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SUMMARY 

Over the years, there has been much discussion about the relative importance of environmental and 
biological factors in regulating natural populations. Often it is thought that environmental factors are 
associated with stochastic fluctuations in population density, and biological ones with deterministic 
regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show 
that completely deterministic regulatory factors can lead to apparently random fluctuations in population 
density, and we then develop a new method (that can be applied to limited data sets) to make practical 
distinctions between apparently noisy dynamics produced by low-dimensional chaos and population 
variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity 
or sampling error. 

T o  show its practical use, the method is first applied to models where the dynamics are known. We then 
apply the method to several sets of real data, including newly analysed data on the incidence of measles 
in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. 
In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has 
previously been found for measles in New York City), whereas on a larger, country-wide scale the 
dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some 
nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed 
can affect the conclusions drawn. 

we discuss the limitations of traditional approaches to 
1. INTRODUCTION 

analysing deterministic influences on population dy- 
The classical debate between the biotic and climatic namics. The second section outlines the light which 
schools has divided opinion over the relative im- recent advances in nonlinear dynamics theory shed on 
portance of deterministic versus stochastic forces in these problems. In  particular, it summarizes a new 
controlling ecological populations (Sinclair 1989). This method for distinguishing noise from low dimensional 
long-standing debate over random versus determined determinism in ecological time series, based on their 
variation has begun to take on new meaning with internal predictability (Sugihara & May 1990). The 
recent interest in chaos and nonlinear dynamics, and third section applies this method to time series of 
with the ever-increasing demonstrations of the ap- notified case reports for childhood diseases in developed 
plicability of these ideas to real data. Until recently, countries. Because they are often relatively long, 
one would have viewed a time series such as the one and reflect comparatively simple host-microparasite 
shown in figure 1 a and concluded that the ecologically population interactions, these series are among the best 
important information here rested in the smooth fitted ecological candidates for applying nonlinear methods 
line. There is, however, a change of view occurring in (Schaffer & Kot 1986; Schaffer et al. 1988). After 
dynamics, similar to the change that fractals is bringing reviewing previous work in this area, we present a new 
to geometry and the study of spatial pattern, which analysis of the dynamics of measles in English cities, 
suggests that the most interesting things may be found which has significant implications for the question of 
in the irregularities rather than in the smoothed spatial scaling in ecological systems and the concept of 
pattern (Lorenz 1969 ; Takens 1981 ; Schaffer & Mot stationarity as defined in traditional time series 
1986; Sugihara & May 1990). Although initially it analysis. The final section draws these conclusions 
appears that incorporating such detail into the popu- together and suggests lines for future work. 
lation dynamics debate may further cloud the problem, 
we shall argue that the end result is not new difficulty, 2. TRADITIONAL APPROACHES 
but the prospect of a new clarity and simplicity. 

The paper is divided into four sections. In the first, 'The classical approaches to analysing population 
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Figure 1. (a) An example of population dynamics for Dubhniu and edible algae from Lake Washington (Murdoch & 
McCaughley 1985). The dashed line joins the observations and the smooth solid line is a sine wave fitted to the 
seasonal pattern. ( h )  Time series of 1000 points for the chaotic tent map: x,,, = 2x, if x, < 0.5; x,,, = 2 ( 1  -x,) if 
x, > 0.5. These data are in many ways indistinguishable from white noise. (c) Key factor analysis applied to the data 
in figure 1b. Although the signature appears to be an example of density vague population regulation (no density 
dependence at low densities with severe control at high densities), it was derived from a low-dimensional chaotic 
process. 

dynamics are key factor analysis of observed data (to represents a population that is being buffeted by 
distinguish density-independent and nonlinear density- frequent random shocks with apparent occasional 
dependent influences) and the exploration of lab- returns to a quasi-equilibrium. Indeed, as shown in 
oratory and mathematical models that reduce the figure lc, a key factor analysis based on these data 
complexity of real systems to a single or a few factors would lead one to the opinion that this is a classic 
[Sinclair 1989). Although these methods have been example of what some would call 'density-vague 
highly successful in thr main, recent developments in control', i.e. no regulation at  low densities with control 
nonlinear theory identify a number of problems, which occurring only at  high densities. Yet these data do not 
we summarize as follows. represent density-vagueness at  all, but are an example 

of simple chaotic dynamics that were generated from 
the deterministic tent map (Sugihara & May 1990). 

