reference 
value 6 is selected as 0.5 for the CUSUM procedure, we may choose 6 = 1for 
the EWMA procedure. Under this match, the disadvantages for the EWMA 
procedure can be reduced if we compare the SADT's for all values of p .  

6. Further discussions. In this paper, we have studied the EWMA 
procedure in the continuous time case. It is shown that when ARLO + m, the 
EWMA procedure is less efficient than the CUSUM and Shiryayev-Roberts 
procedures, while the latter two procedures are almost indistinguishable. In 
the following, we discuss several points briefly. 

1. Pollak and Siegmund (1985) compared the CUSUM procedure with the 
Shiryayev-Roberts procedure under a different criterion, that is, the condi- 
tional average delay time (CADT), as defined in the introduction. A similar 
comparison can be carried out for the EWMA procedure with the other two 
procedures. Consider the general change point problem as discussed in the 
introduction and write 

po(y) dy = lim Po((, E d y l ~> t )  for a I y I b ,  
t - m  

as the quasistationary distribution for 6, under the stopping rule 7.Then 
similar to the derivation of formula (7) for SADT, we can show that 

However, exact evaluation of Po(y) for a diffusion process 6, is almost 
impossible and so is the CADT. Thus, an accurate approximation is usually 
necessary for a comparison. In our case, all three detecting processes have 
stationary distributions. Pollak and Siegmund (1986) have shown that a 
result similar to our Lemma 4 also holds for the quasistationary distribu- 
tion, that is, 

~ ( y )= lim lim Po(y).  
a+L b-U 

Obviously, this implies that CADT and SADT have the same first order 
approximations. A further investigation by using the technique in Pollak 
and Siegmund (1985) can show that the CADT and SADT have actually the 
same expansions up to the second order, see Theorem 8 for the CUSUM 
and Shiryayev-Roberts procedures. The detailed argument will appear 
elsewhere. 

2. As the referee has pointed out, as ARLO + m, the optimal P* + 0 in the 
order of l/logARLo and hence the EWMA process Yt goes to stationary 
state rather slowly. However, for this process Var,(Yt) = 1- e-2Pt which 
goes to 1 in the exponential order of t .  Thus, the process Y, will become 
stationary in an average time of order logARL,, which is very short 
compared to ARLO. On the other hand, the other two detecting processes 
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enter the stationary state in a constant average time as ARLO + m. There-
fore, compared to the other two procedures, the speed to enter the station- 
ary state is relatively slow for the EWMA procedure. 

3. 	From a practical point of view, an adjustment of the results in the continu- 
ous time case is needed in order to match it with the discrete time model. 
Some techniques for this kind of correction have been developed by 
Siegmund (1985) and have been used for the CUSUM and Shiryayev- 
Roberts procedures [see Pollak (1987) and Wu (1991)l. However, for the 
EWMA procedure, it seems that a different technique is needed since the 
process cannot be approximated by a random walk. Many efforts have been 
made to obtain closer lower or upper bound for ARLO and ARL,. Some 
crude approximation for ARLO for the EWMA procedure can be found in 
Lai (1974). Obviously, for the same control limits, ARLO obtained in the 
continuous time case is a lower bound for the discrete time model, and the 
same is true for the other two procedures. On the other hand, as ARLO -+ m, 
we know from Theorem 3 that the optimal weight factor P* goes to zero in 
the order of l/logARLo. Thus, a second order adjustment in the discrete 
time case seems unnecessary. For example, if we compare the optimal 
values of p* in Table 1 with the optimal values obtained in Lucas and 
Saccucci (1990) by numerical search in the discrete time case, we find that 
they are almost the same. 
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