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Abstract

Several individuals control chart schemes are contrasted for the problem of monitoring the mean
and variance of a normal process variable, with special consideration given to monitoring process
analyzers, such as electrochemical devices, chromatographs, potentiometers, refractometers, and spec-
trometers. The combination of the exponentially weighted moving average (EWMA) chart and the
ShewhartX chart that uses a variable sampling interval (VSI) policy is shown to be very effective
for this problem. We develop a comprehensive economic model for the design of control schemes
based on this chart combination. The economic model expresses the long-run cost per time unit of
operating the combined VSI EWMA and V&lchart scheme as a function of its design parameters,
the parameters that describe the behavior of the process, and the cost parameters associated with the
operation of the scheme. This economic model can be used to quantify the cost reduction that can
be achieved by using the combined VSI scheme instead of traditional control schemes that use fixed
sampling rates. We show that the reduction in cost as well as gains in performance are substantial.
© 2005 Elsevier Ltd. All rights reserved.

Keywords:Analyzers; Calibration; Economic design; EWMA control charts; Loss function; Markov chains;
Shewhart control charts; Standards; Statistical process control; Stochastic optimization; Variable sampling
interval control charts

* Corresponding author. Tel.: +1 732 445 6849; fax: +1 732 445 6329.
E-mail addressstoumbos@andromeda.rutgers.€di5. Stoumbos).

1 Zachary Stoumbos’ work was supported in part by 2002 and 2003 Rutgers Business School Research Grants.

1468-1218/$ - see front matt@ 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2005.05.002


http://www.elsevier.com/locate/na
mailto:stoumbos@andromeda.rutgers.edu

818 Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis: Real World Applications 6 (2005) 817—-844
1. Introduction

Statistical process control (SPC) refers to a collection of statistical methods used ex-
tensively to monitor and improve the quality and productivity of industrial processes and
service operations. SPC primarily involves the implementation of control charts, which are
graphical devices widely used to monitor manufacturing processes to quickly detect any
change in a process that may affect the quality of the output. The most commonly used
types of control charts are the Shewhart charts, proposed by Sh¢délathe cumulative
sum (CUSUM) charts, initially investigated by Pg@@&], and the exponentially weighted
moving average (EWMA) charts, originating in the work of Robé4iS]. Lai [15] and
Stoumbos et a[54] give reviews of developments in the theory and application of control
charting methods.

The traditional practice when applying a control chartis to use a fixed sampling rate (FSR)
and take samples of fixed size atfixed samplingintervals. Inrecent years, however, ithas been
shown that the statistical performance of control charts can be greatly improved by varying
the sampling intervals or sample sizes as a function of the data taken from the process.
The basic idea is that sampling should be more intense whenever there is an indication of a
problem with the process and less intense when there is no such indication. These adaptive or
variable sampling rate (VSR) control charts are more efficient than traditional FSR charts in
that they provide faster detection of process changes for a given average sampling rate. The
increased efficiency of VSR charts can also be used to reduce the sampling effort necessary
to provide a required detection capability. For a survey of work on adaptive control charts,
see Tagaras6].

Process analyzers, such as electrochemical devices, gas and liquid chromatographs, po-
tentiometers, refractometers, and spectrometers, constitute a vital component of the elec-
tronics, chemical, petrochemical, polymer, and semiconductor industries. Monitoring the
performance of analyzers so to ensure that they are calibrated, validated, and operating as
expected is critical in meeting international standardization requirements, such as those set
forth by the American Society for Testing and Materials (ASTM), the American National
Standards Institute (ANSI), and the International Organization for Standardization (ISO).
For additional information on process analyzers and standardf,6¢18,27]

The objective of this paper is to develop a very effective, adaptive control chart scheme
for monitoring the mean: and variances? of a normal random variable, with special
consideration given to the problem of monitoring the performance of process analyzers.
The paper is divided into two major parts. In the first part, several individuals FSR and VSR
control charts are reviewed and contrasted for the problem of monitpramd o2. The
combination of the EWMA chart and the Shewh#rthart that uses a variable sampling
interval (VSI) policy is shown to be very effective for this problem from the perspective of
statistical performance.

In the second part, a comprehensive economic model is developed for the design of
combined VSI EWMA and VSK control chart schemes. The economic model expresses
the long-run cost per time unit of operating the combined scheme as a function of its design
parameters, the parameters that describe the behavior of the process, and the cost parameters
associated with the operation of the scheme. This economic model can be used to quantify
the cost reduction that can be achieved by using the combined VSI scheme, instead of
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traditional control schemes that use fixed sampling rates. We show that the reduction in
cost as well as gains in statistical performance are substantial and illustrate these facts with
numerical results and a detailed example.

Although there is extensive literature on the economic design of traditional FSR control
charts (se¢12,14,23] and numerous references therein), very little work has been done
on the economic modeling and design of adaptive control chartg7s2®30). This is
especially true for the more complex and generally more realistic problem of simultaneously
monitoringu anda? that we investigate here, with special consideration given to monitoring
the performance of process analyzers.

2. Development of control schemes and statistical performance evaluation
2.1. The relationships between different types of adaptive control schemes

The output of a process analyzer is usually represented by a normal random Vdriable
The mearu (level of bias) and variance? (level of precision) ofX are commonly used to
determine the performance of an analyzer. This performance can be measured during several
different types of evaluation, such as calibration, validation, and comparison with laboratory
results. The way in which an observation is taken depends on the type of evaluation, but
for the common types of evaluation a single observation is typically taken at each sampling
point. In practice, the minimum time before another analyzer observation can be taken
is determined by scheduling considerations and is usually on the order of one day. The
process observations taken at each sampling time will be assumed here to be independent.
The control scheme often used to monitor the mganf an analyzer is a combination of
a Shewhart chart of the individual observatioXschart) used together with an overlay of
an EWMA chart foru. A Shewhart moving range chaNIR chart) is often used to monitor
the variances? of an analyzer.

In general, the VSR idea can be applied to monitor the meand variances? of a
process using several different adaptive approaches. One approach is to use a VSI chart,
which varies the time interval between samples as a function of the process data. A second
approach is to use a variable sample size (VSS) chart, which varies the size of the samples
taken. A third approach is to apply a sequential probability ratio test (SPRT) at specified
sampling times. These adaptive approaches can also be used simultaneously in various com-
binations, depending on the practical sampling limitations associated with the application
under consideration (s¢&6] and references therein).

AVSS control chart would generally not be appropriate for monitoring analyzer perfor-
mance. This type of adaptive control chart assumes that samples ofsizean be taken
at some of the sampling points. With advance notice, it might be possible to obtain more
than one observation at a sampling point, but it is not clear that this could generally be
justified. Thus, if it is assumed that a single observation will be obtained at each sampling
point, then a VSS chart could not be applied to monitor analyzer performance.

Ideally, for an SPRT or generalized SPRT (GSPRT) control chart to be at its best, a
sample of more than one observation should also be taken at each sampling point (see
[34,49-51,53). If a relatively long time period is required to obtain each observation or
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sample, then the performance advantage in applying an SPRT or GSPRT chart may be
reduced in that the SPRT-based chart would behave and perform similarly to a VSI control
chart (se449,53).

With a single observation at each sampling time, a VSI control scheme appears to be the
best way to gain the advantages of the VSR feature. After each observation is obtained, a
decision is made about the time duration until the next observation. If the current observation
is close to the target, then the decision will be to wait a relatively long time until the next
observation. On the other hand, if the current observation is not close to the target (but still
within the control limits), then the decision will be to take the next observation as soon as is
feasible. The integration of the adaptive, VSI feature into the combination of the Shewhart
chart and the EWMA chart will be discussed after the issues of optimality and of monitoring
the process variance have been considered.

2.2. The relationship of optimality results to the process monitoring problem

There are a number of optimality results associated with statistical tests and process moni-
toring. A question of interest is how these optimality results relate to the process-monitoring
problem being considered here. For the problem of hypothesis testing, the optimal test of a
simple null hypothesis versus a simple alternative hypothesis is the SPRR{$e€q his
means that among all tests that have a given probability of a type | error and a given proba-
bility of a type Il error, the SPRT will, on average, require the fewest number of observations
to reach a decision.

The application of a CUSUM control chart is equivalent to applying a sequence of SPRTSs.
Each ofthese SPRTsinthe CUSUM chart tests the null hypothesis that the process parameter
being monitored is at its in-control or target value against the alternative hypothesis that the
process parameter has shifted to a specified out-of-control value. When an SPRT accepts
the null hypothesis that the process parameter is on target, then the CUSUM chart starts
another SPRT at the next sampling point. However, if an SPRT rejects the hypothesis that
the parameter is on target, then this is taken as a signal generated by the CUSUM chart. The
FSR CUSUM chart is the optimal FSR control chart in the sense that it provides the fastest
detection of a specified process shift among all control charts that have the same long-run
average false-alarm rate (or simply, false-alarm rate) when the process is on target.