( a )  Limitations of key factor analysis 
'Thus, in this case, an interpretation of these data as 

Consider the model time series shown in figure 1 b, arising from external unpredictibilities would have 
which appears to be stochastic. If this were a time series been incorrect. Conventional approaches would have 
for a real population, one might easily conclude that it mis-identified what was in fact simple chaotic dynamics 
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Figure 2. (a) Simultaneous timr series for the threc variables of thc Lorenz system: X,  Yand Z as functions of time. 
Each time-series represents the projection onto one axis of the Lorenz attractor (the so-called butterfly attractor) as 
it is embedded in three dimensions. ( 6 )  'The time series in figure 2 a  were randomly sampled at 500 simultaneoustimes, 
and the correlations between all pairs of variables for the Lorenz attractor are shown here. 'The correlation between 
X and Y has r = 0.636; that between X and Z has r = 0.001 ;and Y and Z have r = 0.000. That is, although Y and 
Z are deterministically coupled they show no correlation. 

(i.e., low dimensional chaos) as random variation 
within a density-vague envelope. 

(b )  Limitations of the single factor approach 

T o  complicate matters further (as discussed here by 
Godfra) & Blythe j1990)), the dynamics of real 
populations can only be properly understood if they 
are considered in their ecological context, that is in a 
way that recognizes the inherent complexity or 
multidimensionality of the probletn. Populations do 
not exist singly, but are embedded in a dynamic web of 
other species and environmental forces. While we are 
consciously willing to acknowledge this fact, it is 
important to realize how such complexity could blur 
any relations that one could ever hope to see in a 
typical single-factor analysis (regressing one explana-

tory variable against another: a mainstay of ecological 
research) such as the key factor approach. 

This can be shown with the following simple 
example. The three timc series shown in figure 2 n  were 
generated from the three variables that describe the 
well known Lorenz equations (Lorenz 1969). The 
system is completely determined by these three 
variables. Suppose now that we do not know that these 
time series came from a Lorenz system. We only know 
that they are parallel measurements from some system. 
Typically when one is trying to understand a phenom-
enon one looks for patterns, in this case correlations 
between the time series. If we randomly sample these 
series at  simultaneous times and look for pairwise 
correlations we get the result shown in figure 2 6. While 
there is a significant relation between X and Y,  t h e r ~is 
no significant linear relation between X and Z 
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(although there is a significant parabolic relation), and 
no relation of any kind between Y and Z. Thus even 
though Y and Z are deterministically coupled they 
appear completely unrelated. That is to say, lack of 
correlation between pairs of variables does not imply 
lack of causation. 

We are faced, therefore, with two dilemmas that at 
first glance are not obviously related: (i) how to 
distinguish randomness from low dimensional deter- 
minism, and (ii) how to explicitly acknowledge higher 
dimensions. These two problems are not only central to 
population regulation debates, but are at the heart of 
nonlinear theory as shall be discussed in the next 
section. 

3. NONLINEAR PERSPECTIVE 

Suppose we have perfect knowledge about the 
internal dynamics of a population, so that without 
arbitrary disturbance everything is determined and 
nothing is random. That is, we know all the variables 
and the functions describing how they are related. The 
space whose axes consist of each of these dynamically 
coupled variables is known as the 'state space.' For 
example, if this is an experimental multispecies system 
where the only important variables are other species, 
then the axes of the state space would be the population 
sizes of each of the coupled species. All population 
variability and motion would be constrained to some 
sub-manifold of that space set by the relations 
(functions) among variables. If, after an arbitrary 
perturbation, the population returns to it this sub- 
manifold, it is called an 'attractor' (Takens 1981; 
Abraham & Shaw 1982; Schaffer & Kot 1985; 
Godfray & Blythe 1990). 

