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Abstract

Several individuals control chart schemes are contrasted for the problem of monitoring the mean
and variance of a normal process variable, with special consideration given to monitoring process
analyzers, suchaselectrochemical devices, chromatographs,potentiometers, refractometers, andspec-
trometers. The combination of the exponentially weighted moving average (EWMA) chart and the
ShewhartX chart that uses a variable sampling interval (VSI) policy is shown to be very effective
for this problem. We develop a comprehensive economic model for the design of control schemes
based on this chart combination. The economic model expresses the long-run cost per time unit of
operating the combined VSI EWMA and VSIX chart scheme as a function of its design parameters,
the parameters that describe the behavior of the process, and the cost parameters associated with the
operation of the scheme. This economic model can be used to quantify the cost reduction that can
be achieved by using the combined VSI scheme instead of traditional control schemes that use fixed
sampling rates. We show that the reduction in cost as well as gains in performance are substantial.
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1. Introduction

Statistical process control (SPC) refers to a collection of statistical methods used ex-
tensively to monitor and improve the quality and productivity of industrial processes and
service operations. SPC primarily involves the implementation of control charts, which are
graphical devices widely used to monitor manufacturing processes to quickly detect any
change in a process that may affect the quality of the output. The most commonly used
types of control charts are the Shewhart charts, proposed by Shewhart[46], the cumulative
sum (CUSUM) charts, initially investigated by Page[28], and the exponentially weighted
moving average (EWMA) charts, originating in the work of Roberts[40]. Lai [15] and
Stoumbos et al.[54] give reviews of developments in the theory and application of control
charting methods.
The traditional practicewhenapplying a control chart is to usea fixed sampling rate (FSR)

and takesamplesof fixedsizeat fixedsampling intervals. In recent years, however, it hasbeen
shown that the statistical performance of control charts can be greatly improved by varying
the sampling intervals or sample sizes as a function of the data taken from the process.
The basic idea is that sampling should be more intense whenever there is an indication of a
problemwith the process and less intensewhen there is no such indication.Theseadaptive or
variable sampling rate (VSR) control charts aremore efficient than traditional FSR charts in
that they provide faster detection of process changes for a given average sampling rate. The
increased efficiency of VSR charts can also be used to reduce the sampling effort necessary
to provide a required detection capability. For a survey of work on adaptive control charts,
see Tagaras[56].
Process analyzers, such as electrochemical devices, gas and liquid chromatographs, po-

tentiometers, refractometers, and spectrometers, constitute a vital component of the elec-
tronics, chemical, petrochemical, polymer, and semiconductor industries. Monitoring the
performance of analyzers so to ensure that they are calibrated, validated, and operating as
expected is critical in meeting international standardization requirements, such as those set
forth by the American Society for Testing and Materials (ASTM), the American National
Standards Institute (ANSI), and the International Organization for Standardization (ISO).
For additional information on process analyzers and standards, see[5,6,18,27].
The objective of this paper is to develop a very effective, adaptive control chart scheme

for monitoring the mean� and variance�2 of a normal random variable, with special
consideration given to the problem of monitoring the performance of process analyzers.
The paper is divided into twomajor parts. In the first part, several individuals FSR andVSR
control charts are reviewed and contrasted for the problem of monitoring� and�2. The
combination of the EWMA chart and the ShewhartX chart that uses a variable sampling
interval (VSI) policy is shown to be very effective for this problem from the perspective of
statistical performance.
In the second part, a comprehensive economic model is developed for the design of

combined VSI EWMA and VSIX control chart schemes. The economic model expresses
the long-run cost per time unit of operating the combined scheme as a function of its design
parameters, the parameters that describe the behavior of the process, and the cost parameters
associated with the operation of the scheme. This economic model can be used to quantify
the cost reduction that can be achieved by using the combined VSI scheme, instead of
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traditional control schemes that use fixed sampling rates. We show that the reduction in
cost as well as gains in statistical performance are substantial and illustrate these facts with
numerical results and a detailed example.
Although there is extensive literature on the economic design of traditional FSR control

charts (see[12,14,23], and numerous references therein), very little work has been done
on the economic modeling and design of adaptive control charts (see[7,29,30]). This is
especially true for themore complex andgenerallymore realistic problemof simultaneously
monitoring� and�2 that we investigate here, with special consideration given tomonitoring
the performance of process analyzers.

2. Development of control schemes and statistical performance evaluation

2.1. The relationships between different types of adaptive control schemes

The output of a process analyzer is usually represented by a normal random variableX.
The mean� (level of bias) and variance�2 (level of precision) ofX are commonly used to
determine the performance of an analyzer. This performance can bemeasured during several
different types of evaluation, such as calibration, validation, and comparisonwith laboratory
results. The way in which an observation is taken depends on the type of evaluation, but
for the common types of evaluation a single observation is typically taken at each sampling
point. In practice, the minimum time before another analyzer observation can be taken
is determined by scheduling considerations and is usually on the order of one day. The
process observations taken at each sampling time will be assumed here to be independent.
The control scheme often used to monitor the mean� of an analyzer is a combination of
a Shewhart chart of the individual observations (X chart) used together with an overlay of
an EWMA chart for�. A Shewhart moving range chart (MRchart) is often used to monitor
the variance�2 of an analyzer.
In general, the VSR idea can be applied to monitor the mean� and variance�2 of a

process using several different adaptive approaches. One approach is to use a VSI chart,
which varies the time interval between samples as a function of the process data. A second
approach is to use a variable sample size (VSS) chart, which varies the size of the samples
taken. A third approach is to apply a sequential probability ratio test (SPRT) at specified
sampling times. These adaptive approaches can also be used simultaneously in various com-
binations, depending on the practical sampling limitations associated with the application
under consideration (see[56] and references therein).
A VSS control chart would generally not be appropriate for monitoring analyzer perfor-

mance. This type of adaptive control chart assumes that samples of sizen >1 can be taken
at some of the sampling points. With advance notice, it might be possible to obtain more
than one observation at a sampling point, but it is not clear that this could generally be
justified. Thus, if it is assumed that a single observation will be obtained at each sampling
point, then a VSS chart could not be applied to monitor analyzer performance.
Ideally, for an SPRT or generalized SPRT (GSPRT) control chart to be at its best, a

sample of more than one observation should also be taken at each sampling point (see
[34,49–51,53]). If a relatively long time period is required to obtain each observation or
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sample, then the performance advantage in applying an SPRT or GSPRT chart may be
reduced in that the SPRT-based chart would behave and perform similarly to a VSI control
chart (see[49,53]).
With a single observation at each sampling time, a VSI control scheme appears to be the

best way to gain the advantages of the VSR feature. After each observation is obtained, a
decision ismadeabout the timeduration until the next observation. If the current observation
is close to the target, then the decision will be to wait a relatively long time until the next
observation. On the other hand, if the current observation is not close to the target (but still
within the control limits), then the decision will be to take the next observation as soon as is
feasible. The integration of the adaptive,VSI feature into the combination of the ShewhartX
chart and the EWMAchart will be discussed after the issues of optimality and ofmonitoring
the process variance have been considered.

2.2. The relationship of optimality results to the process monitoring problem

There are a number of optimality results associatedwith statistical tests andprocessmoni-
toring.A question of interest is how these optimality results relate to the process-monitoring
problem being considered here. For the problem of hypothesis testing, the optimal test of a
simple null hypothesis versus a simple alternative hypothesis is the SPRT (see[47]). This
means that among all tests that have a given probability of a type I error and a given proba-
bility of a type II error, the SPRTwill, on average, require the fewest number of observations
to reach a decision.
The application of aCUSUMcontrol chart is equivalent to applying a sequence of SPRTs.

Eachof theseSPRTs in theCUSUMchart tests thenull hypothesis that theprocessparameter
being monitored is at its in-control or target value against the alternative hypothesis that the
process parameter has shifted to a specified out-of-control value. When an SPRT accepts
the null hypothesis that the process parameter is on target, then the CUSUM chart starts
another SPRT at the next sampling point. However, if an SPRT rejects the hypothesis that
the parameter is on target, then this is taken as a signal generated by the CUSUM chart. The
FSR CUSUM chart is the optimal FSR control chart in the sense that it provides the fastest
detection of a specified process shift among all control charts that have the same long-run
average false-alarm rate (or simply, false-alarm rate) when the process is on target.
Most optimality results for adaptive control charts are concerned with the optimal choice

of sampling intervals in VSI charts. It has been shown that an optimal choice of sampling
intervals inaVSI control chart is touseonly twopossible sampling intervals (see[31,32,48]).
This choice is best in the sense that it minimizes the average time required to detect a
specified process shift, for a given false-alarm rate and a given in-control average sampling
rate.
As developed by Stoumbos and Reynolds[50], the SPRT chart applies an SPRT to the

individual observations taken at each sampling point, employing a fixed sampling interval
(FSI) between the sampling points. The fact that an SPRT is the optimal test implies that
the SPRT chart is the optimal adaptive FSI control chart. The SPRT chart is optimal in the
sense that it minimizes the average time required to detect a given process shift among all
control charts that have the same false-alarm rate and the same in-control average sample
size at each sampling point. However, as discussed in the previous section, the SPRT chart
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does not generally apply to the analyzer-monitoring problem, because a single observation
is usually taken from an analyzer at each sampling point.
For the case of a single observation taken at each sampling point, it appears that an

optimal adaptive control chart would be a VSI CUSUM chart or a GSPRT chart. However,
the VSI EWMA chart of the process observations will be considered in this paper. It has
been shown that an EWMA chart has approximately the same ability to detect process shifts
as a CUSUM chart (see, for example,[37,43]). Thus, it appears that the VSI EWMA chart
will have statistical properties that are very close to the best attainable properties. In the
context of FSI charts, Lucas and Saccucci[20] and Stoumbos et al.[55] reported that the
properties of the EWMAandCUSUMcharts were close enough that a choice between them
could be based on other considerations, such as ease of interpretation. The EWMA control
chart is naturally two-sided and perceived to be easier to interpret by many practitioners.