Most optimality results for adaptive control charts are concerned with the optimal choice
of sampling intervals in VSI charts. It has been shown that an optimal choice of sampling
intervalsin aVSl control chartis to use only two possible sampling interval$3$e32,48).

This choice is best in the sense that it minimizes the average time required to detect a
specified process shift, for a given false-alarm rate and a given in-control average sampling
rate.

As developed by Stoumbos and Reynd8i8], the SPRT chart applies an SPRT to the
individual observations taken at each sampling point, employing a fixed sampling interval
(FSI) between the sampling points. The fact that an SPRT is the optimal test implies that
the SPRT chart is the optimal adaptive FSI control chart. The SPRT chart is optimal in the
sense that it minimizes the average time required to detect a given process shift among all
control charts that have the same false-alarm rate and the same in-control average sample
size at each sampling point. However, as discussed in the previous section, the SPRT chart
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does not generally apply to the analyzer-monitoring problem, because a single observation
is usually taken from an analyzer at each sampling point.

For the case of a single observation taken at each sampling point, it appears that an
optimal adaptive control chart would be a VSI CUSUM chart or a GSPRT chart. However,
the VSI EWMA chart of the process observations will be considered in this paper. It has
been shown that an EWMA chart has approximately the same ability to detect process shifts
as a CUSUM chart (see, for examp&7,43). Thus, it appears that the VSI EWMA chart
will have statistical properties that are very close to the best attainable properties. In the
context of FSI charts, Lucas and Saccyé€l] and Stoumbos et g55] reported that the
properties of the EWMA and CUSUM charts were close enough that a choice between them
could be based on other considerations, such as ease of interpretation. The EWMA control
chart is naturally two-sided and perceived to be easier to interpret by many practitioners.

2.3. Monitoring the process variance

In SPC, the traditional approach to monitoring the process variance is based on the ranges
of the samples taken from the process. When only one observation is taken at each sampling
point, itis not possible to use ranges computed within the samples, so the movingvi&)ge (
of two successive individual observations is frequently used. In particular, the Sh&wart
chart is based on plotting the control statistic

Ry =Xy — Xp—1l, k=2,3,...,

whereX is the observation taken at sampling pdint =1, 2, ... . A signal is generated
that the standard deviatianhas increased iR; exceeds the upper control limit

hroo,

where g is the in-control value ob. In most applications, the chart parametegr is
determined to yield specified statistical properties when the process is in control. A lower
control limit can be introduced if it is desirable to detect decreasegs$ee[35,36)).

For the problem of monitoring the process meaand variances?, a number of re-
searchers: Nelsof26], Roes et al[41], Rigdon et al.[39], Albin et al. [2], Amin and
Ethridge[3], Stoumbos and Reynold52], and Reynolds and Stoumbfa5-37]have ar-
gued that there is essentially no advantage to using the SheiRattart with the Shewhart
X chart. TheMR chart will be considered in this section because it is the traditional control
chart for monitorings? and is currently in widespread use. It will be argued below that the
X chart is better than theR chart for detecting changes ér3.

The ShewharX chart is based on plotting, versusk, k=1, 2, ..., and a signal is given
at sampling poink if X falls outside of control limits constructed at

Up £ hxoo,

wherep denotes the target value for In practical applications, the chart paramétgris
usually taken to be equal to 3, to give the standard “three-sigma” control limits.

From the definition of its control limits, it follows that the ShewhArthart signals at
sampling poinkif | X — to] > hx oo. Thatis, theX chart is equivalent to a control chart that
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signals at poink if (X — pg)? > h% ¢3. The statistid Xx — 1o)? has a nice interpretation

as the squared deviation of the observation from the target. For the problem of monitoring
o, this statistic can also be justified from the statistical theory of hypothesis testing. When
a single observation is available from a normal distribution with specified mgathe
uniformly most powerful test for the variance is based on the statisjic- ,uo)z (se€[17]).

Thus, it follows that the best individuals Shewhart control chart for detecting a shift in the
process variance is the control chart basedXn— uo)z, and this chart is equivalent to the
Xchart. That is, th& chart is the best Shewhart chart for detecting a shift ieven though

theX chart is usually regarded as a control chart for detecting shiftsTime superiority of

the X chart over theMR chart will be illustrated with some numerical results given below.

The performance of a control chart is traditionally evaluated using the average run length
(ARL). The ARL is the expected number of samples taken until the chart generates a signal.
When the process is in control, the ARL should be large so that the rate of false alarms is
low. When the process changes to an out-of-control state, the ARL should be small so that
this out-of-control state is quickly detected. For example, when the process is in-control,
a ShewhariX chart with three-sigma limits has an ARL of 370.4. This means that if the
process remains in control, the false-alarm rate will be one false alarm in every 370.4
samples, which in the case of tikechart would be individual observations. This can be
expressed as a false-alarm rate 8704 = 0.0027 false alarms per sample. On the other
hand, if the process mearshifts frompg to pg + 209, then the ARL of theX chart is 6.3.

This means that it will take on average 6.3 samples to detect this shiftlirthe process
standard deviation increases from the in-control value @f to 20, then the ARL of the

X chart is 7.5. Thus, on average, it will take 7.5 samples to detect a 100% increase in the
process standard deviation.

When attempting to choose one of several different control chart schemes to use in a
particular application, it is useful to determine which scheme will be fastest at detecting
process changes that are of interest. In this case, the control chart schemes can be compared
by adjusting their individual control limits so they all have the same in-control ARL. Then,
the ARLs can be compared for various out-of-control situations to see which chart or chart
combination will be faster at detecting these out-of-control situations. The in-control ARLs
of the control schemes should be matched to be the same to ensure that the schemes have the
same false-alarm rates, so that a fair comparison of their out-of-control ARL performance
can be made.

In order to compare the performance of thehart to that of théMR chart for detecting
shifts ing, the control limits of theviIR chart were adjusted to give the same in-control ARL
of 370.4 as theX chart. Columns 2 and 3 dfable 1give ARL values for the Shewhakt
andMR charts for a wide range of values @fag. The ratios/ag expresses the units-free
size of a shift ing, with ¢/ag = 1 corresponding to the in-control case- og. These ARL
values were computed as describefBis,52]. The results iMable 1show that theX chart
will detect shifts ine faster than théR chart. Thus, when thX chart is being used there
is no good reason to add tMR chart for purposes of detecting increases.in

When theX chart is applied together with an EWMA chart, the EWMA chart will be
sensitive to shifts inc and theX chart will be sensitive to shifts ia. The X chart will also
be sensitive to large shifts im. Thus, the question arises of how to determine whether a
signal by theX chart is due to a shift ip, a shift ing, or possibly a shift in botlx ando.
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Table 1
ARL values with chart parameter values for Shewhart and EWMA charts for monitering

Size of shift Shewhart EWMA-SDT

a/o0 X chart MR chart 4=01 A=0.2
1.00 370.4 370.4 370.4 370.4
1.50 22.0 25.2 14.4 16.0
2.00 7.5 9.3 6.0 6.1
2.50 4.3 5.6 3.9 3.9
3.00 3.2 4.1 3.0 2.9
5.00 1.8 2.3 1.8 1.8
8.00 1.4 1.6 1.4 1.4
hx 3.000 — — —

hp — 4.215 — —

hg — — 3.432 4.112

In theX chart, the pattern of points produced by a shiftwould tend to be different from
the pattern produced by a shiftén In particular, a shift in: will result in observations that
tend to fall on one side qi, while an increase i will result in observations that tend to
fall on both sides ofi, but at an increased distance fro Thus, the pattern of points
on theX chart can be used as a graphical diagnostic aid. For extensive discussions on such
diagnostic issues, including discussions based on probabilistic argumer{&5 858

The X chart is a Shewhart chart, and thus it will not be as sensitive to small shifts in
or ¢ as a CUSUM or EWMA control chart. If th& chart is used with an EWMA chart
of the observations, then this combination will be effective for detecting small shifts in
However, if it is important to detect quickly small shifts én then a CUSUM or EWMA
statistic could be considered (see, for exam[8&,38])). One such statistic fos is the
EWMA of the squared deviations from target (EWMA-SDT) (see, for exanid|22,45).
In particular, the upper one-sided control statistic of the EWMA-SDT chart for detecting
increases iw can be written as

