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Abstract. A method to precisely determine the onset of voluntary discrete
movements in kinetic signals (e.g. joint angle) is presented. The movement onset
is identified as an abrupt change in the (time varying) parameters of a statistical
process model. An adaptive Kalman whitening filter transforms the digitized
kinetic signal into a sequence of innovations which is examined for possible
change-points by a generalized log-likelihood-ratio test. The accuracy of the
algorithm is assessed by statistical simulations and compared to the accuracy of
a standard threshold criterion. Results show that the method provides accurate
change time estimates even for weak and highly variable response profiles.

1 Introduction

An important aspect of studying motor control mechanisms in humans is the analysis
of reaction time (RT). RT (i.e., the time interval between stimulus presentation and
the instant of movement initiation) has usually been measured with mechanical
switches or photoelectric devices that indicate the onset of a voluntary motor re-
sponse. Alternatively, the movement onset may be derived from the digitized kinetic
signal by some automatic procedure (e.g., a threshold operation). However, when
using simple amplitude threshold methods, particularly weak and abnormal response
profiles which are typical for a variety of central motor disorders may introduce high
RT variability as well as systematic errors [1]. This paper describes a new method for
computerized onset detection which is based on statistical signal processing and
includes a priori knowledge on the generator process of kinetic signals.

2 The Process Model

The method is based upon the process model in Fig. 1 which was derived from the
nonlinear single-joint model established in [2]. The digitized kinetic signal is approxi-
mated by a discrete random process (Y, ), which is generated by a Gaussian white
noise process (X,), driving a linear filter H(z). The former reflects the discharge
timing and recruitment of independent signal sources involved (twitch forces contrib-
uted by single motor units), the latter describes the shape of the twitch forces as well
as the mechanical properties of the joint. A distortion component (N,), considers
measurement errors and “noise” contributed by other biological signal generators.
H(2) is modeled by an all-pole representation (autoregressive (AR) model) of order p
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. a,, ... 4, are the AR parameters and z is the complex frequency of the z-transform.

The time-domain representation of the signal generator is
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where I?k denotes the undisturbed output signal of the filter. Sequences (W), and
(N,), are uncorrelated zero mean Gaussian white noise signals with constant variances
g and ~, respectively. As an essential property of the model, the mean p(k) of the
white noise excitation (Y), is time variant. This yields the motor system the control
over the biological signal generator in order to produce a particular movement.
Within this framework, the response onset /; is defined as an abrupt change between
two time varying profiles p (k) and p,(k, #,), as illustrated in Fig. 1.
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Fig.1 Process model for the kinetic signal of a responding subject.

3 The Algorithm

The properties of the sequence (1), are fully described by the (time varying) vector
M = [al ay = Ay g u(k)]T 3)

comprising the parameters of the process model in Fig. 1. Thus, statistically optimal
onset detection can be achieved with the aid of a binary hypothesis test between the
two statistical models M and M, which describe the signal properties before and
after the change, respectively. The method consists of two stages, (i) an adaptive
whiltening filter H (z), and (ii) a statistical decision element, as illustrated in Fig. 2.
The whitening filter /7 (z) adapted to the M, model transforms the measured signal (¥,),
into an uncorrelated (,white®) sequence (&,), of innovations. The new series (&),
sensitively reflects deviations of (¥, ), from the M, model. It is examined by a
deeision rule based upon the log-likelihood ratio test, which signals a possible change
in model parameters (alarm time 1)) and, in addition, computes an estimate t; of the
unknown change time #,.

3.1 The Adaptive Whitening Filter
The properties of (Y, ), are determined to a large extend by the transfer function

H(z). According to the model, however, the change 1o be detected predominantly
affects the excitation (¥,),, whereas //(z) remains comparably constant.
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adaptive whitening filter
Fig. 2 Detection scheme [or the deterrmination of the response onset

This implies that all the information for event detection available in (Y, ), is com-
prised by the mean prolile g¢k) of the excitation, but the information contained in the
AR parameters @, is not relevant for correct detection of changes. In order to remove
this irrelevant component trom the signal before it enters the decision stage, an

adaptive whitening filter is used. The filter with transfer function
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transforms the measured sequence (1), into a new series (&), called ,the innova-
tions®. The filter coetficients are related to the M, model according to
el — 1)+ 1 when 1zi<p
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where L = [1 L, ---lp ] is the steady state Kalman gain vector which depends upon
the variances g and » of the process model [3].
Under noise free conditions ( # =0), (4) reduces to a pure moving average (MA) filter
Hiz)=1+¢z Ly 0y 2 % tC, 7 r ()
Thus, for ¢, =a, and =0, the whitening filter represents an ideal inverse filter
H (z) = H ™(z) with respect to the transfer function H(z). The excitation (X,), can
completely be reconstructed and the detection task reduces to the detection of a
change in the dynamic mean p(k) of a series of statistically independent Gaussian
random variables with variance ¢. For >0, the filter still produces an independent
Gaussian sequence, but with different mean profile g (k). Sincep “(k) can be obtained
by filtering u (k) with a filter

H(2) = ;
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detection for »> 0 can be performed as in the ideal noise-free situation by using the
modified (filtered) profile u (k).

Usually, the parameters of the M, model are unknown. In this case, the coetticients b,
and ¢, of the whitening filter are individually determined from the pre-stimulus
interval &~ which, by definition, only contains data produced by the M, model. As
illustrated in Fig. 2, before stimulus presentation (k <f)), model parameters are
subjected to a standard least squares optimization technique [3]. At & ~f_, optimization
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is stopped and a filter with constant parameters is used to compute the innovations
(&, ), for the remaining part of the record.