2.3. Monitoring the process variance

In SPC, the traditional approach tomonitoring the process variance is based on the ranges
of the samples taken from the process.When only one observation is taken at each sampling
point, it is not possible to use ranges computedwithin the samples, so themoving range (MR)
of two successive individual observations is frequently used. In particular, the ShewhartMR
chart is based on plotting the control statistic

Rk = |Xk − Xk−1|, k = 2,3, . . . ,

whereXk is the observation taken at sampling pointk, k = 1,2, . . . . A signal is generated
that the standard deviation� has increased ifRk exceeds the upper control limit

hR�0,

where�0 is the in-control value of�. In most applications, the chart parameterhR is
determined to yield specified statistical properties when the process is in control. A lower
control limit can be introduced if it is desirable to detect decreases in� (see[35,36]).
For the problem of monitoring the process mean� and variance�2, a number of re-

searchers: Nelson[26], Roes et al.[41], Rigdon et al.[39], Albin et al. [2], Amin and
Ethridge[3], Stoumbos and Reynolds[52], and Reynolds and Stoumbos[35–37]have ar-
gued that there is essentially no advantage to using theShewhartMRchart with theShewhart
X chart. TheMRchart will be considered in this section because it is the traditional control
chart for monitoring�2 and is currently in widespread use. It will be argued below that the
X chart is better than theMRchart for detecting changes in�2.
The ShewhartXchart is based on plottingXk versusk, k =1,2, . . . , and a signal is given

at sampling pointk if Xk falls outside of control limits constructed at

�0 ± hX�0,

where�0 denotes the target value for�. In practical applications, the chart parameterhX is
usually taken to be equal to 3, to give the standard “three-sigma” control limits.
From the definition of its control limits, it follows that the ShewhartX chart signals at

sampling pointk if |Xk −�0| > hX�0. That is, theXchart is equivalent to a control chart that
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signals at pointk if (Xk − �0)
2 > h2

X�2
0. The statistic(Xk − �0)

2 has a nice interpretation
as the squared deviation of the observation from the target. For the problem of monitoring
�, this statistic can also be justified from the statistical theory of hypothesis testing. When
a single observation is available from a normal distribution with specified mean�0, the
uniformly most powerful test for the variance is based on the statistic(Xk −�0)

2 (see[17]).
Thus, it follows that the best individuals Shewhart control chart for detecting a shift in the
process variance is the control chart based on(Xk −�0)

2, and this chart is equivalent to the
X chart. That is, theX chart is the best Shewhart chart for detecting a shift in�, even though
theX chart is usually regarded as a control chart for detecting shifts in�. The superiority of
theX chart over theMRchart will be illustrated with some numerical results given below.
The performance of a control chart is traditionally evaluated using the average run length

(ARL). TheARL is the expected number of samples taken until the chart generates a signal.
When the process is in control, the ARL should be large so that the rate of false alarms is
low. When the process changes to an out-of-control state, the ARL should be small so that
this out-of-control state is quickly detected. For example, when the process is in-control,
a ShewhartX chart with three-sigma limits has an ARL of 370.4. This means that if the
process remains in control, the false-alarm rate will be one false alarm in every 370.4
samples, which in the case of theX chart would be individual observations. This can be
expressed as a false-alarm rate of 1/370.4= 0.0027 false alarms per sample. On the other
hand, if the process mean� shifts from�0 to �0 + 2�0, then the ARL of theX chart is 6.3.
This means that it will take on average 6.3 samples to detect this shift in�. If the process
standard deviation� increases from the in-control value of�0 to 2�0, then the ARL of the
X chart is 7.5. Thus, on average, it will take 7.5 samples to detect a 100% increase in the
process standard deviation.
When attempting to choose one of several different control chart schemes to use in a

particular application, it is useful to determine which scheme will be fastest at detecting
process changes that are of interest. In this case, the control chart schemes can be compared
by adjusting their individual control limits so they all have the same in-control ARL. Then,
the ARLs can be compared for various out-of-control situations to see which chart or chart
combination will be faster at detecting these out-of-control situations. The in-control ARLs
of the control schemes should bematched to be the same to ensure that the schemes have the
same false-alarm rates, so that a fair comparison of their out-of-control ARL performance
can be made.
In order to compare the performance of theX chart to that of theMRchart for detecting

shifts in�, the control limits of theMRchart were adjusted to give the same in-controlARL
of 370.4 as theX chart. Columns 2 and 3 ofTable 1give ARL values for the ShewhartX
andMR charts for a wide range of values of�/�0. The ratio�/�0 expresses the units-free
size of a shift in�, with �/�0 = 1 corresponding to the in-control case� = �0. These ARL
values were computed as described in[35,52]. The results inTable 1show that theX chart
will detect shifts in� faster than theMR chart. Thus, when theX chart is being used there
is no good reason to add theMRchart for purposes of detecting increases in�.
When theX chart is applied together with an EWMA chart, the EWMA chart will be

sensitive to shifts in� and theX chart will be sensitive to shifts in�. TheX chart will also
be sensitive to large shifts in�. Thus, the question arises of how to determine whether a
signal by theX chart is due to a shift in�, a shift in�, or possibly a shift in both� and�.
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Table 1
ARL values with chart parameter values for Shewhart and EWMA charts for monitoring�

Size of shift Shewhart EWMA-SDT

�/�0 X chart MRchart � = 0.1 � = 0.2

1.00 370.4 370.4 370.4 370.4
1.50 22.0 25.2 14.4 16.0
2.00 7.5 9.3 6.0 6.1
2.50 4.3 5.6 3.9 3.9
3.00 3.2 4.1 3.0 2.9
5.00 1.8 2.3 1.8 1.8
8.00 1.4 1.6 1.4 1.4

hX 3.000 — — —
hR — 4.215 — —
hS — — 3.432 4.112

In theX chart, the pattern of points produced by a shift in� would tend to be different from
the pattern produced by a shift in�. In particular, a shift in� will result in observations that
tend to fall on one side of�0, while an increase in� will result in observations that tend to
fall on both sides of�0, but at an increased distance from�0. Thus, the pattern of points
on theX chart can be used as a graphical diagnostic aid. For extensive discussions on such
diagnostic issues, including discussions based on probabilistic arguments, see[35,37].
TheX chart is a Shewhart chart, and thus it will not be as sensitive to small shifts in�

or � as a CUSUM or EWMA control chart. If theX chart is used with an EWMA chart
of the observations, then this combination will be effective for detecting small shifts in�.
However, if it is important to detect quickly small shifts in�, then a CUSUM or EWMA
statistic could be considered (see, for example,[37,38]). One such statistic for� is the
EWMA of the squared deviations from target (EWMA-SDT) (see, for example,[9,22,45]).
In particular, the upper one-sided control statistic of the EWMA-SDT chart for detecting
increases in� can be written as

Sk = (1− �)max{Sk−1, �2
0} + �(Xk − �0)

2, k = 1,2, . . . ,

where� is a smoothing parameter satisfying 0< ��1 and the starting value is usually
S0 = �2

0. A signal is given at samplek if Sk exceeds an upper control limit set at�2
0 +

hS�2
0

√
2�/(2− �), wherehS is the chart parameter that determines the distance of the

control limit from�2
0.

Some ARL values were computed for two matched EWMA-SDT charts with� = 0.1
and 0.2, respectively, and are given in columns 4 and 5 ofTable 1. These ARL values were
computed as described in[35,52]. Compared to theX chart, the EWMA-SDT chart is faster
at detecting increases in�, especially for small shifts. Thus, if theX chart is used with an
EWMA chart, as is often the case in monitoring analyzer performance, the question arises
of whether also adding the EWMA-SDT chart would be worthwhile. When another chart
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is added to a monitoring scheme, there will always be an increase in the false-alarm rate. If
such an increase can be tolerated in exchange for faster detection of small shifts in�, then
in many cases one could “tighten” the control limits of theX chart by a small amount to
improve its ability to detect shifts in�. Thus, it appears that the addition of a specific third
chart for detecting small shifts in�, such as the EWMA-SDT chart, may not be necessary
in many practical situations. For extensive investigations of the properties of EWMA-STD
charts in the context of the monitoring� and/or�, see[35–37,52].

2.4. Combining the X chart with the EWMA chart

The control chart scheme that wewill consider here for monitoring analyzer performance
is the combination of theX chart and EWMA chart of the observations implemented with
the VSI feature. The VSI feature can be used with one of the charts or with both charts.
The use of the VSI feature with the EWMA chart will be investigated first. Then, the use
of the VSI feature with both charts will be considered. Using the VSI feature with theX
chart alone does not appear to be the best use of this feature, so this possibility will not be
investigated.
Applying theX chart and EWMA chart together means that after an observation is taken,

this individual observation is plotted on theX chart and the weighted average of the obser-
vation and past observations is plotted on the EWMA chart. If desired, one of these control
charts can be superimposed on the other so that the information in the two charts can be
displayed concurrently. The control statistic plotted on the EWMA chart is

Yk = (1− �)Yk−1 + �Xk, k = 1,2, . . . ,

where� is a smoothing parameter with 0< ��1 and the starting value is usually taken to
beY0 = �0. The EWMA chart has control limits at�0 ± hE�Y , where�Y = �0

√
�/(2− �)

is the asymptotic in-control standard deviation ofYk, andhE is the chart parameter that
determines the distance of the control limits from�0. A number of papers in the last 20
years have considered the design and implementation of EWMA control charts (see, for
example,[8,11,20,25,55,57]). When theX chart and the EWMA chart are used together, a
signal is given ifXk falls outside of�0 ± hX�0, or if Yk falls outside of�0 ± hE�Y .