Sk =1 — AHymaxqSi_1, 08} + A(Xx — np)>, k=1,2,...,

where /4 is a smoothing parameter satisfying<0. <1 and the starting value is usually
So = 0(2). A signal is given at samplk if S; exceeds an upper control limit set«% +
hgag,/ZA/(Z — 4), wherehg is the chart parameter that determines the distance of the
control limit from g3,

Some ARL values were computed for two matched EWMA-SDT charts with0.1
and 0.2, respectively, and are given in columns 4 andTabfe 1 These ARL values were
computed as described[i85,52] Compared to th& chart, the EWMA-SDT chart is faster
at detecting increases in especially for small shifts. Thus, if théchart is used with an
EWMA chart, as is often the case in monitoring analyzer performance, the question arises
of whether also adding the EWMA-SDT chart would be worthwhile. When another chart
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is added to a monitoring scheme, there will always be an increase in the false-alarm rate. If
such an increase can be tolerated in exchange for faster detection of small shiftisen

in many cases one could “tighten” the control limits of tkehart by a small amount to
improve its ability to detect shifts in. Thus, it appears that the addition of a specific third
chart for detecting small shifts i, such as the EWMA-SDT chart, may not be necessary

in many practical situations. For extensive investigations of the properties of EWMA-STD
charts in the context of the monitoringand/org, see[35-37,52]

2.4. Combining the X chart with the EWMA chart

The control chart scheme that we will consider here for monitoring analyzer performance
is the combination of th&X chart and EWMA chart of the observations implemented with
the VSI feature. The VSI feature can be used with one of the charts or with both charts.
The use of the VSI feature with the EWMA chart will be investigated first. Then, the use
of the VSI feature with both charts will be considered. Using the VSI feature witiXthe
chart alone does not appear to be the best use of this feature, so this possibility will not be
investigated.

Applying theX chart and EWMA chart together means that after an observation is taken,
this individual observation is plotted on tikechart and the weighted average of the obser-
vation and past observations is plotted on the EWMA chatrt. If desired, one of these control
charts can be superimposed on the other so that the information in the two charts can be
displayed concurrently. The control statistic plotted on the EWMA chart is

Yi=1— Y1+ Xk, k=12,...,

where/ is a smoothing parameter with<0. <1 and the starting value is usually taken to
beYo = 1p. The EWMA chart has control limits @iy + oy, whereoy = ao/A/(2 — 1)

is the asymptotic in-control standard deviation}pf and/ g is the chart parameter that
determines the distance of the control limits fragn A number of papers in the last 20
years have considered the design and implementation of EWMA control charts (see, for
example[8,11,20,25,55,5%] When theX chart and the EWMA chart are used together, a
signal is given ifX; falls outside ofug £ hx oo, or if Y falls outside ofug &+ hgoy.

2.5. Applying the VSI feature to the combination of the EWMA and X charts

Suppose thatthe EWMA chart akathart are used together and consider first the situation
in which the VSI feature is applied only to the EWMA chart. After observakiesmitaken,
the time until the next observation is taken depends on the position of thelfagitdtted
on the EWMA chart. As discussed above, it is recommended that two possible sampling
intervals, one short and the other long, be useddie¢present the short sampling interval
andd, the long sampling interval, where<0d; <d». For example, if the minimum time
required to obtain another observation on an analyzer is one day/ileeuld be one day
andd, might be seven days.

The decision rule for the VSI feature is based on the distandg &om the targefy.
The basic idea is that if} is close tou,, then the next observation should be takerzn
time units, but ifY, is not close touy (but still within the control limits), then the next
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observation should be takendn time units. To make this sampling decision rule precise,
two additional limits are set afy + g0y, Wheregg < hg. Then, the decision rule is to use
the long sampling interval, if Y falls in ug + ggoy, and use the short sampling interval
dq if Yy falls betweernuy — hgoy andug — geoy or betweeruy + geoy andug + heoy.

The sampling rule described above bases the decision about the next sampling interval
on the value of the EWMA statistik;, so that the VSI feature is used only in the EWMA
chart. However, as discussed previously, it seems reasonable that the VSI feature could also
be used in th& chart. This means that the decision about the next sampling interval would
also depend on the value of the statistic plotted on theX chart. When it is desirable to
also add the VSI feature to théchart, a reasonable sampling rule must be specified for
combining the VSIX chart and the VSI EWMA chart into a single control scheme.

When the VSI feature is used with tixechart, two additional limits are constructed at
Upt gxoo, Wheregy < hx. Then, the decision rule is to use the long sampling intefydl
Xy falls in g £ gx 0o, and use the short sampling interdalif X, falls betweernuy —hxog
andpug — gxoo or betweernuy + gx oo andug + hxoo.

When the VSI EWMA chartis combined with the V&thart, then after each observation,
both charts will specify a sampling interval to use next. A reasonable decision rule to use in
this case is to use the long intervalif both charts specifyl,, and use the short sampling
interval d1 if either one (or both) of the charts specifiés This means thad; is used if
eitherY} or X; is not reasonably close to the targgt For given values o andgy, this
decision rule results id1 being used more often than it would be if the VSI feature was
used with only one of the two charts. Thus, when using the VSI feature with both charts it
may be necessary to increagge andgy somewhat to avoid usingg too often when the
process is in control.

2.6. Evaluating the statistical properties of combined VSI EWMA and VSI X charts

The ability of a control chart to detect special causes is typically evaluated by how fast
the chart detects the special causes after they occur. When a control chart uses a fixed-length
sampling interval, the expected time until the chart signals is the product of the sampling
interval and the ARL. However, when a VSI chart is being used, the expected time for the
chart to signal cannot be determined using just the ARL. Thus, for VSI charts, a separate,
direct measure of signal delay must be used. Let the average time to signal (ATS) be the
expected length of time from the start of process monitoring until a signal is generated.

The ATS provides a measure of the time required to detect a parameter change when the
change is present at the start of process monitoring. When the process is out of control,
there are two problems with using the ATS as a measure of signal-delay performance. One
problem is that the change may occur at a random time in the future, after the process has
been running for some time. In this case, the control stafistmf the EWMA chart at the
time of the change will usually not be at its starting valiee A second problem is that
a change that takes place in the future may occur somewhere within a sampling interval
between successive observations.

One approach to a more realistic computation of the ATS is based on the assumption that a
control statistic has reached its steady-state or stationary distribution (conditional on no false
alarms) by the time of the process change. The ATS computed under this assumption and



826 Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis: Real World Applications 6 (2005) 817—-844

from the random pointin time that the change occurs is called the steady-state ATS (SSATS).
The SSATS allows for the possibility that the process change can occur between successive
sampling times. As in previous work (see, for examf82,33,48,49), we assume that when

a change occurs within a particular sampling interval, the time of the change is uniformly
distributed over the interval.

For an individual ShewhaiX chart, the ATS and SSATS can simply be expressed in
terms of probabilities involving the normal distribution. For more complex charts such as
the EWMA chart, numerical methods based on modeling the control statistic as a Markov
process, such as the integral equation method or the Markov chain method, can usually be
used. The combined scheme based on using the EWMA chart together witlchiaet can
also be modeled as a Markov process. When applicable, the integral equation method offers
higher accuracy for the same computational effort and is easy to apply to the VSI EWMA
chart alone. However, when the EWMA chart is combined withXtodart, the transition
density of the resulting Markov process is not continuous, and this causes problems with
the application of the integral equation method. Thus, the best method for evaluating the
ATS and SSATS for the schemes of interest here is the Markov chain method.

The Markov chain method for finding the properties of the combined VSI EWMA and
VSI X charts is based on discretizing the possible values for the EWMA stdafjsti€ach
discrete value of}, corresponds to a state of the Markov chain. The accuracy of the Markov
chain method depends on the number, isaf states used. In general, the larger the value
of r the higher the accuracy, but large values oéquire more computational effort. For
detailed discussions of the ATS and SSATS and their evaluatiofi32688,48,49]

2.7. The accuracy of the Markov chain method for evaluating statistical properties

In applying the Markov chain method for evaluating the statistical properties of control
charts, the number of statefn the Markov chain that are necessary in order to achieve an
acceptable level of accuracy must be determined. Thus, we will next investigate the effect
of the choice of.