The central concepts here, of state space and 
attractor, represent the scientific ideal of perfect 
deterministic knowledge. In practice, however, we do 
not know the state space. Rather, we might have time 
series for one or more of the variables. Thus, in 
practice, the state space and its attractor are a black 
box, and the time series are observables or outputs. 
Each of these time series can be viewed essentially as a 
projection onto one axis of the state space through time 
(e.g. figure 2a shows the three time series for the 
Lorenz attractor). That is, each time series is a view in 
one dimension of a process occurring in higher 
dimensions. Therefore, in a perfectly deterministic 
world, much of the complexity or apparent randomness 
in a time series will arise from a state space having a 
high number of dimensions, or alternatively (and 
possibly in conjunction with), an attractor with chaotic 
dynamics. 

Let us focus on the case where we have only one time 
series. How can we get information about the state 
space and attractor that produced it? The standard 
method here is Taken's (1981) technique of using 
lagged coordinates to embed a time series in higher 
dimensions (Godfray & Bly the 1990). Although em-
beddings can be created from the original state-space 
time series themselves, here we shall consider the worst 
case where there is only one time series to work with; 
this is also the case where the lagged coordinate idea is 

most valuable. Again, the space created by such an 
embedding is not the original state-space, but a mock 
version of it: something we shall call a 'phase space'. 
As proved by Takens (198 l ) ,  the phase space retains 
essential properties of the original state-space including 
the dimensionality of the attractor it contains. More- 
over, as we shall see, a phase space can be used to make 
forecasts, properties of which provide practical distinc- 
tions between low dimensional determinism and noise, 
even with limited data of the kind encountered in 
population biology (Sugihara & May 1990). 

Thus even though our ultimate goal is to understand 
the population in state-space (i.e., how many dimen- 
sions does it have? are the dynamics low dimensional 
chaos or simply noisy? etc.), we may only have a time 
series for one variable of this space (namely for the 
population itself whose dynamics we are trying to 
understand). T o  get around this problem we shall 
construct a phase space as a surrogate having the same 
topological characteristics as the original state-space 
(again, a higher dimensional embedding of the time 
series by using time-lagged coordinates). Information 
about the original attractor can then be gained by 
exploring the properties of the mock attractor in phase 
space. 

( a )  Nonlinear forecasting to differentiate noise from 
chaos: basic ideas 

The method outlined here is discussed in fuller detail 
in Sugihara & May (1990) and is based on theories of 
short-range prediction proposed in general terms by 
Lorenz (1969) and others (Tong & Lim 1980; Priestly 
1980; Farmer & Sidorowich 1989). The basic idea here 
(which is classical in prediction) is that, if indeed 
deterministic laws govern a system, then even if the 
dynamical behaviour is chaotic, the future may be 
reckoned from the behaviour of past values that are 
similar to the present. The key, however, is in knowing 
the dimensionality within which the past, present and 
future are embedded. 

Suppose (as discussed by Godfray & Blythe) we have 
properly embedded a time series in an E-dimensional 
phase space so that each lagged sequence of data 
points, Z, = {x,,x ~ _ ~ ,  } a in... , x,_(,_,,, is point this 
E-dimensional space. Here we usually choose 7 = 1, 
but the results do not appear to be too sensitive to the 
choice of 7, provided it is not too large. This is like 
taking an E-pronged fork whose tines are separated by 
a distance 7, and dragging it sideways along the time 
series; the vector of time-series values, Z,, formed by 
where the tines land at each instant, describes another 
E-dimensional point, and the set of vectors {Z) 
describes the attractor. In  general, Em,, 6 2 0  + 1, 
where D is the attractor dimension. Each predictee 2, 
is now to be regarded as an E-dimensional point, 
comprising the present value x, and the E- 1 previous 
values each separated by one lag time 7. We now locate 
all nearby E-dimensional points in the phase space and 
choose a minimal neighbourhood so that the predictee 
is contained within the smallest simplex formed from 
its E +  1 closest neighbours; a simplex containing E+ 1 
vertices is the smallest simplex that can contain an 
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E-dimensional point as an interior point. When a 
minimal bounding simplex cannot be found (for 
example, for boundary points), we use the E+ 1 
nearest neighbours. T o  obtain a prediction, we simply 
project the domain of the simplex into its range (that 
is, we keep track of where the other points in the 
simplex end up a t  p time steps), and compute the 
weighted centre of mass of the simplex to get the 
predicted value. In  other words, we follow the short 
term destiny of nearby points in the attractor to see 
where they end up after p time steps. This is a non- 
parametric method, and it should apply to any 
stationary or quasi-ergodic process, including chaos. I t  
uses no previous information about the model used to 
generate the series, only the information in the time 
series output itself. Unless otherwise stated, we shall 
construct the phase space from the first half of the time 
series to make predictions on the second half. 