2.5. Applying the VSI feature to the combination of the EWMA and X charts

Suppose that theEWMAchart andXchart areused together andconsider first the situation
in which the VSI feature is applied only to the EWMA chart. After observationk is taken,
the time until the next observation is taken depends on the position of the pointYk plotted
on the EWMA chart. As discussed above, it is recommended that two possible sampling
intervals, one short and the other long, be used. Letd1 represent the short sampling interval
andd2 the long sampling interval, where 0< d1�d2. For example, if the minimum time
required to obtain another observation on an analyzer is one day, thend1 could be one day
andd2 might be seven days.
The decision rule for the VSI feature is based on the distance ofYk from the target�0.

The basic idea is that ifYk is close to�0, then the next observation should be taken ind2
time units, but ifYk is not close to�0 (but still within the control limits), then the next
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observation should be taken ind1 time units. To make this sampling decision rule precise,
two additional limits are set at�0±gE�Y , wheregE < hE . Then, the decision rule is to use
the long sampling intervald2 if Yk falls in �0 ± gE�Y , and use the short sampling interval
d1 if Yk falls between�0 − hE�Y and�0 − gE�Y or between�0 + gE�Y and�0 + hE�Y .
The sampling rule described above bases the decision about the next sampling interval

on the value of the EWMA statisticYk, so that the VSI feature is used only in the EWMA
chart. However, as discussed previously, it seems reasonable that theVSI feature could also
be used in theX chart. This means that the decision about the next sampling interval would
also depend on the value of the statisticXk plotted on theX chart. When it is desirable to
also add the VSI feature to theX chart, a reasonable sampling rule must be specified for
combining the VSIX chart and the VSI EWMA chart into a single control scheme.
When the VSI feature is used with theX chart, two additional limits are constructed at

�0±gX�0, wheregX < hX. Then, the decision rule is to use the long sampling intervald2 if
Xk falls in�0±gX�0, and use the short sampling intervald1 if Xk falls between�0−hX�0
and�0 − gX�0 or between�0 + gX�0 and�0 + hX�0.
When theVSIEWMAchart is combinedwith theVSIXchart, thenafter eachobservation,

both charts will specify a sampling interval to use next. A reasonable decision rule to use in
this case is to use the long intervald2 if both charts specifyd2, and use the short sampling
intervald1 if either one (or both) of the charts specifiesd1. This means thatd1 is used if
eitherYk orXk is not reasonably close to the target�0. For given values ofgE andgX, this
decision rule results ind1 being used more often than it would be if the VSI feature was
used with only one of the two charts. Thus, when using the VSI feature with both charts it
may be necessary to increasegE andgX somewhat to avoid usingd1 too often when the
process is in control.

2.6. Evaluating the statistical properties of combined VSI EWMA and VSI X charts

The ability of a control chart to detect special causes is typically evaluated by how fast
the chart detects the special causes after they occur.When a control chart uses a fixed-length
sampling interval, the expected time until the chart signals is the product of the sampling
interval and the ARL. However, when a VSI chart is being used, the expected time for the
chart to signal cannot be determined using just the ARL. Thus, for VSI charts, a separate,
direct measure of signal delay must be used. Let the average time to signal (ATS) be the
expected length of time from the start of process monitoring until a signal is generated.
TheATS provides a measure of the time required to detect a parameter change when the

change is present at the start of process monitoring. When the process is out of control,
there are two problems with using the ATS as a measure of signal-delay performance. One
problem is that the change may occur at a random time in the future, after the process has
been running for some time. In this case, the control statisticYk of the EWMA chart at the
time of the change will usually not be at its starting valueY0. A second problem is that
a change that takes place in the future may occur somewhere within a sampling interval
between successive observations.
One approach to amore realistic computation of theATS is based on the assumption that a

control statistic has reached its steady-state or stationary distribution (conditional on no false
alarms) by the time of the process change. The ATS computed under this assumption and
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from the randompoint in time that the changeoccurs is called the steady-stateATS (SSATS).
The SSATS allows for the possibility that the process change can occur between successive
sampling times.As in previouswork (see, for example,[32,33,48,49]), we assume thatwhen
a change occurs within a particular sampling interval, the time of the change is uniformly
distributed over the interval.
For an individual ShewhartX chart, the ATS and SSATS can simply be expressed in

terms of probabilities involving the normal distribution. For more complex charts such as
the EWMA chart, numerical methods based on modeling the control statistic as a Markov
process, such as the integral equation method or the Markov chain method, can usually be
used. The combined scheme based on using the EWMA chart together with theX chart can
also bemodeled as aMarkov process.When applicable, the integral equation method offers
higher accuracy for the same computational effort and is easy to apply to the VSI EWMA
chart alone. However, when the EWMA chart is combined with theX chart, the transition
density of the resulting Markov process is not continuous, and this causes problems with
the application of the integral equation method. Thus, the best method for evaluating the
ATS and SSATS for the schemes of interest here is the Markov chain method.

The Markov chain method for finding the properties of the combined VSI EWMA and
VSI X charts is based on discretizing the possible values for the EWMA statisticYk. Each
discrete value ofYk corresponds to a state of theMarkov chain. The accuracy of theMarkov
chain method depends on the number, sayr, of states used. In general, the larger the value
of r the higher the accuracy, but large values ofr require more computational effort. For
detailed discussions of the ATS and SSATS and their evaluation, see[32,33,48,49].

2.7. The accuracy of the Markov chain method for evaluating statistical properties

In applying the Markov chain method for evaluating the statistical properties of control
charts, the number of statesr in the Markov chain that are necessary in order to achieve an
acceptable level of accuracy must be determined. Thus, we will next investigate the effect
of the choice ofr.
As an example of the effect ofr, consider a combination of the VSI EWMA and FSIX

chartshX =3.0 in theXchart. This choice of three-sigma limits will give an in-controlARL
of 370.4 when theX chart is used alone. For theVSI EWMA chart, consider the parameters
hE = 2.7015,gE = 1.5704,� = 0.1, d1 = 0.1, andd2 = 1.1. The parametershE = 2.7015
and�=0.1 will give an in-control ARL of 370.4 when the EWMA chart is used alone. The
choice ofgE = 1.5704 will insure that when the VSI EWMA chart is used alone and the
process is in control, the short sampling intervald1 will be used only 10% of the time, and
the average sampling interval will be 1.0 time unit. That is, the in-control ATS of the VSI
EWMA chart used alone will be 370.4 time units. These properties of theVSI EWMA chart
were evaluated using the highly accurate integral equation method. Note that, in general, a
time unit could be any appropriate length of time, such as an hour, a workshift, a day, or
even a week.
Theproperties of the above control scheme that uses theVSIEWMAchart in combination

with the FSIX chart cannot be determined from the properties of the individual charts used
alone. For this control scheme and eight choices ofr, Table 2gives in-control ARL, in-
controlATS, and out-of-control SSATS values for�=0.5, where�=|(�−�0)/�0| denotes
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Table 2
The effect of the number of statesr on the computation of theARL,ATS, and SSATS of the combinedVSI EWMA
and FSIX charts

r ARL when� = 0 ATS when� = 0 SSATS when� = 0.5

11 176.3680 173.0352 19.4633
21 191.9770 191.1533 19.4663
31 195.2933 195.1078 19.4685
41 196.5570 196.6170 19.4716
61 197.5251 197.7791 19.4765

101 198.0571 198.3948 19.4789
201 198.2670 198.6368 19.4793
399 198.3233 198.6984 19.4795

the size of a standardized shift in�. Note that� = 0 corresponds to the in-control case
� = �0.
In Table 2, the ARL, ATS, and SSATS values stabilize asr becomes larger. In general,

the Markov chain method tends to be least accurate when� is very small andgE is very
large (see[32]). In many practical applications, the value of� would not be chosen much
below the value 0.1 used here, and the value ofgE would not be above the value used here.
Thus, for other choices of� andgE , the accuracy of theMarkov chain method should not be
worse than for the case considered here. In fact, for many applications, a value ofr between
31 and 61 would give sufficient accuracy for constructing an FSI or VSI control scheme
based on the EWMA andX charts.
In Table 2, the ARL, ATS, and SSATS values increase toward respective asymptotic

values, asr increases. This suggests using the calculated values to fit curves that can be
used to estimate the asymptotic values. We show below that the curves can be fitted using
relatively small values ofr, so that it is possible to get very accurate estimates of the ARL,
ATS, and SSATS without using large values ofr. To explain this method in more detail, let
ARL(r) be the ARL calculated for a specific value ofr (the same idea applies to the ATS
and SSATS). Then, calculate ARL(r) for several values ofr and use regression to fit the
model

ARL(r) = �0 + �1
1

r2
+ �2

1

r4
, (1)

where�0, �1, and�2 are the regression coefficients. This model will generally fit well, so
that lettingr → ∞, we obtain ARL(∞) = �0. That is, the�0 from the regression model is
an estimate of the ARL for an infinite number of states. The effectiveness of the regression
model in (1) is illustrated next for the evaluation of the ARL, ATS, and SSATS of the
combined VSI EWMA and FSIXCharts.
Consider the results given inTable 3, where the last row of this table gives the values

for r = 399 fromTable 2. The results inTable 3show that very accurate ARL, ATS, and
SSATS values can be obtained using a relatively small number of states and the regression
model in Eq. (1). The relatively small disadvantage to this approach is that the quantities of
interest must be calculated for several values ofr, which slightly increases the complexity
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Table 3
The effect of using the regression model in Eq. (1) to compute the ARL, ATS, and SSATS of the combined VSI
EWMA and FSIX charts

Values ofr ARL when� = 0 ATS when� = 0 SSATS when� = 0.5

15, 19, 23, 27 198.5485 197.6949 19.4247
17, 25, 33, 41 198.2138 198.5408 19.4671
23, 29, 35, 41 198.2217 198.1796 19.4458
25, 29, 33, 37, 41 198.4807 198.1638 19.4443
11, 21, 31, 41, 51 198.2268 198.6233 19.4748
21, 31, 41, 51, 61 198.3238 198.7349 19.4799
61, 81, 101, 121, 141 198.3293 198.6730 19.4753

399 198.3233 198.6984 19.4791

of the operation.
The ARL, ATS, and SSATS values inTables 2and3 were presented for purposes of

accuracy assessment. Their interpretation in terms of process monitoring is as follows.
When the process is in control, a false alarmwill occur on average about every 198 samples.
This corresponds to an average of about 198 time units between false alarms (recall that the
chart parameters were chosen to give an average sampling interval of 1.0 time unit when
the process is in control). If either the VSI EWMA chart or the FSIX chart had been used
alone, the false-alarm rate for either one of these charts would have been one false alarm
in 370.4 time units. This means that combining the two charts into a single control scheme
will result in an increase in the expected rate of false alarms. The SSATS of the scheme is
the expected detection time for a process shift. In particular, when the process mean shifts
by one half of the process standard deviation(� = 0.5), it will take on average about 19.5
time units to detect this shift.