As an example of the effect of consider a combination of the VSI EWMA and ESI
chartshx =3.0 in theX chart. This choice of three-sigma limits will give an in-control ARL
of 370.4 when th& chart is used alone. For the VSI EWMA chart, consider the parameters
hg =2.7015,gr = 15704,/ =0.1,d1 = 0.1, andd> = 1.1. The parameterisg = 2.7015
andA = 0.1 will give an in-control ARL of 370.4 when the EWMA chart is used alone. The
choice ofggp = 1.5704 will insure that when the VSI EWMA chart is used alone and the
process is in control, the short sampling interalvill be used only 10% of the time, and
the average sampling interval will be 1.0 time unit. That is, the in-control ATS of the VSI
EWMA chart used alone will be 370.4 time units. These properties of the VSI EWMA chart
were evaluated using the highly accurate integral equation method. Note that, in general, a
time unit could be any appropriate length of time, such as an hour, a workshift, a day, or
even a week.

The properties of the above control scheme that uses the VSI EWMA chart in combination
with the FSIX chart cannot be determined from the properties of the individual charts used
alone. For this control scheme and eight choices, dable 2gives in-control ARL, in-
control ATS, and out-of-control SSATS values foe= 0.5, whered = | (1 — ig) /00| denotes



Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis: Real World Applications 6 (2005) 817 8344

Table 2
The effect of the number of statesn the computation of the ARL, ATS, and SSATS of the combined VSI EWMA
and FSIX charts

r ARL whend = 0 ATS whend =0 SSATS wher = 0.5
11 176.3680 173.0352 19.4633
21 191.9770 191.1533 19.4663
31 195.2933 195.1078 19.4685
41 196.5570 196.6170 19.4716
61 197.5251 197.7791 19.4765
101 198.0571 198.3948 19.4789
201 198.2670 198.6368 19.4793
399 198.3233 198.6984 19.4795

the size of a standardized shift in Note thatéo = O corresponds to the in-control case
H= Ho-

In Table 2 the ARL, ATS, and SSATS values stabilizeralsecomes larger. In general,
the Markov chain method tends to be least accurate whervery small andg is very
large (sed32]). In many practical applications, the value ofvould not be chosen much
below the value 0.1 used here, and the valuggofvould not be above the value used here.
Thus, for other choices dfandg g, the accuracy of the Markov chain method should not be
worse than for the case considered here. In fact, for many applications, a valeteken
31 and 61 would give sufficient accuracy for constructing an FSI or VSI control scheme
based on the EWMA anH charts.

In Table 2 the ARL, ATS, and SSATS values increase toward respective asymptotic
values, ag increases. This suggests using the calculated values to fit curves that can be
used to estimate the asymptotic values. We show below that the curves can be fitted using
relatively small values af, so that it is possible to get very accurate estimates of the ARL,
ATS, and SSATS without using large valuesoTo explain this method in more detalil, let
ARL (r) be the ARL calculated for a specific valuerofthe same idea applies to the ATS
and SSATS). Then, calculate ARY for several values of and use regression to fit the
model

1 1
ARL(r) =ﬁo+ﬁ172 +ﬁ2r7,a 1)

wheref, 1, andf, are the regression coefficients. This model will generally fit well, so
that lettingr — oo, we obtain ARL(co) = f3y. That is, thef, from the regression model is
an estimate of the ARL for an infinite number of states. The effectiveness of the regression
model in (1) is illustrated next for the evaluation of the ARL, ATS, and SSATS of the
combined VSI EWMA and FSX Charts.

Consider the results given ifable 3 where the last row of this table gives the values
for » =399 fromTable 2 The results infable 3show that very accurate ARL, ATS, and
SSATS values can be obtained using a relatively small number of states and the regression
model in Eqg. (1). The relatively small disadvantage to this approach is that the quantities of
interest must be calculated for several values @fhich slightly increases the complexity
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Table 3

The effect of using the regression model in Eq. (1) to compute the ARL, ATS, and SSATS of the combined VSI
EWMA and FSIX charts

Values ofr ARL whend =0 ATS whend =0 SSATS wher = 0.5
15, 19, 23, 27 198.5485 197.6949 19.4247

17, 25, 33,41 198.2138 198.5408 19.4671

23,29, 35,41 198.2217 198.1796 19.4458

25,29, 33,37,41 198.4807 198.1638 19.4443
11,21,31,41,51 198.2268 198.6233 19.4748
21,31,41,51,61 198.3238 198.7349 19.4799

61, 81, 101, 121, 141 198.3293 198.6730 19.4753

399 198.3233 198.6984 19.4791

of the operation.

The ARL, ATS, and SSATS values ifables 2and 3 were presented for purposes of
accuracy assessment. Their interpretation in terms of process monitoring is as follows.
When the process is in control, a false alarm will occur on average about every 198 samples.
This corresponds to an average of about 198 time units between false alarms (recall that the
chart parameters were chosen to give an average sampling interval of 1.0 time unit when
the process is in control). If either the VSI EWMA chart or the K3ihart had been used
alone, the false-alarm rate for either one of these charts would have been one false alarm
in 370.4 time units. This means that combining the two charts into a single control scheme
will result in an increase in the expected rate of false alarms. The SSATS of the scheme is
the expected detection time for a process shift. In particular, when the process mean shifts
by one half of the process standard deviatior= 0.5), it will take on average about 19.5
time units to detect this shift.

2.8. Comparisons of combined FSI and VSI EWMA and X charts

In trying to decide which process-monitoring scheme to recommend for practical appli-
cations, several questions arise. One question concerns the benefit that can be gained by
using a VS| scheme instead of an FSI scheme. Another question is whether it is better to use
the VSI feature with only the EWMA chart or with both the EWMA chart andXhehart.

A third question concerns the choice of chart parameters, such asdhels, hg, g, hx,
andgy. In this section, we will investigate these questions, allowing the VSI feature to be
used in both the EWMA chart and tiechart.

Table 4gives in-control ATS values and out-of-control SSATS values for ten FSI and
VSI control schemes that are combinations of an EWMA chart and@rart. The out-of-
control SSATS values are given for six valuesief | (1t — 1g) /ool (corresponding to shifts
in u with o = o) and for six values of /g (corresponding to shifts i with u = pg). The
chart parameter valuds:, g, hx, andgx are given in the last four rows dable 4 The
regression method for the model in Eq. (1) ang 21, 31, 41, 51, and 61 Markov chain



Table 4
In-control ATS and out-of-control SSATS values with chart parameter values for FSI and VSI combinations of EWMAlzents

FSIEWMA VSIEWMA VSIEWMA VSIEWMA VSIEWMA FSIEWMA VSIEWMA VSIEWMA VSIEWMA VSIEWMA

FSIXchart FSIXchart VSIXchart FSIXchart VSIXchart FSIXchart FSIXchart VSIXchart FSIXchart VSIXChart
Size of shift 1 =0.1 A=0.1 A=0.1 =01 A=01 A=0.2 A=0.2 A=0.2 2=0.2 A=0.2

— d1=0.1 d1=0.1 d1=0.1 d1=0.1 — d1=0.1 d1=0.1 d1=0.1 d1=0.1

— do=11 do=11 d> =16 do> =16 — do=11 dp=11 d> =16 do =16
0 a/o0 d=10 d=10 — d=10 — d=10 d=10 — d=10 —
0.00 1.00 198.32 198.73 198.74 199.78 199.78 203.88 204.13 204.13 204.48 204.49
0.50 1.00 25.35 19.48 21.53 15.38 17.07 32.32 26.26 28.24 21.21 23.22
1.00 1.00 8.52 5.75 6.21 4.66 4.78 8.70 5.64 6.20 4.31 4.65
1.50 1.00 4.67 3.21 3.11 2.72 2.45 431 2.73 2.77 2.23 2.19
2.00 1.00 2.94 2.14 1.82 1.90 1.52 2.65 1.77 1.61 1.52 1.39
3.00 1.00 1.28 1.11 0.80 1.15 0.90 1.21 0.97 0.77 0.96 0.88
5.00 1.00 0.52 0.56 0.55 0.77 0.77 0.52 0.56 0.55 0.75 0.77
0.00 1.50 17.09 16.43 15.16 16.19 13.66 16.39 15.35 14.42 14.64 12.77
0.00 2.00 6.24 5.97 5.20 6.08 4.75 6.02 5.55 4.97 5.38 4.45
0.00 2.50 3.59 3.47 2.94 3.65 2.81 3.49 3.23 2.84 3.22 2.66
0.00 3.00 2.53 2.47 2.08 2.68 2.07 2.48 2.31 2.02 2.37 1.99
0.00 5.00 1.30 1.31 1.12 1.53 1.27 1.29 1.25 1.11 1.38 1.24
0.00 8.00 0.90 0.94 0.83 1.16 1.02 0.90 0.90 0.83 1.07 1.01
hg 2.7015 2.7015 2.7015 2.7015 2.7015 2.8593 2.8593 2.8593 2.8593 2.8593
gE — 1.5704 1.8713 0.8113 1.1532 — 1.6097 1.8715 0.8276 1.1251
hx 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
gx — — 1.8713 — 1.1532 — — 1.8715 — 1.1251

v1B8 .18 (5002) 9 suonealddy plop [eay :sisAfeuy JeauljuoN / IC splouksy "Y'IN ‘'Soquinols "9°Z
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states was used to compute the ATS and SSATS values in order to obtain highly accurate
results.