( b )  Nonlinear forecasting to differentiate noise from 
chaos: examples from models 

Figure 3a shows an application of this method to the 
white-noise time series produced by taking first differ- 
ences of the tent map series shown in figure 1b. I t  
compares predicted against actual results two time 
steps into the future: a time step where there is no 
significant correlation between values. Notice again, 
the phase space constructed from the first half is used 
to predict the values in the second half. Thus, this time- 
series, which by standard statistical analysis is un-
correlated white noise (unpredictable), in fact becomes 
strongly predictable when embedded in higher dimen- 
sions. 

Figure 3 b shows how predictability, as measured by 
the standard correlation coefficient, declines as the 
prediction interval T, (i.e., how far into the future one 
projects) increases. Such a decrease in the correlation 
coefficient with increasing prediction time is the 
hallmark of chaos (or equivalently, of the presence of a 
positive lyapunov exponent, with the magnitude of the 
exponent being related to the rate of decrease of p with 
T,).This property is noteworthy because it suggests a 
simple way to distinguish between additive noise and 
multiplicative chaos: predictions with uncorrelated 
additive noise will appear to have a fixed amount of 
error, regardless of how far or close into the future one 
tries to predict, whereas predictions with multiplicative 
chaos tend to deteriorate as one tries to forecast further 
into the future. This can be seen in figure 3c where it 
is shown that the characteristic signature of p de-
creasing with T, does not arise when the erratic time 
series is in fact a noisy limit cycle (here additive noise 
superimposed on a sine wave). With uncorrelated 
additive noise, such as sampling variation, the error 
remains constant as the simplex is projected further 
into the future. In contrast, the dashed line in figure 3c 
represents the correlation coefficient (p) against pre- 
diction time (T,) relation for a chaotic sequence 
generated as the sum of two independent runs of first- 
differences of the tent map. Although the two time 
series here both look alike as sample functions of some 
random process, the characteristic signatures differen- 
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tiate random noise in one instance from deterministic 
chaos in the other. 

The predictions in figure 3a-c are based on an 
embedding dimension of E = 3. These results are, 
however, sensitive to the choice of E. This is shown in 
figure 3d where results are summarized for prediction 
accuracy (correlation between predicted and observed, 
here a t  T,= 1) versus embedding dimension E. I t  may 
at first sight appear surprising that having potentially 
more information erodes the accuracy of the pre-
dictions, since for large E there are more data sum- 
marized in each E-dimensional point, and a higher 
dimensional simplex of neighbours for each predictee. 
Sugihara & May (1990) have suggested that this effect 
may be caused by contamination of nearby points in 
the higher dimensional embeddings with points whose 
earlier coordinates are close but whose recent (and 
more relevant) coordinates are distant. If this is so, this 
method may have additional application as a trial and 
error method of computing an upper bound on the 
embedding dimension, and thence on the attractor 
dimension. 

So far, we have compared relations between p and T, 
for chaotic time series with the corresponding relation 
for additive white noise. More problematic, however, is 
the comparison with p-T, relations generated by 
coloured noise spectra where there are significant 
short-term correlations but no long term ones. As with 
chaos, such correlated noise can also lead to declining 
p-T, curves. Although, in the limit, the shallow form 
of the decline in simple cases may distinguish correlated 
noise from a chaotic signature (Sugihara & May 1990 ; 
Farmer & Sidorowich 1989), in a practical sense, 
particularly with limited data of the kind available in 
population biology, such distinctions may be difficult 
to find. One practical solution to this dilemma, 
suggested by Sugihara & May (1990), is that coloured 
noise may tentatively be distinguished from determin- 
istic chaos if in addition to an exponentially declining 
p-T, curve, the correlation, p, between predicted and 
observed values obtained by nonlinear methods is 
significantly better than the correlation obtained by 
the best-fitting autoregressive linear model. That is, if 
a time series is chaotic it should have both a steeply 
declining p-T, curve and more predictability under 
the nonlinear hypothesis (i.e. that it was produced by 
nonlinear mechanisms), than if one assumed it was 
produced by linear mechanisms (i.e. by the linear 
superposition of simple cycles of various period and 
amplitude). 