2.8. Comparisons of combined FSI and VSI EWMA and X charts

In trying to decide which process-monitoring scheme to recommend for practical appli-
cations, several questions arise. One question concerns the benefit that can be gained by
using aVSI scheme instead of an FSI scheme.Another question is whether it is better to use
the VSI feature with only the EWMA chart or with both the EWMA chart and theX chart.
A third question concerns the choice of chart parameters, such as the�, d1, d2, hE , gE , hX,
andgX. In this section, we will investigate these questions, allowing the VSI feature to be
used in both the EWMA chart and theX chart.
Table 4gives in-control ATS values and out-of-control SSATS values for ten FSI and

VSI control schemes that are combinations of an EWMA chart and anX chart. The out-of-
control SSATS values are given for six values of�=|(�−�0)/�0| (corresponding to shifts
in � with �=�0) and for six values of�/�0 (corresponding to shifts in� with �=�0). The
chart parameter valueshE , gE , hX, andgX are given in the last four rows ofTable 4. The
regression method for the model in Eq. (1) andr = 21, 31, 41, 51, and 61 Markov chain
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Table 4
In-control ATS and out-of-control SSATS values with chart parameter values for FSI and VSI combinations of EWMA andX charts

FSI EWMA VSI EWMA VSI EWMA VSI EWMA VSI EWMA FSI EWMA VSI EWMA VSI EWMA VSI EWMA VSI EWMA
FSIX chart FSIX chart VSIX chart FSIX chart VSIX chart FSIX chart FSIX chart VSIX chart FSIX chart VSIXChart

Size of shift � = 0.1 � = 0.1 � = 0.1 � = 0.1 � = 0.1 � = 0.2 � = 0.2 � = 0.2 � = 0.2 � = 0.2

— d1 = 0.1 d1 = 0.1 d1 = 0.1 d1 = 0.1 — d1 = 0.1 d1 = 0.1 d1 = 0.1 d1 = 0.1
— d2 = 1.1 d2 = 1.1 d2 = 1.6 d2 = 1.6 — d2 = 1.1 d2 = 1.1 d2 = 1.6 d2 = 1.6

� �/�0 d = 1.0 d = 1.0 — d = 1.0 — d = 1.0 d = 1.0 — d = 1.0 —

0.00 1.00 198.32 198.73 198.74 199.78 199.78 203.88 204.13 204.13 204.48 204.49
0.50 1.00 25.35 19.48 21.53 15.38 17.07 32.32 26.26 28.24 21.21 23.22
1.00 1.00 8.52 5.75 6.21 4.66 4.78 8.70 5.64 6.20 4.31 4.65
1.50 1.00 4.67 3.21 3.11 2.72 2.45 4.31 2.73 2.77 2.23 2.19
2.00 1.00 2.94 2.14 1.82 1.90 1.52 2.65 1.77 1.61 1.52 1.39
3.00 1.00 1.28 1.11 0.80 1.15 0.90 1.21 0.97 0.77 0.96 0.88
5.00 1.00 0.52 0.56 0.55 0.77 0.77 0.52 0.56 0.55 0.75 0.77

0.00 1.50 17.09 16.43 15.16 16.19 13.66 16.39 15.35 14.42 14.64 12.77
0.00 2.00 6.24 5.97 5.20 6.08 4.75 6.02 5.55 4.97 5.38 4.45
0.00 2.50 3.59 3.47 2.94 3.65 2.81 3.49 3.23 2.84 3.22 2.66
0.00 3.00 2.53 2.47 2.08 2.68 2.07 2.48 2.31 2.02 2.37 1.99
0.00 5.00 1.30 1.31 1.12 1.53 1.27 1.29 1.25 1.11 1.38 1.24
0.00 8.00 0.90 0.94 0.83 1.16 1.02 0.90 0.90 0.83 1.07 1.01

hE 2.7015 2.7015 2.7015 2.7015 2.7015 2.8593 2.8593 2.8593 2.8593 2.8593
gE — 1.5704 1.8713 0.8113 1.1532 — 1.6097 1.8715 0.8276 1.1251
hX 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
gX — — 1.8713 —- 1.1532 — — 1.8715 — 1.1251
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states was used to compute the ATS and SSATS values in order to obtain highly accurate
results.
The control limits of the ten control schemes were determined so that all EWMA charts

and allX charts have in-control ARLs of 370.4 when considered as individual charts. This
means that for allX charts,hX =3.0, but the value ofhE for each EWMA chart depends on
the choice of the smoothing parameter�. The in-controlARLs of the ten combined schemes
are close to 200 (seeTables 2and 3). The short intervald1 for the VSI charts was chosen to
be 0.1 time units, and the long intervald2 was chosen to be either 1.1 or 1.6 time units. For
each individual VSI EWMA chart, the value ofgE was determined to attain an in-control
average sampling interval of 1.0 time unit. Similarly, for each individual VSIX chart, the
value ofgX was determined to attain an in-control average sampling interval of 1.0 time
unit. This results in an in-control average sampling interval of approximately 1.0 time unit
when the EWMA andX charts are used in combination. The parameter� in the EWMA
charts was chosen to be either 0.1 or 0.2. The fixed-length sampling intervald for all FSI
control charts was taken to be 1.0 time unit.
The first combined scheme inTable 4(column 3) is an FSI control scheme with� = 0.1

in the EWMA chart. Results for this FSI schemewere included for purposes of comparison.
Column 4 contains results for a combination scheme with the VSI feature in the EWMA
chart but without the VSI feature in theX chart. This scheme has� = 0.1 in the EWMA
chart,d1 = 0.1, andd2 = 1.1. Column 5 contains results for a scheme with the same�, d1,
andd2, as in column 4, but with the VSI feature in both of the charts. For the scheme in
column 5, the value ofgX was taken to be equal togE and both parameters were increased,
so that the in-controlATS is the same as that of the corresponding control scheme in column
4 that does not use the VSI feature in theX chart.
Columns 6 and 7 ofTable 4give SSATS values for the same control schemes as columns

4 and 5 except thatd2=1.6. The pattern of schemes in columns 3–7 is repeated in columns
8–12, except that� = 0.2 in the EWMA charts. The in-control ATS values for the 10 com-
bination schemes inTable 4are not precisely equal but are close enough that comparisons
between the schemes can be made.
Comparing the control schemes inTable 4with the VSI feature to the corresponding

schemes without theVSI feature shows that theVSI feature provides a substantial reduction
in the SSATS for small and moderate shifts in�. For detecting increases in�, the VSI
schemes without the VSI feature in theX chart provide only a modest decrease in SSATS
for small andmoderate shifts in� compared to the corresponding FSI schemes. However, if
theX chart is used with theVSI feature, then the ability to detect increases in� is improved
considerably. The reason for this is that theX chart is the primary chart for detecting an
increase in�. If theX chart does not use the VSI feature, then the VSI feature will not help
much in detecting increases in�. Using theVSI feature in theXchart also affects the ability
to detect shifts in�; the time required to detect small shifts is increased slightly, while the
time required to detect moderately large shifts is decreased slightly. This occurs because the
addition of the VSI feature to theX chart requires thatgE be increased in order to maintain
the same in-control average sampling interval. The EWMA chart is the primary control
chart for detecting small increases in�, and this increase ingE reduces the effectiveness of
the EWMA chart.
The conclusions fromTable 4about the VSI feature are that adding the VSI feature to
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the EWMA chart enhances the ability to detect shifts in�. The benefits of also adding
the VSI feature to theX chart are improved ability to detect increases in� and improved
ability to detect moderately large shifts in�. The disadvantages are reduced ability to detect
small shifts in� and somewhat increased complexity of themonitoring scheme. In practical
applications, the decision about adding the VSI feature to theX chart will depend on an
evaluation of the particular tradeoffs involved.
The results inTable 4can be used to assess the effects of the choice of� andd2. As

expected, using� = 0.1 is better for detecting small shifts in�, while � = 0.2 is better for
detecting large shifts in�. However,� = 0.2 is slightly better than� = 0.1 for detecting
increases in�. This result for� occurs because the EWMA chart will be most responsive
to increases in� when� is large, and the increased variability in the observations is not
averaged out as much in the EWMA control statistic. The EWMA chart is not the primary
chart for detecting increases in�, so the choice of� should not be dictated by concerns for
monitoring�.
The results inTable 4show that for detecting shifts in�, usingd2 = 1.6 is better than

usingd2 = 1.1, except for very large shifts. The same is true for detecting increases is� for
the charts that use the VSI feature in theX chart. The average sampling interval was taken
to be 1.0 when in control, sod2 = 1.6 corresponds to lower values ofgE andgX than does
d2 = 1.1. Lower values forgE andgX mean that it will be easier to use the short sampling
interval when there is a small shift in� or �. The drawback to low values ofgE andgX

is thatd1 will be used more frequently when the process is in control. In some practical
situations, this may be undesirable from a psychological point of view, ifd2 is regarded
to be the “normal” sampling interval, andd1 is regarded to be the sampling interval that
signifies a potential problem with the process.