The control limits of the ten control schemes were determined so that all EWMA charts
and allX charts have in-control ARLs of 370.4 when considered as individual charts. This
means that for alK charts 2 x = 3.0, but the value ofi . for each EWMA chart depends on
the choice of the smoothing parametef he in-control ARLs of the ten combined schemes
are close to 200 (sekables 2and 3). The short interval for the VSI charts was chosen to
be 0.1 time units, and the long intervil was chosen to be either 1.1 or 1.6 time units. For
each individual VSI EWMA chart, the value gfz was determined to attain an in-control
average sampling interval of 1.0 time unit. Similarly, for each individual ¥®hart, the
value ofgx was determined to attain an in-control average sampling interval of 1.0 time
unit. This results in an in-control average sampling interval of approximately 1.0 time unit
when the EWMA andX charts are used in combination. The paraméter the EWMA
charts was chosen to be either 0.1 or 0.2. The fixed-length sampling intsficvadll FSI
control charts was taken to be 1.0 time unit.

The first combined scheme Table 4(column 3) is an FSI control scheme with= 0.1
in the EWMA chart. Results for this FSI scheme were included for purposes of comparison.
Column 4 contains results for a combination scheme with the VSI feature in the EWMA
chart but without the VSI feature in thé chart. This scheme has= 0.1 in the EWMA
chart,d; = 0.1, andd> = 1.1. Column 5 contains results for a scheme with the sane,
anddo, as in column 4, but with the VSI feature in both of the charts. For the scheme in
column 5, the value ofx was taken to be equal ig: and both parameters were increased,
so that the in-control ATS is the same as that of the corresponding control scheme in column
4 that does not use the VS| feature in thehart.

Columns 6 and 7 ofable 4give SSATS values for the same control schemes as columns
4 and 5 except that, = 1.6. The pattern of schemes in columns 3-7 is repeated in columns
8-12, except that = 0.2 in the EWMA charts. The in-control ATS values for the 10 com-
bination schemes ifiable 4are not precisely equal but are close enough that comparisons
between the schemes can be made.

Comparing the control schemesTable 4with the VSI feature to the corresponding
schemes without the VSI feature shows that the VSI feature provides a substantial reduction
in the SSATS for small and moderate shiftsiginFor detecting increases i the VSI
schemes without the VSI feature in thechart provide only a modest decrease in SSATS
for small and moderate shifts incompared to the corresponding FSI schemes. However, if
theX chart is used with the VSI feature, then the ability to detect increaseisiimproved
considerably. The reason for this is that tehart is the primary chart for detecting an
increase irv. If the X chart does not use the VSI feature, then the VSI feature will not help
much in detecting increasesdnUsing the VSl feature in th¥ chart also affects the ability
to detect shifts iny; the time required to detect small shifts is increased slightly, while the
time required to detect moderately large shifts is decreased slightly. This occurs because the
addition of the VSI feature to th¥ chart requires thajg be increased in order to maintain
the same in-control average sampling interval. The EWMA chart is the primary control
chart for detecting small increasesinand this increase igg reduces the effectiveness of
the EWMA chart.

The conclusions fronTable 4about the VSI feature are that adding the VSI feature to
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the EWMA chart enhances the ability to detect shiftsuinThe benefits of also adding
the VSI feature to theX chart are improved ability to detect increases iand improved
ability to detect moderately large shiftsjinThe disadvantages are reduced ability to detect
small shifts inu and somewhat increased complexity of the monitoring scheme. In practical
applications, the decision about adding the VSI feature toXtiebart will depend on an
evaluation of the particular tradeoffs involved.

The results inTable 4can be used to assess the effects of the choicearfdd,. As
expected, using = 0.1 is better for detecting small shifts ip while 2 = 0.2 is better for
detecting large shifts im. However,4 = 0.2 is slightly better thari = 0.1 for detecting
increases iw. This result fore occurs because the EWMA chart will be most responsive
to increases im when/ is large, and the increased variability in the observations is not
averaged out as much in the EWMA control statistic. The EWMA chart is not the primary
chart for detecting increasesdn so the choice of should not be dictated by concerns for
monitoringa.

The results infable 4show that for detecting shifts in, usingd, = 1.6 is better than
usingd», = 1.1, except for very large shifts. The same is true for detecting increasderis
the charts that use the VSI feature in thehart. The average sampling interval was taken
to be 1.0 when in control, sép = 1.6 corresponds to lower values gf andgx than does
do» = 1.1. Lower values fogr andgy mean that it will be easier to use the short sampling
interval when there is a small shift imor ¢. The drawback to low values @fz andgy
is thatd, will be used more frequently when the process is in control. In some practical
situations, this may be undesirable from a psychological point of viewd i§ regarded
to be the “normal” sampling interval, ant is regarded to be the sampling interval that
signifies a potential problem with the process.

3. An economic model for the design of combined VSI EWMA and VSIX control
schemes

3.1. Background information

Control charts are designed to detect changes in the system being monitored. Itis desirable
that a control chart detects changes quickly so that the system does not operate in an
undesirable state for a long period of time. It is also desirable that a control chart does not
produce a large number of false alarms, because false alarms lead to increased cost and
loss of confidence in the control scheme. In addition, it is desirable that the sampling cost
associated with operating a control chart be kept to a reasonable level. Designing a control
chart scheme for use in a particular application requires finding an acceptable balance
between the conflicting requirements of fast detection of system changes, a low false-alarm
rate, and a reasonably low sampling rate.

There are three basic approaches that have been used in designing control charts. The
first approach is based on heuristics that have been developed from past experience in
particular application areas. The second approach uses statistical properties of a control
chart, such as the in-control ATS (false-alarm rate) and SSATS, and designs the chart to
give reasonable values for these properties. This approach was used throughout Section 2.
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The third approach uses statistical properties of a control chart but also explicitly models
the costs associated with false alarms, sampling, and failing to detect system changes. This
third, economic design approach has a control chart constructed to minimize the long-run
average cost associated with the control chart’s operation.

An economic model for a control chart involves three different types of parameters. The
first type is system parameters describing system behavior, such as the expected time until
a system change will occur. The second type is cost parameters, such as the cost of a false
alarm. The third type is control chart parameters, such as the values of sampling intervals and
the control limits. For a given set of system parameters and a given set of cost parameters,
the economic model can be used to determine the optimal set of control chart parameters.

In some cases, the control chart design that is optimal according to an economic model
may not be so convenient to use. For example, a sampling interval of 1.873 time units may
not be as convenient to use as a sampling interval of 2.0 time units. In other cases, there
may be subjective factors associated with the monitoring operation that are not captured
in the economic model. In these cases, the system engineers may want to evaluate a set of
designs that have been identified as being acceptable. The economic model can be used to
assess the costs associated with each design in the set, so that the tradeoffs between costs
and subjective factors may be evaluated.

Another approach to accounting for subjective factors for which it is difficult to assign
explicit costs is to place constraints on the control chart design in the optimization process.
For example, it may be difficult to assess the impact of the loss of confidence due to a control
chart that produces too may false alarms. In this case, a constraint could be placed on the
false-alarm rate of the chart. Then, the optimization procedure would find the minimal-cost
design that satisfies this constraint (see, for exanfipde44).

3.2. The general structure of the economic model

The economic structure of the model that will be used here is analogous to that of
some models used in previous economic design studies of control charts (see, for example,
[10,12,19,23,24,43] However, the model must be nontrivially extended to account for the
adaptive, VSI feature and the two control charts used in combination to monitor the process
mean and variance. Here, we will develop an economic model for the combined VS| EWMA
and VSIX charts that were investigate above from the perspective of statistical performance.