Perhaps most germane to the biotic/climate issue is 
the possibility of noise entering multiplicatively as a 
disturbance to population numbers which is then fed 
back into the dynamics. An example would be noise 
entering in the form X,.,,= F(X,+O,) ,  where F is 
assumed to have stable dynamics. Here, if F is 
nonlinear, a nonlinear predictor may still perform 
better. However, one can again expect a slower than 
exponential decline in the p-T, curve. An exponential 
decline which arises from locally exponentially diverg- 
ing trajectories may be taken as the operational 
definition of chaos. A simple way to use nonlinear 
forecasting to distinguish this possibility is by examin- 
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A t  Observed Prediction Time, Tp 

Prediction Time, Tp Embedding Dimension, E 

Figure 3. (a) Predicted values two steps into the futurc ( T ,= 2) versus observed values for the white-noise time series 
produced by taking first differences of the tent map series shown in figure 1b (after Sugihara & May 1990). 
Specifically, the first 500 points in the series were used to generate a library of patterns, which were then used as a 
basis for making predictions for each of the second 500 points. As described in the text, the predictions were made 
using a simplex projection method (Sugihara & May 1990) with an embedding dimension and lag time o f E  = 3 and 
T = 1, respectively. Here the coefficient of correlation between predicted and actual values is p = 0.997 (N  = 500). 
For comparison, we note that the corresponding correlation coefficient using an arttoregressive linear model is p = 
0.04. (b) Predictability measured by the standard correlation coefficient, p ,  as a function of how far into the future 
the forecast is made, T,. The exponential decay in predictability with increasing prediction time, <,shown here is 
a characteristic of chaotic dynamics. (c) Additive noise (solid line) versus chaos (dashed line). The solid line shows 
that the correlation, p, between predicted and observed values for the case of additive noise (here white noise 
superimposed on a sine wave) does not decline as one tries to forecast further into the future. By contrast, the dashed 
line shows the declining signature characteristic of a chaotic sequence (here the sum of two separate tent map 
sequences). (d) Correlation coefficient, p ,  betweert predicted and observed values as a function of embedding 
dimension, E, for predictions one time step into the futurc ( T ,= 1 ) ;  like figures 3a and b, the figure is based on the 
time series shown in figure 1 b. 

ing whether the E-dimensional simplex tends to expand 
4. APPLICATION:  T H E  DYNAMICS OF 

(chaos) or contract (noise fed through stable dynamics) 
C H I L D H O O D  M I C R O P A R A S I T I C

when projected from its domain into its range; this idea 
INFECTIONS

will be developed further elsewhere. 
Because of their public health importance, the 

epidemiology of childhood viral diseases such as 



measles and chickenpox in developed countries is 
especially well documented (Nokes & Anderson 1986). 
In particular, the relatively long time series of case 
reports accumulated from disease notification pro-
grammes in Europe and the U.S.A. provide a mass of 
information about the characteristically oscillatory 
dynamics of these infections in human communities 
(Anderson et al. 1984). The dynamic origin of this 
recurrent epidemic behaviour has been extensively 
examined, both in terms of mathematical models 
(Bartlett 1957 ; Anderson & May 1985; May 1986; 
Hethcote & Levin 1989), and time-series analysis of 
epidemiological data (Anderson et al. 1984). The data 
for measles have received considerable attention 
recently, and have been the focus of a debate as to 
whether measles dynamics is simply a noisy limit cycle 
(Schwartz 1985), or low dimensional chaos super- 
imposed on a seasonal cycle (Schaffer & Kot 1985, 
1986; Schaffer et al. 1989). Much of this controversy 
has centred on Schaffer's pioneering analyses of case 
reports for New York, and so we begin by applying the 
prediction method to these data. 