3. An economic model for the design of combined VSI EWMA and VSIX control
schemes

3.1. Background information

Control charts aredesigned todetect changes in the systembeingmonitored. It is desirable
that a control chart detects changes quickly so that the system does not operate in an
undesirable state for a long period of time. It is also desirable that a control chart does not
produce a large number of false alarms, because false alarms lead to increased cost and
loss of confidence in the control scheme. In addition, it is desirable that the sampling cost
associated with operating a control chart be kept to a reasonable level. Designing a control
chart scheme for use in a particular application requires finding an acceptable balance
between the conflicting requirements of fast detection of system changes, a low false-alarm
rate, and a reasonably low sampling rate.
There are three basic approaches that have been used in designing control charts. The

first approach is based on heuristics that have been developed from past experience in
particular application areas. The second approach uses statistical properties of a control
chart, such as the in-control ATS (false-alarm rate) and SSATS, and designs the chart to
give reasonable values for these properties. This approach was used throughout Section 2.
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The third approach uses statistical properties of a control chart but also explicitly models
the costs associated with false alarms, sampling, and failing to detect system changes. This
third, economic design approach has a control chart constructed to minimize the long-run
average cost associated with the control chart’s operation.
An economic model for a control chart involves three different types of parameters. The

first type is system parameters describing system behavior, such as the expected time until
a system change will occur. The second type is cost parameters, such as the cost of a false
alarm.The third type is control chart parameters, suchas the values of sampling intervals and
the control limits. For a given set of system parameters and a given set of cost parameters,
the economic model can be used to determine the optimal set of control chart parameters.
In some cases, the control chart design that is optimal according to an economic model

may not be so convenient to use. For example, a sampling interval of 1.873 time units may
not be as convenient to use as a sampling interval of 2.0 time units. In other cases, there
may be subjective factors associated with the monitoring operation that are not captured
in the economic model. In these cases, the system engineers may want to evaluate a set of
designs that have been identified as being acceptable. The economic model can be used to
assess the costs associated with each design in the set, so that the tradeoffs between costs
and subjective factors may be evaluated.
Another approach to accounting for subjective factors for which it is difficult to assign

explicit costs is to place constraints on the control chart design in the optimization process.
For example, it may be difficult to assess the impact of the loss of confidence due to a control
chart that produces too may false alarms. In this case, a constraint could be placed on the
false-alarm rate of the chart. Then, the optimization procedure would find the minimal-cost
design that satisfies this constraint (see, for example,[24,44]).

3.2. The general structure of the economic model

The economic structure of the model that will be used here is analogous to that of
some models used in previous economic design studies of control charts (see, for example,
[10,12,19,23,24,44]). However, the model must be nontrivially extended to account for the
adaptive, VSI feature and the two control charts used in combination to monitor the process
meanand variance.Here, wewill develop an economicmodel for the combinedVSIEWMA
andVSIXcharts that were investigate above from the perspective of statistical performance.
The objective of the current study is to develop efficient monitoring procedures for both

the process mean� and the process standard deviation�. To avoid having to write both�
and� when referring to the process parameters being monitored, we define the vector� to
be�= (�, �), and let�0= (�0, �0) represent its target value. Suppose that the process starts
out with� at the target value�0 and� remains at this target until a special cause occurs and
produces a shift to some other value of�. The time, sayT0, until a special cause occurs is a
random variable with some specified distribution. The size of the shift in� that is produced
by the special cause is also a random variable with some specified distribution. When the
special cause occurs and produces a shift in�, it is assumed that� remains at the shifted
value until the control chart scheme signals and the special cause is found and removed.
Let T1 be the length of time that� remains at the shifted value. The distribution ofT1 will
depend on how fast the control chart scheme is able to detect shifts in� produced by the
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Fig. 1. A diagram of an in-control period followed by an out-of-control period in a process cycle.

special cause, as well as the time required to remove the special cause once it is detected.
The time required to remove the special cause may include repair and/or adjustment time.
Once the special cause is detected and removed and� is returned to�0, the process continues
at�0 until another special cause occurs. The time until this special cause occurs is assumed
to have the same distribution asT0. The size of the shift produced by this special cause has
the same distribution as the previous shift and persists until it is detected and� is returned
to the target. This sequence of alternating in-control periods and out-of-control periods is
assumed to continue as the process operates over time (seeFig. 1). Apart from the control
chart scheme, the behavior of the process is characterized by the distribution ofT0, the
length of an in-control period, and by the distribution of the shift in� that can be produced
by special causes.
In economic design models, the operation of the control chart scheme is usually viewed

as a series of cycles, where a cycle consists of an in-control period followed by an out-of-
control period (seeFig. 1). During an in-control period, there are costs due to sampling and
false alarms. During an out-of-control period, there are costs due to sampling and operating
with � out of control. The model contains cost parameters that allow the specification of
the costs associated with sampling, false alarms, and operating out of control. The long-
run average cost per unit time can be obtained as the expected cost per cycle divided by
the expected length of a cycle. This is justified by renewal-reward process theory (see, for
example,[42]). In particular, this long-run cost per unit time, sayL, can be expressed as the
ratio

L = LS + LF + LO

E(T0) + E(T1)
,

whereLS is the expected cost of sampling in a cycle,LF the expected cost due to false
alarms during the in-control period in a cycle, andLO the expected cost due to producing
off-target during the out-of-control period in a cycle.
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The expression forL contains five components that are functions of the design parameters
of the control chart scheme, the parameters associated with the behavior of the process, and
the cost parameters. Once explicit expressions for the components ofL are obtained, a
numerical procedure can be used to find the values of the control chart design parameters
that will minimizeL for given values of the process parameters and cost parameters. These
values for the chart design parameters are then used to construct a control chart scheme that
is optimal in an economic sense for the given values of the process and cost parameters.
The above expression forL is a general expression and additional assumptions about the

structure of the model need to be made in order to develop explicit expressions for the five
components ofL. The model for the behavior of the process will be considered first.

3.3. The process model

It will be assumed that the time until the occurrence of a special cause has an exponential
distribution with parameter�. This means that the expected time until the occurrence of a
special cause is 1/�. Thus, the expected length of the in-control period is

E(T0) = 1/�.

Suppose that when a special cause occurs it can produce a shift to any one of� possible
values of� represented by�1, �2, . . . , ��. Each of these possible shifted values of� could
involve a shift in�, a shift in �, or a shift in both� and� at the same time. When a
shift in � occurs as a result of a special cause, letpi be the probability that it is a shift to
�i , for i = 1,2, . . . , �. That is, when a special cause occurs, the shift will be to�i with
probabilitypi .
When a special cause occurs, it will eventually be detected by the control chart scheme.

After the special cause is detected by the control scheme, assume thatR time units are
required for repair and adjustment of the process before� is returned to the target�0.

3.4. The cost parameters

The costs associated with sampling in a cycle will depend on the number of observations
taken during the in-control period and during the out-of-control period. LetO0 be the
number of observations taken during the in-control period, and letO1i be the number of
observations taken during the out-of-control period when the shift in� during this out-of-
control period is to�i . A Markov chain method for determiningE(O0) andE(O1i ) will be
given below in Section 3.5. If

c1 = cost of taking one observation,

then the expected cost of sampling in a cycle will be

LS = c1

[
E(O0) +

�∑
i=1

piE(O1i )

]
.
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If F0 denotes the number of false alarms that occur during an in-control period and each
false alarm produces a cost ofc2, then the expected cost of false alarms in a cycle is

LF = c2E(F0).

A Markov chain method for findingE(F0) will be given in the following section.
The cost associatedwith operatingwith� out of control due to a special causewill depend

on the size and type of the shift in� produced by the special cause. Letc3i be the cost per
unit time due to operating out of control because of a shift to�i . When there is a shift to�i ,
let T1i be the time from the shift to the signal by the control chart scheme. A Markov chain
method for evaluatingE(T1i ) will be given in the next section. The expected cost during an
out-of-control period is then

LO =
�∑

i=1

c3ipi[E(T1i ) + R].

The expected valueE(T1i ) is the average time required for the control chart scheme to
detect a special cause that produces a shift to�i . Therefore, it follows that the expected
length of an out-of-control period is

E(T1) =
�∑

i=1

piE(T1i ) + R.

Thus, the expected length of a cycle is

E(T0) + E(T1) = 1

�
+

�∑
i=1

piE(T1i ) + R.

3.5. A Markov chain model for the terms of the economic model

In this section, we develop an exact Markov chain model for the terms needed in the
economic model for the combination of the VSIX and VSI EWMA charts. To simplify
the notation, the control statisticsXk andYk for these two charts will be expressed as the
vectorWk = (Xk, Yk). The control chart scheme using the two-dimensional control statistic
Wk can be modeled as a Markov chain. The Markov chain model forWk is developed by
partitioning the regions within the control limits intot subregions. The control statistic is
then replaced by a discretized version that can assume only one representative value in each
subregion. Letsi be the representative value for regioni, for i =1,2, . . . , t . Then, statei of
the Markov chain corresponds to the discretized version ofWk that is equal tosi . In what
follows, the notation will not make a distinction betweenWk and its discretized version.
An additional state of the Markov chain, statet + 1, is needed to correspond toWk in the
signal region outside of the control limits. Letst+1 be the representative value for this region
outside the control limits.
Let W0 denote the starting value for the control statistic, which may, for example, be

used to start the EWMA before the first observation is sampled. Suppose that the control
chart scheme is normally started withW0 = si0, so thati0 is a potential starting state for the
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Markov chain. The first sampling interval for the VSI scheme is of a specified size, sayd0.
For example, in some applications, it would be reasonable to taked0 to be a short sampling
interval, to guard against problems that might be present at startup. The sampling interval
bi0, which is specified by the valueW0=si0, may not be equal tod0. In this case, the statei0
will not serve as the starting state of the Markov chain and another state must be designated
or defined for the starting state. This issue will be further discussed later in this section,
after some more structure is developed for the Markov chain model.
Fori, j =1,2, . . . , t +1, letqij be the transition probability from statei to statej.Assume

that after a signal by the control chart scheme, the control statistic is immediately restarted
atsi0. This means that the transition probabilities from statet +1 are the same as from state
i0; i.e., qt+1,j = qi0,j , for j = 1,2, . . . , t + 1. Also, letbi be the sampling interval to be
used next, when the control statistic is currently in statei.
If Q is used to represent the transition probability matrix for the firstt states, then many

properties of the control chart can be computed in terms ofQ. LetM = (I − Q)−1, and let
mij be the element(i, j) of M. If the Markov chain is started in some statei, then the ARL
for the control chart is

∑t
j=1 mij and the ATS is

∑t
j=1 mij bj .