The objective of the current study is to develop efficient monitoring procedures for both
the process meamand the process standard deviatiorTo avoid having to write both
ande when referring to the process parameters being monitored, we define thef/eztor
bef=(u, 0), and lethy = (ug, 00) represent its target value. Suppose that the process starts
out with @ at the target valu@y andd remains at this target until a special cause occurs and
produces a shift to some other valuefof he time, saylp, until a special cause occurs is a
random variable with some specified distribution. The size of the shiftlat is produced
by the special cause is also a random variable with some specified distribution. When the
special cause occurs and produces a shift, iihis assumed thal remains at the shifted
value until the control chart scheme signals and the special cause is found and removed.
Let Ty be the length of time thdt remains at the shifted value. The distributionZgfwill
depend on how fast the control chart scheme is able to detect shiftsrimduced by the
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First Last Special Control Special
False False Cause Scheme Cause
Alarm Alarm Occurs Signals Removed
Cycle Last First Special Cycle
Begins In-Control Out-of-Control Cause Ends
Sample Sample Detected
<¢———————— In-Control Period ={ - Out-of-Control Period ——I

Fig. 1. A diagram of an in-control period followed by an out-of-control period in a process cycle.

special cause, as well as the time required to remove the special cause once it is detected.
The time required to remove the special cause may include repair and/or adjustment time.
Once the special cause is detected and removef iamdturned tdg, the process continues

atdp until another special cause occurs. The time until this special cause occurs is assumed
to have the same distribution @s. The size of the shift produced by this special cause has
the same distribution as the previous shift and persists until it is detectédsareturned

to the target. This sequence of alternating in-control periods and out-of-control periods is
assumed to continue as the process operates over timei¢sele. Apart from the control

chart scheme, the behavior of the process is characterized by the distribufigntoé

length of an in-control period, and by the distribution of the shifl ihat can be produced

by special causes.

In economic design models, the operation of the control chart scheme is usually viewed
as a series of cycles, where a cycle consists of an in-control period followed by an out-of-
control period (se€ig. 1). During an in-control period, there are costs due to sampling and
false alarms. During an out-of-control period, there are costs due to sampling and operating
with @ out of control. The model contains cost parameters that allow the specification of
the costs associated with sampling, false alarms, and operating out of control. The long-
run average cost per unit time can be obtained as the expected cost per cycle divided by
the expected length of a cycle. This is justified by renewal-reward process theory (see, for
example[42]). In particular, this long-run cost per unit time, daycan be expressed as the
ratio

_Ls+Lp+Lo
E(To) + E(T1)’

whereLg is the expected cost of sampling in a cyde; the expected cost due to false
alarms during the in-control period in a cycle, ahg the expected cost due to producing
off-target during the out-of-control period in a cycle.
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The expression fdr contains five components that are functions of the design parameters
of the control chart scheme, the parameters associated with the behavior of the process, and
the cost parameters. Once explicit expressions for the componehtsiref obtained, a
numerical procedure can be used to find the values of the control chart design parameters
that will minimizeL for given values of the process parameters and cost parameters. These
values for the chart design parameters are then used to construct a control chart scheme that
is optimal in an economic sense for the given values of the process and cost parameters.

The above expression faris a general expression and additional assumptions about the
structure of the model need to be made in order to develop explicit expressions for the five
components ok. The model for the behavior of the process will be considered first.

3.3. The process model

It will be assumed that the time until the occurrence of a special cause has an exponential
distribution with parametep. This means that the expected time until the occurrence of a
special cause is p/ Thus, the expected length of the in-control period is

E(To) =1/p.

Suppose that when a special cause occurs it can produce a shift to anyppessible
values off represented b4, 0, . . ., 0,,. Each of these possible shifted valuegaould
involve a shift inu, a shift ing, or a shift in bothy and ¢ at the same time. When a
shift in @ occurs as a result of a special cause plebe the probability that it is a shift to
0;,fori =1,2,...,5n. That is, when a special cause occurs, the shift will bé; twith
probability p; .

When a special cause occurs, it will eventually be detected by the control chart scheme.
After the special cause is detected by the control scheme, assun tina units are
required for repair and adjustment of the process bdfasaeturned to the targdbp.

3.4. The cost parameters

The costs associated with sampling in a cycle will depend on the number of observations
taken during the in-control period and during the out-of-control period. @gte the
number of observations taken during the in-control period, and{ete the number of
observations taken during the out-of-control period when the shiftdaring this out-of-
control period is td;. A Markov chain method for determining(Og) andE (01;) will be
given below in Section 3.5. If

¢1 = cost of taking one observation,
then the expected cost of sampling in a cycle will be

n
Ls=c1 [E(Oo) + Zp,-E(ol,-)} :

i=1



Z.G. Stoumbos, M.R. Reynolds Jr. / Nonlinear Analysis: Real World Applications 6 (2005) 8178334

If Fo denotes the number of false alarms that occur during an in-control period and each
false alarm produces a cost©f, then the expected cost of false alarms in a cycle is

Lr =coE(Fp).

A Markov chain method for findind: (Fp) will be given in the following section.

The cost associated with operating witbut of control due to a special cause will depend
on the size and type of the shift thproduced by the special cause. kgtbe the cost per
unit time due to operating out of control because of a shiff t&Vhen there is a shift t;,
let Ty; be the time from the shift to the signal by the control chart scheme. A Markov chain
method for evaluating (71;) will be given in the next section. The expected cost during an
out-of-control period is then

1
Lo=Y_capilE(Tu) + RI.
i=1

The expected valug& (Ty;) is the average time required for the control chart scheme to
detect a special cause that produces a shift; ta herefore, it follows that the expected
length of an out-of-control period is

n
E(T) =) piE(Tu) + R.
i=1

Thus, the expected length of a cycle is

1 7]
E(To) + E(T1) ==+ Y _ piE(Tw) + R.
i=1

3.5. A Markov chain model for the terms of the economic model

In this section, we develop an exact Markov chain model for the terms needed in the
economic model for the combination of the V&land VSI EWMA charts. To simplify
the notation, the control statistid§ andY; for these two charts will be expressed as the
vectorW, = (Xy, Yx). The control chart scheme using the two-dimensional control statistic
W; can be modeled as a Markov chain. The Markov chain modaMois developed by
partitioning the regions within the control limits intsubregions. The control statistic is
then replaced by a discretized version that can assume only one representative value in each
subregion. Le§; be the representative value for regiofori =1, 2, ..., t. Then, staté of
the Markov chain corresponds to the discretized versidW,othat is equal t;. In what
follows, the notation will not make a distinction betweéf and its discretized version.
An additional state of the Markov chain, state- 1, is needed to correspond\i, in the
signal region outside of the control limits. L® 1 be the representative value for this region
outside the control limits.

Let Wp denote the starting value for the control statistic, which may, for example, be
used to start the EWMA before the first observation is sampled. Suppose that the control
chart scheme is normally started wilfy = s, S0 thatig is a potential starting state for the
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Markov chain. The first sampling interval for the VSI scheme is of a specified sizdgsay

For example, in some applications, it would be reasonable tagtebe a short sampling
interval, to guard against problems that might be present at startup. The sampling interval
bi,, which is specified by the valy =s;,, may not be equal tdy. In this case, the staig

will not serve as the starting state of the Markov chain and another state must be designated
or defined for the starting state. This issue will be further discussed later in this section,
after some more structure is developed for the Markov chain model.

Fori, j=1,2,...,t+1,letg;; be the transition probability from staiteo statg. Assume
that after a signal by the control chart scheme, the control statistic is immediately restarted
ats;,. This means that the transition probabilities from stajel are the same as from state
io; 1.8, gr41,j = qig,j, for j =1,2,...,t 4+ 1. Also, letd; be the sampling interval to be
used next, when the control statistic is currently in state

If Qis used to represent the transition probability matrix for the fissates, then many
properties of the control chart can be computed in tern@.dfetM = (I — Q)~%, and let
m;; be the elementi, j) of M. If the Markov chain is started in some statéhen the ARL
for the control charti$~’;_; m;; and the ATS is) " _; m;;b;.

To find several of the expectations that are needed in the economic model, it is necessary
to know the state of the Markov chain at the sample immediately before the stiff hre
determination of the probability that the Markov chain is in a particular state immediately
before the shift can be done by developing an expanded Markov chain that jointly models
the state of the control statistic and the staté of the intervals between samples. L&t
be defined as 1 i# = 0 both at sampl& and in the interval after sample as 2 if0 = 0g
at samplek but shifts fromfyp in the interval after samplie and 3 if@ # 6 both at sample
k and in the interval after sample The expanded Markov chain will be used to model
Wy, Vi), as described below.

Fori =1,2,...,t+ 1, statd in the Markov chain corresponds\Wg, = s; andV; = 1.
WhenW; =s;, the next sampling interval will big and the probability of no shift il in this
interval is €%, Fori =t +2,¢ +3,...,2t + 2, statd in the Markov chain corresponds
toW, =5 andV, = 2. WhenW; = s;, the probability of a shift in the next interval is
1—erhiIf q}’; is the transition probability from stat¢o statg of the Markov chain, then
fori,j=12,...,t+1,

q; = qije ",
and

4114y =4qij (1 — e ).