3.2  The Decision Element

From a statistical point of view, event detection represents a binary testing problem
between the null hypothesis H, saying “there is no change in the statistical properties
of the sequence ¢,,¢,, ¢, actually observed and the mean profile is [ (i) for all
times 1xi~k“, and the alternate hypothesis H,“there is a change in statistical
properties at some unknown change time 1=j <k, and the mean profiles are (i)
before and W,(i, j) after this change”. The adequate tool for binary hypothesis testing
is the log-likelihood ratio test which compares the logarithm of the ratio between the
two joint probability density functions for either hypothesis with a threshold [4]. The
implementation of the test depends on the knowledge about (i) and ,(i,j) .
If the model parameters (except t;) are exactly known, the test can be efficiently
implemented as a CUSUM type decision rule by comparing the cumulative sum
k Py, (&])
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of the log-likelihood ratios S(j) of the single samples with a threshold h [4]. puo(si)
and pul(si ,j) are the probability density functions of the i -th random variable betore
and after a possible change at j , respectively. Assuming a Gaussian density distribu-
tion, the individual log-likelihood ratio is explicitly given by

oG] - () 1, . .
s0) = ———— |& - = (0D * 1)) )
o2 2
whereo? is the (constant) variance of the process, and (i) and p,(i,j) denote the
mean profiles before and after a change at | , respectively. Since the exact change
time in (8) is unknown, it is replaced by its maximum likelihood (ML) estimate, i.e.,
a maximum operator selects the largest value of the test function with respect to all
possible change times 1 ~j <k. The resulting CUSUM detection rule is
t, = min{ k=1: max§* > h} . 1, = arg max gta
1=k 1sj =ty

.- : (20)
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The data sequence is analysed by a growing observation window which comprises all
data points available at time K. A test window with the upper bound Kk fixed at the
current observation and with its lower bound j proceeding reversely in time is
applied to the data. For each possible change time j , S is computed from the
observations R within the test window. If the maximum of %k with respect
to all hypothetical change times 1xj~k exceeds the threshold h, an event alarm is
given (alarm time t_). The time | at which the maximum value is obtained serves as
the maximum likelihood estimate t; of the unknown change time t,.
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In case the exact profiles (i) and p,(i,J) are unknown, they must be replaced by
appropriate estimates. Generally, the mean profiles will depend upon several parame-
ters #, and @, associated with the actual movements before and after the change,
respectlvely Estlmates 0 of the unknown parameters, before change can be
obtained off-line from the pre-stimulus interval which, by definition, contains signal
samples corresponding to the null hypothesis only. During detection, these parameters
then are considered to be known. Estimates [91 of the unknown parameters @, after
change, however, must be computed individually for each possible change time
1 ~j <k, at each time k a new data point is available. In order to avoid the multiple
scheme of growing test windows of such a generalized likelihood ratio (GLR) proce-
dure, an approximated GLR decision rule (AGLR) was used, which splits the detec-
tion procedure into separate phases of detection and change time estimation. During
detection, a sliding window of fixed size L is continuously shifted along the data
sequence. For each location of the window, the ML estimate 9 of the unknown
parameter vector 6, is determlned from the L data points covered by the window,
and the correspondmg % L., 18 computed. After a change has been indicated, the
exact change time is estimated off-line by a ML procedure from all possible candi-
dates 1=j =t . The AGLR decision rule can be summarized as
t, = min/kzd: .. =>h / t, = arg max51
14,
11)

X = (0,0, —pg() 1, . .
SJk = Sél’,llpé‘ % |:8i _E ((11011101) +|J'0(I)/

The quantities d and d* are appropriate dead zones confining parameter estimation
to a minimum number of observations.

In this study, the shape u(i,j) of the change in the innovations was assumed to be
known but with its exact magnitude unknown, i.e., W,(i,j, #;) = 6,u(i,j). In this case,
maximization with respect to 6, is explicitly possible, and the log-likelihood ratio in
(11) can be written as

~ K + K
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which facilitates efficient implementation of the test.

(12)

4 Simulation Results

The method was tested on 4000 simulated kinetic signals each comprising 1000 data
points with known change time t,=500. Signals were produced by using pseudo-noise
sequences driving an AR system H(Z) of order p=4 with narrow band transfer
characteristic. The movements were initiated by ramp-like impulses in the mean
pattern p(k) with randomly varying magnitude and slope. The AGLR method was
implemented using a ramp template with unit slope (u(i,j) =i -j) and a test window
size of L =25 samples. Fig. 3 depicts histograms of the estimation error A = fo -, for
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several onset detectors. The AGLR method was compared to a simple (adaptive)
threshold (ST) criterion. In addition, results of the CUSUM method exactly tuned
with the true profiles p,(7) and p,(i,/) are shown as a reference for optimal perfor

mance. The ST method employed an adaptive threshold: event alarm occurred when
the current sample Y, exceeded three times the standard deviation of (Y,), estimated
from the pre-stimulus period k<£ . The broad shape of the error distribution of the
ST method indicates highly variable onset estimates for this standard detection crite-
rion. By contrast, the small error variance of only few samples indicates precise onset
estimates of the AGLR method being nearly as accurate as those obtained with the

(optimal) CUSUM detector.
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Fig. 3 Histograms of estimation error for difterent detection methods
5 Discussion

Inclusion of a priori knowledge on the biomechanical generator process of kinetic
signals significantly enhances the accuracy of detected movement onsets. When the
parameters of the process model are exactly known, the CUSUM detector can serve
as a reference criterion, e.g., in order to assess the performance of more , realistic™
methods by statistical simulations. When the exact model parameters are unknown,
the AGLR method still provides high detection power by computing appropriate
estimates of the unknown parameters.
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