To find several of the expectations that are needed in the economic model, it is necessary
to know the state of the Markov chain at the sample immediately before the shift in�. The
determination of the probability that the Markov chain is in a particular state immediately
before the shift can be done by developing an expanded Markov chain that jointly models
the state of the control statistic and the state of� in the intervals between samples. LetVk

be defined as 1 if� = �0 both at samplek and in the interval after samplek, as 2 if� = �0
at samplek but shifts from�0 in the interval after samplek, and 3 if� 
= �0 both at sample
k and in the interval after samplek. The expanded Markov chain will be used to model
(Wk, Vk), as described below.
For i = 1,2, . . . , t + 1, statei in the Markov chain corresponds toWk = si andVk = 1.

WhenWk =si , the next sampling interval will bebi and the probability of no shift in� in this
interval is e−�bi . For i = t + 2, t + 3, . . . ,2t + 2, statei in the Markov chain corresponds
to Wk = si andVk = 2. WhenWk = si , the probability of a shift in the next interval is
1−e−�bi . If q∗

ij is the transition probability from statei to statej of the Markov chain, then
for i, j = 1,2, . . . , t + 1,

q∗
ij = qije

−�bj ,

and

q∗
i,t+1+j = qij (1− e−�bj ).

Also, q∗
ij = 0, for i = t + 2, t + 3, . . . ,2t + 2 andj = 1,2, . . . ,2t + 2, because it is not

possible to return to the states corresponding to� = �0 without a signal by the control
scheme. Note that there are additional states in the Markov chain corresponding toVk = 3,
but for the purposes here, it is not necessary to explicitly define these states.
If the Markov chain starts in one of the firstt + 1 states and remains in these states for

some period of time, then during this time the value of� is �0. When the Markov chain
moves to one of the states,t + 2, t + 3, . . . ,2t + 2, then the shift in� will occur in the next
interval, so the Markov chain will spend one time period in these states. It follows that one
of these states will determine the value ofWk immediately before the shift in�.



Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis:Real World Applications 6 (2005) 817–844837

If Wk falls outside of the control limits when� = �0, then this is a false alarm and the
Markov chain is in statet +1. If after a false alarm the chart is restarted atsi0 andd0 is used
as the next sampling interval, then statet + 1 corresponds tosi0 andd0. Thus, it follows
that statet + 1 might serve as a starting state for the Markov chain. If there is no shift in�

before the first sample is taken(V0=1), then the starting state for the Markov chain can be
taken to bet + 1. However, if there is a shift in� before the first sample(V0 = 2), then the
starting state for the Markov chain can be taken to be 2t + 2. Therefore, the Markov chain
will start in statet +1 with probability e−�d0 and in state 2t +2 with probability 1−e−�d0.

LetQ∗ be the transition probability matrix for the firstt + 1 states of the Markov chain.
LetM∗ = (I −Q∗)−1 and letm∗

ij be element(i, j) of M∗. Letpt+1,t+1+j be the probability
that the Markov chain is in statet + 1+ j at the sample immediately before the shift in�,
given that the starting state ist + 1. Then, it follows that

pt+1,t+1+j =
t+1∑
i=1

m∗
i+1,iq

∗
i,t+1+j =

t+1∑
i=1

m∗
t+1,iqij (1− e−�bj ),

sincem∗
t+1,i is the expected number of times in statej, andq∗

i,t+1+j is the probability of a
transition from statei to statet + 1+ j .
To findE(O0), the expected number of observations in a given in-control period, note

that if the starting state is 2t + 2, then there are no observations before the shift. But if the
starting state ist + 1, then the expected number of observations is

∑t+1
j=1 m∗

t+1,j . Thus, it
follows that

E(O0) = e−�d0

t+1∑
j=1

m∗
t+1,j .

To find the expected number of false alarms during an in-control period, note that if the
starting state is 2t + 2, then there are no observations before the shift, and thus there can
be no false alarms. If the starting state ist + 1, then the initial visit to statet + 1 should
not be counted as a false alarm, but there will be a false alarm every time that the Markov
chain returns to statet +1. In addition, there will be a false alarm if the Markov chain goes
to state 2t + 2 after starting in statet + 1. Thus, it follows that

E(F0) = e−�d0(m∗
t+1,t+1 − 1+ pt+1,2t+2).

The expected time out of control depends on the starting state for the in-control period
and the shift in� that occurs. Forj = 1,2, . . . , t + 1, let ATS(j, l) be the ATS when the
control chart startswithW0=sj andwith�=�l . The computation of the expected time out of
control depends on ATS(j, l) and onpt+1,t+1+j , the probability thatWk = sj immediately
before the shift. If it is assumed that an observation is taken instantaneously, then it follows
that the shift must occur in the interval between two observations. Given that the shift occurs
in an interval of lengthd, Duncan[10] has shown that the expected distance into the interval
is

�(d) = 1

�
− d

ed� − 1
.
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For j = 1,2, . . . , t + 1, let�j be defined by�j = �(bj ), so that�j is the expected distance
from the shift to the previous observation, when the control statistic is in statet + 1+ j

at this previous observation. If the shift occurs before the first observation and the Markov
chain starts in state 2t +2, then this is equivalent to starting the control chart withW0=st+1.
In this case, the expected time from the shift to the signal is ATS(t +1, l)−�t+1. If the shift
does not occur before the first observation, and the Markov chain starts in statet + 1, then
the expected time from the shift to the signal is

∑t+1
j=1 pt+1,t+1+j [ATS(j, l) − �j ]. Thus, it

follows that the expected time required to detect a shift to�l is

E(T1l ) = (1− e−�d0)[ATS(t + 1, l) − �t+1] + e−�b0

t+1∑
j=1

pt+1,t+1+j [ATS(j, l) − �j ].

The expected number of observations taken during an out-of-control period can be ob-
tained using the same argument as in the derivation ofE(T1l ). In particular, if ARL(j, l)

is the ARL when the control chart starts withW0 = sj and with� = �l , then the expected
number of observations required to detect a shift to�l is

E(O1i ) = (1− e−�d0)ARL(t + 1, l) + e−�b0

t+1∑
j=1

pt+1,t+1+jARL(j, l).

3.6. Optimization of the economic model

As discussed in Section 3.2, in the economic modeling approach, a control chart scheme
is designed to minimize the long-run cost per unit timeL associated with the operation
of the scheme. For a given set of system parameters and a given set of cost parameters,
the economic model can be used to determine the optimal vector of control chart parame-
ters(hE, gE, hX, gX, �, d2). That is, the economic-model approach involves a multivariate
nonlinear optimization problem, which has the form

minimizeL(hE, gE, hX, gX, �, d2).

The short sampling intervald1 is not involved in the above minimization, because of
the established fact that the shortest feasible intervald1 gives the best performance (see
[31,32,48]). Thus,d1 will be taken to be the shortest feasible sampling interval as de-
termined by administrative considerations and process constraints. For example, in many
practical applications of analyzer calibration,d1 would be on the order of one workshift or
one day.
Multivariate search methods for optimization problems are classified into two general

categories: Gradient methods and derivative-free methods (see[4,21]). Gradient methods
demand function and partial derivative evaluations, while derivative-free methods only
employ function evaluations. Gradient methods would be expected to be more efficient
in the majority of cases, due to the additional information utilized. If analytical partial
derivatives can be derived, however, the question arises of whether a search technique
should be used at all. If derivative approximations based on finite difference equations are
used, the efficiency of gradient methods should be similar to that of the derivative-free
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methods. Gradient methods incorporating derivative approximations usually present some
numerical problems in the vicinity of the optimum, where the approximations become very
small. Since no closed-form expressions exist for the cost functionL or for the statistical
properties of the combined VSI EWMA and VSIX charts, a gradient-based minimization
procedure must involve derivative approximations with the associated drawbacks.
A general approach to the minimization ofL could involve using numerical derivative

approximations in a procedure based on the generalized reduced gradient (GRG) method,
which was first developed by[1] (see also[16]). However, because of the complexity of
the GRG procedure, the implementation of a GRG-based algorithm for the nonlinear mini-
mization ofLmust involve an interface with a commercial software package. For practical
applications where this complication is not desirable and in view of the discussion given in
the previous paragraph, the simple but effective derivative-free optimization procedure of
Hooke and Jeeves[13] can be used for the design of the combined VSI EWMA and VSI
X control chart scheme. The optimization procedure of Hooke and Jeeves[13] was also
used by Montgomery et al.[24] in the design of an approximate economic model for an
individual FSR EWMA chart for monitoring� alone.
In some applications, the control scheme design that is optimal according to the uncon-

strained economic model may be inconvenient to use and/or subjective factors associated
with the monitoring operation may exist that are not captured in the economic model. In or-
der to address such potential complications, Saniga[44] considered an economic statistical
model for the design of FSR ShewhartX̄ andRcharts by introducing constraints on certain
statistical properties, including the false-alarm rate. Such constraints can be introduced in
the above optimization procedure forL by adding a large penalty cost to the objective func-
tionL if a certain constraint is violated, thus forcing the search back into the feasible region
(see[4,21]).
In the following section, we will illustrate with an analyzer application example the

use of unconstrained and constrained economic modeling for the design of a combined
VSI EWMA and VSIX control chart scheme. This illustration quantifies the substantial
cost reduction and gains in performance that can be achieved by using the combined VSI
scheme instead of its FSR counterpart.