Also,ql.*j =0,fori=t4+2,t+3,...,2t+2andj =1,2,...,2t + 2, because it is not
possible to return to the states corresponding te 6y without a signal by the control
scheme. Note that there are additional states in the Markov chain corresponiling &
but for the purposes here, it is not necessary to explicitly define these states.

If the Markov chain starts in one of the first+ 1 states and remains in these states for
some period of time, then during this time the valuegda$ 6y. When the Markov chain
moves to one of the statesy 2,1+ 3, ..., 2t + 2, then the shift i will occur in the next
interval, so the Markov chain will spend one time period in these states. It follows that one
of these states will determine the value/gf immediately before the shift if.
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If W, falls outside of the control limits wheé = 0, then this is a false alarm and the
Markov chain is in state+ 1. If after a false alarm the chart is restarted;aanddp is used
as the next sampling interval, then state 1 corresponds ts;, anddg. Thus, it follows
that state + 1 might serve as a starting state for the Markov chain. If there is no sléft in
before the first sample is takéky = 1), then the starting state for the Markov chain can be
taken to be + 1. However, if there is a shift ifl before the first samplé/y = 2), then the
starting state for the Markov chain can be taken tob¢ 2. Therefore, the Markov chain
will start in stater + 1 with probability 740 and in state 2+ 2 with probability 1— e~~%,

Let Q* be the transition probability matrix for the first+ 1 states of the Markov chain.
LetM*=(1-Q" 1and Ietmj‘j be elementi, j) of M*. Let p; 11,41+, be the probability
that the Markov chain is in state+ 1 4 j at the sample immediately before the shiffin
given that the starting statedst 1. Then, it follows that

t+1 t+1
* * * —ob ;
Pr+litlt) = E :mi+l,iqi,t+l+j = E :mz+1,i‘1i./(1— e,
i=1 i=1
sincemy, , ; is the expected number of times in statandg;’, . ,, ; is the probability of a

transition from statéto stater + 1 + ;.

To find E(0Op), the expected number of observations in a given in-control period, note
that if the starting state is2- 2, then there are no observations before the shift. But if the
starting state is + 1, then the expected number of observationgfjé.il1 miyq ;- Thus, it
follows that

141

E(Op)=e " "my,, .
j=1

To find the expected number of false alarms during an in-control period, note that if the
starting state is2+ 2, then there are no observations before the shift, and thus there can
be no false alarms. If the starting state i$ 1, then the initial visit to state + 1 should
not be counted as a false alarm, but there will be a false alarm every time that the Markov
chain returns to statet+ 1. In addition, there will be a false alarm if the Markov chain goes
to state 2 + 2 after starting in state+ 1. Thus, it follows that

E(Fo) =€ "0}, 1,11 — 1+ prr12i42)-

The expected time out of control depends on the starting state for the in-control period
and the shift inf that occurs. Foyj = 1,2,...,¢t + 1, let ATS(j, [) be the ATS when the
control chart starts withlo=s; and with0=0,. The computation of the expected time out of
control depends on AT, /) and onp; 1.1 ;14 ;, the probability thatVy = s; immediately
before the shift. If it is assumed that an observation is taken instantaneously, then it follows
that the shift must occur in the interval between two observations. Given that the shift occurs
in aninterval of lengtld, Duncan10] has shown that the expected distance into the interval
is

Nl d
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Forj=12...,t+1,letr; be defined by; = 7(b;), so thatr; is the expected distance
from the shift to the previous observation, when the control statistic is in staté +

at this previous observation. If the shift occurs before the first observation and the Markov
chain starts in state 2- 2, then this is equivalent to starting the control chart WWh=s, 1.

In this case, the expected time from the shift to the signal is(A¥S,, /) — 7,41 If the shift

does not occur before the first observation, and the Markov chain starts in $tdtethen

the expected time from the shift to the signaﬁéf;ll Piyli+1+;[ATS(j, 1) —1;1. Thus, it
follows that the expected time required to detect a shif; tis

t+1
E(Ty) = (1— e P®)ATS(t + 1,1) = 11l + € 7Y pryarrajIATS(, D) — 1.
j=1

The expected number of observations taken during an out-of-control period can be ob-
tained using the same argument as in the derivatioB(@f;). In particular, if ARL(j, 1)
is the ARL when the control chart starts witth = s; and with0 = 0;, then the expected
number of observations required to detect a shifyts

t+1
E(Oy)=(1— e ")ARL(t +1,1) + € > " pi11,414 jARL(j, D).
j=1

3.6. Optimization of the economic model

As discussed in Section 3.2, in the economic modeling approach, a control chart scheme
is designed to minimize the long-run cost per unit timassociated with the operation
of the scheme. For a given set of system parameters and a given set of cost parameters,
the economic model can be used to determine the optimal vector of control chart parame-
ters(hg, ge, hx, gx, 4, d2). That is, the economic-model approach involves a multivariate
nonlinear optimization problem, which has the form

minimizeL(hg, gg. hx, gx, 4, d2).

The short sampling interval; is not involved in the above minimization, because of
the established fact that the shortest feasible intetvaives the best performance (see
[31,32,48). Thus,d1 will be taken to be the shortest feasible sampling interval as de-
termined by administrative considerations and process constraints. For example, in many
practical applications of analyzer calibratieh,would be on the order of one workshift or

one day.

Multivariate search methods for optimization problems are classified into two general
categories: Gradient methods and derivative-free method44s2). Gradient methods
demand function and partial derivative evaluations, while derivative-free methods only
employ function evaluations. Gradient methods would be expected to be more efficient
in the majority of cases, due to the additional information utilized. If analytical partial
derivatives can be derived, however, the question arises of whether a search technique
should be used at all. If derivative approximations based on finite difference equations are
used, the efficiency of gradient methods should be similar to that of the derivative-free
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methods. Gradient methods incorporating derivative approximations usually present some
numerical problems in the vicinity of the optimum, where the approximations become very
small. Since no closed-form expressions exist for the cost funttionfor the statistical
properties of the combined VSI EWMA and V&lcharts, a gradient-based minimization
procedure must involve derivative approximations with the associated drawbacks.

A general approach to the minimization lofcould involve using numerical derivative
approximations in a procedure based on the generalized reduced gradient (GRG) method,
which was first developed bjjl] (see alsd16]). However, because of the complexity of
the GRG procedure, the implementation of a GRG-based algorithm for the nonlinear mini-
mization ofL must involve an interface with a commercial software package. For practical
applications where this complication is not desirable and in view of the discussion given in
the previous paragraph, the simple but effective derivative-free optimization procedure of
Hooke and Jeevg4d 3] can be used for the design of the combined VSI EWMA and VSI
X control chart scheme. The optimization procedure of Hooke and J§ESwas also
used by Montgomery et aJ24] in the design of an approximate economic model for an
individual FSR EWMA chart for monitoring alone.

In some applications, the control scheme design that is optimal according to the uncon-
strained economic model may be inconvenient to use and/or subjective factors associated
with the monitoring operation may exist that are not captured in the economic model. In or-
der to address such potential complications, Sapighconsidered an economic statistical
model for the design of FSR ShewharandR charts by introducing constraints on certain
statistical properties, including the false-alarm rate. Such constraints can be introduced in
the above optimization procedure foby adding a large penalty cost to the objective func-
tion L if a certain constraint is violated, thus forcing the search back into the feasible region
(see[4,21)).

In the following section, we will illustrate with an analyzer application example the
use of unconstrained and constrained economic modeling for the design of a combined
VSI EWMA and VSI X control chart scheme. This illustration quantifies the substantial
cost reduction and gains in performance that can be achieved by using the combined VSI
scheme instead of its FSR counterpart.

3.7. An illustrative example

Consider an industrial process where an electrochemical device is to be calibrated on a
regular basis in order to ensure that it meets certain regulatory standards. Suppose that the
device is currently being monitored using a combination of an FSI EWMA chart and an
FSI X chart, with a fixed-length sampling interval@f= 1.0 h. In the past, there have been
occasional changes in the device’s mean readings and/or increases in the standard deviation
of the readings. The primary objective of applying the control chart scheme is to quickly
detect changes in the mearand/or increases in the standard deviatioof the device’s
readings, so that the problem can be eliminated before an excessive amount of time goes
by and a large quantity of nonconforming product has been produced.

The process engineers are interested in improving the performance of the current control
scheme and plan to implement the VSI feature in both the EWMA chart and thert.

The equipment used for testing is in close proximity to the electrochemical device, so that
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the short sampling interval was chosen todge= 0.1 h. After some careful analysis, the
engineers identified the following cost and process parameters:

Cost of taking an observatiom = $50.