3.7. An illustrative example

Consider an industrial process where an electrochemical device is to be calibrated on a
regular basis in order to ensure that it meets certain regulatory standards. Suppose that the
device is currently being monitored using a combination of an FSI EWMA chart and an
FSIX chart, with a fixed-length sampling interval ofd = 1.0h. In the past, there have been
occasional changes in the device’s mean readings and/or increases in the standard deviation
of the readings. The primary objective of applying the control chart scheme is to quickly
detect changes in the mean� and/or increases in the standard deviation� of the device’s
readings, so that the problem can be eliminated before an excessive amount of time goes
by and a large quantity of nonconforming product has been produced.
The process engineers are interested in improving the performance of the current control

scheme and plan to implement the VSI feature in both the EWMA chart and theX chart.
The equipment used for testing is in close proximity to the electrochemical device, so that
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the short sampling interval was chosen to bed1 = 0.1h. After some careful analysis, the
engineers identified the following cost and process parameters:

Cost of taking an observation,c1 = $50.
Cost of a false alarm,c2 = $2000.
Cost of a shift in� of size� = 0.5 (with no shift in�), c3,1 = $100/h.
Cost of a shift in� of size� = 2.0 (with no shift in�), c3,2 = $500/h.
Cost of a shift in� of size�/�0 = 1.5 (with no shift in�), c3,3 = $200/h.
Cost of a shift in� of size� = 2.0 concurrent with a shift in� of size�/�0 = 2.0,
c3,4 = $500/h.
Expected time until the occurrence of a special cause,E(T0) = 1/� = 100.0h.
Search, repair, and recalibration time,R = 1.0h.
Probability of a shift in� of size� = 0.5 (with no shift in�), p1 = 0.5.
Probability of a shift in� of size� = 2.0 (with no shift in�), p2 = 0.2.
Probability of a shift in� of size�/�0 = 1.5 (with no shift in�), p3 = 0.2.
Probability of a shift in� of size� = 2.0 concurrent with a shift in� of size�/�0 = 2.0,
p4 = 0.1.

Applying the GRG minimization algorithm, the optimal economic design for the com-
bined VSI EWMA and VSIX chart scheme was determined to use� = 0.09,d1 = 0.10h,
d2 = 4.06h,hE = 2.19, gE = 0.98,hX = 2.61, andgX = 1.17. This VSI scheme has an
in-control ATS of 156.2 h and a long-run cost ofL = $54.70/h. In comparison, the optimal
economic design for the combined FSI EWMA and FSIX chart scheme was determined to
use� = 0.15, the fixed-length sampling interval ofd = 6.00h,hE = 1.38, andhX = 1.88.
ThisVSI scheme has an in-control ATS of only 70.7 h and a long-run cost ofL=$63.24/h.
In Table 5, the columns labeled 1 and 2 give in-control ATS and out-of control SSATS
values for these two optimal FSI andVSI chart combinations. In particular, column 1 gives
values for the FSI combination and column 2 for the VSI combination. The optimal VSI
chart combination provides much better SSATS performance than the optimal FSI chart
combination, for all four combinations of shifts in� and/or�, at a much lower false-alarm
rate and long-run cost.
After closely considering the optimal FSI and VSI schemes in columns 1 and 2 ofTable

5, the process engineers decided that sampling intervals much longer than 2h would be
too risky, and an in-control ATS less than the traditional 370.4 h may cause an excessive
number of disruptive false alarms. They also decided that the SSATS should not exceed 40 h
for shifts in� of size� = 0.5, or larger. Thus, to determine economic statistical designs for
the combined FSI and VSI EWMA andX chart schemes that account for these concerns,
the engineers introduced the following three constraints:

(C1) ATS�370.4h, for� = 0.0 and� = �0.
(C2) SSATS�40.0h, for� = 0.5 and� = �0.
(C3) For the FSI scheme,d �2.0hours; for the VSI scheme,d2�2.0hours.

Columns 3 and 4 ofTable 5give in-controlATS and out-of control SSATS values for two
FSI and VSI combinations of the EWMA andX Charts that have been optimized subject
to constraints (C1)–(C3). In particular, column 3 gives values for the FSI combination,
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Table 5
In-control ATS and out-of-control SSATS values with chart parameter values and long-run costs for optimal FSI
and VSI combinations of EWMA andX charts

Optimal economic design Optimal economic statistical design

Constraint on ATS, for� = 0.00 None None ATS�370.4 ATS�370.4 ATS�370.4
and� = �0
Constraint on SSATS, for� = 0.50 None None SSATS�40.0 SSATS�40.0 SSATS�20.0
and� = �0
Constraint on sampling interval None None d �2.0 d2�2.0 d2�2.0

Optimal EWMA parameter� � = 0.15 � = 0.09 � = 0.13 � = 0.09 � = 0.08
Optimal sampling interval(s) d = 6.00 d1 = 0.10 d = 1.35 d1 = 0.10 d1 = 0.10

d2 = 4.06 d2 = 2.00 d2 = 1.90
Minimal long-run cost per hour $63.24 $54.70 $76.73 $62.33 $71.10

Size of shift Probability Cost of shift FSI EWMA VSI EWMA FSI EWMA VSI EWMA VSI EWMA
of shift per hour FSIX chart VSIX chart FSIX chart VSIX chart VSIX chart

� �/�0 Column 1 Column 2 Column 3 Column 4 Column 5

0.00 1.00 — — 70.7 156.2 371.3 370.8 383.0
0.50 1.00 0.5 $100 35.2 29.2 39.0 27.7 18.9
2.00 1.00 0.2 $500 6.9 3.4 4.1 2.4 1.9
0.00 1.50 0.2 $200 22.1 20.4 28.2 23.7 20.2
2.00 2.00 0.1 $500 19.2 15.0 17.8 14.3 11.2

Optimal chart hE 1.38 2.19 2.85 2.93 2.91
parameters gE — 0.98 — 0.93 0.99

hX 1.88 2.61 3.08 3.19 3.19
gX — 1.17 — 0.95 1.02

and column 4 gives values for the VSI combination. Once again, as compared to the FSI
chart combination in column 3, theVSI combination in column 4 gives much better SSATS
performance for all four combinations of shifts, at a much lower false-alarm rate and long-
run cost. In particular, the long-run cost for the FSI scheme in column 3 is $76.73/h, as
compared to the long-run cost for the VSI scheme in column 4, which is only $62.33/h.
This cost is even lower than the long-run cost for the unconstrained, optimal FSI scheme in
column 1, which is $63.24/h. Since the optimal long sampling interval for the VSI scheme
in column 4 isd2=2.0h, which is convenient froman administrative standpoint, the process
engineers decided to implement this scheme for improved performance in monitoring the
electrochemical device as well as a reduction in long-run cost.
It is interesting to note that the SSATS performance of theVSI scheme in column 4 can be

substantially improved at a long-run cost still lower than that of the FSI scheme in column
3, but higher than the cost of theVSI scheme in column 4 chosen for implementation by the
engineers. For example, the VSI chart combination in column 5 is an optimal, economic
statistical design satisfying constrains (C1) and (C3), though subject to the much more
restrictive constraint, SSATS�20.0h, for�=0.5 and�=�0. The long-run cost of theVSI
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scheme in column 5 is $71.10/h, still less than the cost of $76.73/h of the FSI scheme in
column 3, but higher than that of theVSI scheme in column 4. TheVSI scheme in column 5
uniformly outperforms all other chart combinations in columns 1–4 at a lower false-alarm
rate. For convenience, the long sampling interval ofd2=1.9h for theVSI scheme in column
5 could be rounded up tod2 = 2.0h with a small increase in long-run cost of about 3%,
which is still less than the long-run cost of the FSI scheme in column 3.
For purposes of exposition, the time and monetary units used in this paper were taken

to be the hour and the dollar. However, the numerical results presented here extend to any
other time or monetary units. In general, the full use of the economic design approach for
practical applications will require using a computer program to find the optimal design.
However, the relative performance and cost conclusions reached here for the combined FSI
and VSI EWMA andX charts generally extend to many other cost and process parameter
values, and in some cases, the numerical results presented in this paper may be sufficient
for finding a design that is close to optimal.

4. Conclusions

In this paper, various individuals control chart schemes were contrasted for the problem
of monitoring the mean� and variance�2 of a normal process variable, with special con-
sideration given to the problem of monitoring the performance of process analyzers, such
as electrochemical devices, gas and liquid chromatographs, potentiometers, refractometers,
and spectrometers. The combination of theVSI EWMA chart and theVSI ShewhartXchart
was shown to be a very effective control scheme for this problem, from the perspective
of statistical performance. From a practical perspective, this control scheme also has the
convenient feature that the two charts can be shown concurrently, on the same plot, while
displaying the original process data.
Furthermore, a comprehensive economic model was developed for the design of control

schemesbasedon thecombinationof theVSIEWMAandVSIXcharts.Theeconomicmodel
relates the long-run cost per time unit of operating this chart combination as a function of
the charts’ parameters, the system behavior, and various cost factors. The economic model
can be used to quantify the reduction in cost that can be achieved by using the VSI control
scheme, instead of traditional control schemes that use fixed sampling rates. The numerical
results in this paper demonstrated that the cost reduction as well as the gains in statistical
performance are substantial. In fact, in many practical applications, the high efficiency of
the combined VSI EWMA and VSIX charts could be used to reduce the sampling effort
and cost necessary to insure a required detection capability.
Finally, it should be stressed that the numerical results and conclusions of this paper are

not only relevant to the problem of monitoring the performance of process analyzers. The
results and conclusions generally apply to any SPC application concerned with monitoring
� and�2 using individual observations.

References

[1] J. Abadie, J. Carpentier, Generalization of the Wolfe reduced gradient method to the case of nonlinear
constraints, in: R. Fletcher (Ed.), Optimization, Academic Press, NewYork, NY, 1969, pp. 34–37.



Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis:Real World Applications 6 (2005) 817–844843

[2] S.L. Albin, L. Kang, G. Shea, AnX and EWMA chart for individual observations, J. Quality Technol. 29
(1997) 41–48.

[3] R.W. Amin, R.A. Ethridge, A note on individual and moving range control charts, J. Quality Technol. 30
(1998) 70–74.

[4] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, second ed., Wiley, NewYork, NY, 1993.
[5] W. Boyes, Instrumentation Reference Book, third ed., Elsevier Science, Burlington, MA, 2003.
[6] K.J. Clevett, Process Analyzer Technology, Wiley, NewYork, NY, 1986.
[7] A.F.B. Costa, M.A. Rahim, Economic design ofX̄ charts with variable parameters: aMarkov chain approach,

J. Appl. Stat. 28 (2001) 875–885.
[8] S.V. Crowder, A simple method for studying run-length distributions of exponentially weighted moving

average charts, Technometrics 29 (1987) 401–407.
[9] R. Domangue, S.C. Patch, Some omnibus exponentially weighted moving average statistical process

monitoring schemes, Technometrics 33 (1991) 299–313.
[10] A.J. Duncan, The economic design ofX̄ charts used to maintain current control of a process, J. Am. Stat.

Assoc. 51 (1956) 228–242.
[11] F.F. Gan, Joint monitoring of process mean and variance using exponentially weighted moving average

control charts, Technometrics 37 (1995) 446–453.
[12] C. Ho, K.E. Case, Economic design of control charts: a literature review for 1981–1991, J. Quality Technol.

26 (1994) 39–53.
[13] R. Hooke, T.A. Jeeves, Direct search solution of numerical and statistical problems, J.Assoc. Comput. Mach.

8 (1961) 212–229.
[14] J.B. Keats, E. Del Castillo, E. von Collani, E.M. Saniga, Economic modeling for statistical process control,

J. Quality Technol. 29 (1997) 144–147.
[15] T.L. Lai, Sequential changepoint detection in quality control and dynamical systems (with discussion), J.

Roy. Stat. Soc. Ser. B 57 (1995) 613–658.
[16] L.S. Lasdon, A.D. Waren, A. Jain, M. Ranter, Design and testing of generalized reduced gradient code for

nonlinear programming, ACM Trans. Math. Software 4 (1978) 34–50.
[17] E.L. Lehmann, Testing Statistical Hypotheses, second ed., Springer, NewYork, NY, 1985.
[18] B.G. Liptak, Analytical Instrumentation, CRC Press, Boca Raton, FL, 1994.
[19] T.J. Lorenzen, L.C. Vance, The economic design of control charts: a unified approach, Technometrics 28

(1986) 3–10.
[20] J.M. Lucas, M.S. Saccucci, Exponentially weighted moving average control schemes: properties and

enhancements, Technometrics 32 (1990) 1–12.
[21] D.G. Luenberger, Linear and Nonlinear Programming, second ed., Addison-Wesley, Reading, MA, 1989.
[22] J.F. MacGregor, T.J. Harris, The exponentially weighted moving variance, J. Quality Technol. 25 (1993)

106–118.
[23] D.C. Montgomery, The economic design of control charts: a review and literature survey, J. Quality Technol.

12 (1980) 75–87.
[24] D.C. Montgomery, J.C. Torng, J.K. Cochran, F.P. Lawrence, Statistically constrained economic design of

EWMA control charts, J. Quality Technol. 27 (1995) 250–256.
[25] M.C. Morais, A. Pacheco, On the performance of combined EWMA schemes for� and�: a Markovian

approach, Commun. Stat. Part B—Simulation Comput. 29 (2000) 153–174.
[26] L.S. Nelson, Control charts for individual measurements, J. Quality Technol. 14 (1982) 172–173.
[27] G.D. Nichols, On-Line Process Analyzers, Wiley, NewYork, NY, 1988.
[28] E.S. Page, Continuous inspection schemes, Biometrika 41 (1954) 100–114.
[29] C. Park, M.R. Reynolds Jr., Economic design of a variable sampling rateX̄ chart, J. Quality Technol. 31

(1999) 427–443.
[30] S.S. Prabhu, D.C. Montgomery, G.C. Runger, Economic–statistical design of an adaptiveX̄ chart, Int. J.

Prod. Econom. 49 (1997) 1–15.
[31] M.R. Reynolds Jr., Optimal variable sampling interval control charts, Sequential Anal. 8 (1989) 361–379.
[32] M.R. Reynolds Jr., Evaluating properties of variable sampling interval control charts, Sequential Anal. 14

(1995) 59–97.
[33] M.R. Reynolds Jr.,Variable sampling interval control charts with sampling at fixed times, IIETrans. 28 (1996)

497–510.



844 Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis:Real World Applications 6 (2005) 817–844

[34] M.R. Reynolds Jr., Z.G. Stoumbos, The SPRT chart for monitoring a proportion, IIE Trans. Quality Rel. Eng.
30 (1998) 545–561.

[35] M.R. Reynolds Jr., Z.G. Stoumbos, Monitoring the process mean and variance using individual observations
and variable sampling intervals, J. Quality Technol. 33 (2001) 181–205.

[36] M.R. Reynolds Jr., Z.G. Stoumbos, Individuals control schemes for monitoring the mean and variance of
processes subject to drifts, Stochast. Anal. Appl. 19 (2001) 863–892.

[37] M.R. Reynolds Jr., Z.G. Stoumbos, Control charts and the efficient allocation of sampling resources,
Technometrics 46 (2004) 200–214.

[38] M.R. Reynolds Jr., Z.G. Stoumbos, Should observations be grouped for effective process monitoring?,
J. Quality Technol. 36 (2004) 343–366.

[39] S.E. Rigdon, E.N. Cruthis, C.W. Champ, Design strategies for individuals and moving range control charts,
J. Quality Technol. 26 (1994) 274–287.

[40] S.W. Roberts, Control charts based on geometric moving averages, Technometrics 1 (1959) 239–250.
[41] K.C.B.Roes,R.J.M.M.Does,Y.Schurink,Shewhart-type control charts for individual observations, J.Quality

Technol. 25 (1993) 188–198.
[42] S.M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, CA,

1970.
[43] M.S. Saccucci, R.W. Amin, J.M. Lucas, Exponentially weighted moving control schemes with variable

sampling intervals, Commun. Stat.—Simul. Comput. 21 (1992) 627–657.
[44] E.M. Saniga, Economic statistical control charts design with an application toX̄ andRcharts, Technometrics

31 (1989) 313–321.
[45] S.E. Shamma,R.W.Amin,AnEWMAquality control procedure for jointlymonitoring themeanand variance,

Int. J. Quality Rel. Manage. 10 (1993) 58–67.
[46] W.A. Shewhart, Economic Control of Quality of Manufactured Product, Van Nostrand, NewYork, NY, 1931.
[47] D. Siegmund, Sequential Analysis, Springer, NewYork, NY, 1985.
[48] Z.G. Stoumbos, J. Mittenthal, G.C. Runger, Steady-state-optimal adaptive control charts based on variable

sampling intervals, Stochast. Anal. Appl. 19 (2001) 1025–1057.
[49] Z.G. Stoumbos, M.R. Reynolds Jr., Control charts applying a general sequential test at each sampling point,

Sequential Anal. 15 (1996) 159–183.
[50] Z.G. Stoumbos, M.R. Reynolds Jr., Control charts applying a sequential test at fixed sampling intervals,

J. Quality Technol. 29 (1997) 21–40.
[51] Z.G. Stoumbos, M.R. Reynolds Jr., Corrected diffusion theory approximations in evaluating properties

of SPRT charts for monitoring a process mean, Nonlinear Anal.—Theory, Methods Appl. 30 (1997)
3987–3996.

[52] Z.G. Stoumbos, M.R. Reynolds Jr., Robustness to non-normality and autocorrelation of individuals control
charts, J. Stat. Comput. Simul. 66 (2000) 145–187.

[53] Z.G. Stoumbos, M.R. Reynolds Jr., The SPRT control chart for the process mean with samples starting at
fixed times, Nonlinear Anal.—Real World Appl. 2 (2001) 1–34.

[54] Z.G. Stoumbos, M.R. Reynolds Jr., T.P. Ryan, W.H. Woodall, The state of statistical process control as we
proceed into the 21st century, J. Am. Stat. Assoc. 95 (2000) 992–998.

[55] Z.G. Stoumbos, M.R. Reynolds Jr., W.H. Woodall, Control chart schemes for monitoring the mean and
variance of processes subject to sustained shifts and drifts, in: C.R. Rao, R. Khattree (Eds.), Handbook of
Statistics: Statistics in Industry, vol. 22, Elsevier Science, Amsterdam, Netherlands, 2003, pp. 553–571.

[56] G. Tagaras, A survey of recent developments in the design of adaptive control charts, J. Quality Technol. 30
(1998) 212–231.

[57] E.Yashchin, Statistical control schemes: methods, applications and generalizations, Int. Stat. Rev. 61 (1993)
41–66.


	Economic statistical design of adaptive control schemes for monitoring the mean and variance:An application to analyzers
	Introduction
	Development of control schemes and statistical performance evaluation
	The relationships between different types of adaptive control schemes
	The relationship of optimality results to the process monitoring problem
	Monitoring the process variance
	Combining the X chart with the EWMA chart
	Applying the VSI feature to the combination of the EWMA and X charts
	Evaluating the statistical properties of combined VSI EWMA and VSI X charts
	The accuracy of the Markov chain method for evaluating statistical properties
	Comparisons of combined FSI and VSI EWMA and X charts

	An economic model for the design of combined VSI EWMA and VSI X control schemes
	Background information
	The general structure of the economic model
	The process model
	The cost parameters
	A Markov chain model for the terms of the economic model
	Optimization of the economic model
	An illustrative example

	Conclusions
	References