Cost of a false alarm;; = $2000.

Cost of a shift inu of sized = 0.5 (with no shift ing), ¢31 = $100/h.

Cost of a shift inu of sized = 2.0 (with no shift ing), c¢3 2 = $500/h.

Cost of a shift ino of sizeg/ap = 1.5 (with no shift iny), ¢33 = $200/h.

Cost of a shift inu of sized = 2.0 concurrent with a shift im of sizeg /a9 = 2.0,
3.4 = $500/h.

Expected time until the occurrence of a special cai$&p) = 1/p = 1000 h.
Search, repair, and recalibration time= 1.0 h.

Probability of a shift inu of sizedé = 0.5 (with no shift ing), p1 = 0.5.
Probability of a shift inu of sized = 2.0 (with no shift ing), p> = 0.2.
Probability of a shift inc of sizeg/ag = 1.5 (with no shift inu), p3 = 0.2.
Probability of a shift inu of sized = 2.0 concurrent with a shift i of sizes /g9 = 2.0,
psa=0.1.

Applying the GRG minimization algorithm, the optimal economic design for the com-
bined VSI EWMA and VSIX chart scheme was determined to use 0.09,d; = 0.10h,
do =4.06h,hg =2.19,¢gr =0.98,hy = 2.61, andgx = 1.17. This VSI scheme has an
in-control ATS of 156.2 h and a long-run costt= $54.70/h. In comparison, the optimal
economic design for the combined FSI EWMA and KSihart scheme was determined to
use/ = 0.15, the fixed-length sampling interval @f= 6.00 h,hy = 1.38, andhx = 1.88.
This VSI scheme has an in-control ATS of only 70.7 h and a long-run cdsto$63.24/h.
In Table 5 the columns labeled 1 and 2 give in-control ATS and out-of control SSATS
values for these two optimal FSI and VSI chart combinations. In particular, column 1 gives
values for the FSI combination and column 2 for the VSI combination. The optimal VSI
chart combination provides much better SSATS performance than the optimal FSI chart
combination, for all four combinations of shifts jnand/org, at a much lower false-alarm
rate and long-run cost.

After closely considering the optimal FSI and VSI schemes in columns 1 and&bte
5, the process engineers decided that sampling intervals much longer than 2 h would be
too risky, and an in-control ATS less than the traditional 370.4 h may cause an excessive
number of disruptive false alarms. They also decided that the SSATS should not exceed 40 h
for shifts inu of sized = 0.5, or larger. Thus, to determine economic statistical designs for
the combined FSI and VSI EWMA and chart schemes that account for these concerns,
the engineers introduced the following three constraints:

(C1) ATS>3704h, foro = 0.0 ando = ayp.
(C2) SSAT<40.0h, foré =0.5 ande = ap.
(C3) For the FSI schemé,< 2.0 hours; for the VSI schemép < 2.0 hours.

Columns 3 and 4 ofable 5give in-control ATS and out-of control SSATS values for two
FSI and VSI combinations of the EWMA antiCharts that have been optimized subject
to constraints (C1)—(C3). In particular, column 3 gives values for the FSI combination,
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Table 5
In-control ATS and out-of-control SSATS values with chart parameter values and long-run costs for optimal FSI
and VS| combinations of EWMA anX charts

Optimal economic design  Optimal economic statistical design

Constraint on ATS, fod = 0.00 None None ATS3704 ATS>3704 ATS>3704
ando = gg
Constraint on SSATS, fa¥ = 0.50 None None SSATS 40.0 SSATS<40.0 SSATS<20.0
ando = gg
Constraint on sampling interval None None d<20 dp <20 dp <20
Optimal EWMA parametei. A=0.15 2=0.09 A=0.13 A=0.09 A=0.08
Optimal sampling interval(s) d =6.00 d1 =0.10 d=135 d1=0.10 dy=0.10

dp =4.06 dp =2.00 dp =1.90
Minimal long-run cost per hour $63.24  $54.70 $76.73 $62.33 $71.10

Size of shift ~ Probability Cost of shift FSIEWMA VSIEWMA FSIEWMA VSIEWMA VSIEWMA
— of shift per hour FSKchart VSIXchart FSIXchart VSIXchart VSIXchart

0 a/og Columnl Column2 Column3 Column4  Column5
0.00 1.00 — — 70.7 156.2 371.3 370.8 383.0
0.50 1.00 0.5 $100 35.2 29.2 39.0 27.7 18.9
2.00 1.00 0.2 $500 6.9 3.4 4.1 24 1.9
0.00 1.50 0.2 $200 221 20.4 28.2 23.7 20.2
2.00 2.00 0.1 $500 19.2 15.0 17.8 14.3 11.2
Optimal chart hg 1.38 2.19 2.85 2.93 291
parameters SE — 0.98 — 0.93 0.99

hx 1.88 2.61 3.08 3.19 3.19

gx — 1.17 — 0.95 1.02

and column 4 gives values for the VSI combination. Once again, as compared to the FSI
chart combination in column 3, the VSI combination in column 4 gives much better SSATS
performance for all four combinations of shifts, at a much lower false-alarm rate and long-
run cost. In particular, the long-run cost for the FSI scheme in column 3 is $76.73/h, as
compared to the long-run cost for the VSI scheme in column 4, which is only $62.33/h.
This cost is even lower than the long-run cost for the unconstrained, optimal FSI scheme in
column 1, which is $63.24/h. Since the optimal long sampling interval for the VSI scheme
in column 4 isd>=2.0 h, which is convenient from an administrative standpoint, the process
engineers decided to implement this scheme for improved performance in monitoring the
electrochemical device as well as a reduction in long-run cost.

Itis interesting to note that the SSATS performance of the VSI scheme in column 4 can be
substantially improved at a long-run cost still lower than that of the FSI scheme in column
3, but higher than the cost of the VSI scheme in column 4 chosen for implementation by the
engineers. For example, the VSI chart combination in column 5 is an optimal, economic
statistical design satisfying constrains (C1) and (C3), though subject to the much more
restrictive constraint, SSATS20.0 h, foré = 0.5 ando = a¢. The long-run cost of the VSI
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scheme in column 5 is $71.10/h, still less than the cost of $76.73/h of the FSI scheme in
column 3, but higher than that of the VSI scheme in column 4. The VSI scheme in column 5
uniformly outperforms all other chart combinations in columns 1-4 at a lower false-alarm
rate. For convenience, the long sampling intervakcf 1.9 h for the VSI scheme in column

5 could be rounded up @ = 2.0 h with a small increase in long-run cost of about 3%,
which is still less than the long-run cost of the FSI scheme in column 3.

For purposes of exposition, the time and monetary units used in this paper were taken
to be the hour and the dollar. However, the numerical results presented here extend to any
other time or monetary units. In general, the full use of the economic design approach for
practical applications will require using a computer program to find the optimal design.
However, the relative performance and cost conclusions reached here for the combined FSI
and VSI EWMA andX charts generally extend to many other cost and process parameter
values, and in some cases, the numerical results presented in this paper may be sufficient
for finding a design that is close to optimal.

4. Conclusions

In this paper, various individuals control chart schemes were contrasted for the problem
of monitoring the meam and variancer? of a normal process variable, with special con-
sideration given to the problem of monitoring the performance of process analyzers, such
as electrochemical devices, gas and liquid chromatographs, potentiometers, refractometers,
and spectrometers. The combination of the VSI EWMA chart and the VS| Shedblaatrt
was shown to be a very effective control scheme for this problem, from the perspective
of statistical performance. From a practical perspective, this control scheme also has the
convenient feature that the two charts can be shown concurrently, on the same plot, while
displaying the original process data.

Furthermore, a comprehensive economic model was developed for the design of control
schemes based on the combination of the VSI EWMA and¥3larts. The economic model
relates the long-run cost per time unit of operating this chart combination as a function of
the charts’ parameters, the system behavior, and various cost factors. The economic model
can be used to quantify the reduction in cost that can be achieved by using the VSI control
scheme, instead of traditional control schemes that use fixed sampling rates. The numerical
results in this paper demonstrated that the cost reduction as well as the gains in statistical
performance are substantial. In fact, in many practical applications, the high efficiency of
the combined VSI EWMA and VSX charts could be used to reduce the sampling effort
and cost necessary to insure a required detection capability.

Finally, it should be stressed that the numerical results and conclusions of this paper are
not only relevant to the problem of monitoring the performance of process analyzers. The
results and conclusions generally apply to any SPC application concerned with monitoring
u anda? using individual observations.
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