( a )  Measles and chickenpox in New York 

The methods described above have been used to 
analyse public health records of monthly changes in 
the reported incidence of measles and chickenpox in 
New York City (Sugihara & May 1990). The results 
are summarized in figure 4. The earlier arguments for 
chaos, based largely on qualitative judgements as to 
static properties of the attractor and model simulations 
(see, for example, Schaffer et al. 1989), were supported 
by the results of the forecasting analysis presented here. 
However, because prediction is a harder test of E-
dimensional determinism than judgements as to the 
geometry of a putative attractor, we think this analysis 
constitutes the strongest evidence so far, for the measles 
attractor. Here we see a steeply declining p-T, curve, 
with the characteristic signature of a chaotic process. 
The result is supported by the fact that the nonlinear 
predictor performs significantly better than the best 
linear predictor (P< 0.0005). An optimal embedding 
dimension of 5-8 is roughly consistent with our 
independent estimates of an attractor dimension of 
2.5-3.5 by using the Grassberger-Procaccia (1983) 
algorithm (Schaffer & Kot (1985) also report an 
estimated attractor dimension of 2.5 for measles). 
Thus, we believe the apparent irregularity in the 
measles time series is not due to random effects 
(environmental shocks or measurement errors), but is 
generated by low dimensional chaos. 

In contrast, the analysis for chickenpox (figure 4b) 
suggests that complexity here is not due to low 
dimensional chaos, but to noise (possibly high dimen- 
sional chaos), superimposed on a strong annual cycle. 
These data produce a flat p-T, curve, similar to the 
additive noise case in figure 3c. Moreover, the best 
linear predictor was found to perform at least as well as 
our nonlinear predictor (the correlation between the 
predicted and observed monthly change in the num- 
bers of chickenpox cases using the linear predictor was 
p = 0.84, and for the nonlinear predictor p = 0.82 
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where N = 266 and T,  = 1). Thus, there is no evidence 
that the irregularity in the chickenpox data is due to 
anything other than random noise. 

As discussed in more detail elsewhere (Sugihara & 
May 1990), there are biological reasons to explain why 
measles may exhibit chaotic dynamics (essentially 
deriving from a roughly two-year 'inter-epidemic 
period' interacting with annual variations in trans-
missibility), while chickenpox (where infectiousness 
can recrudesce at older ages) exhibits only annual 
periodicities. 

( b )  Measles in England and Wales 

We now extend the analysis to data on changes in 
the monthly incidence of measles in England and 
Wales (figure 5a). These and subsequent data were 
extracted from the Registrar General's Weekly Re- 
turns, for the period 1948 (when measles notifications 
began) to 1967 (just before the onset of mass measles 
vaccination in 1968 significantly altered the dynamics 
of the infection; Anderson et al. (1984)). As with earlier 
analyses (Sugihara & May 1990) we begin by 
transforming the data to first differences, partly to 
remove such linear trends as may exist and partly to 
increase the density of points in phase space. Because 
the time series here are very short ( N  = 240, roughly 
half the size of the New York series), to maximize the 
information content in estimating fl' we allow the 
library and predictions to span the full time period. 
However, to avoid circularity between our forecasts 
and the model, we sequentially exclude points from the 
library that are in the neighbourhood of each predictee 
(specifically the (E- 1 ) ~  points preceding and fol-
lowing each forecast). Similar but much noisier results 
for estimating the embedding dimension were obtained 
by using the standard protocol of the first half 
predicting the second half. The standard protocol was 
used for the p-T, curves, where the pattern, though 
noisy, appeared to be more robust. The qualitative 
appearance of these curves was found to be much the 
same for all choices of library. 

As shown in figure 5 b, we obtain optimal embed- 
dings at fl'= 7-10, which is similar to the range of 
values found for measles in New York (E= 5-8). 
However, unlike New York, it appears that the 
dynamics here are not produced by low dimensional 
chaos. The p-T, curve (figure 5c) does not decay 
exponentially as it does for the measles incidence data 
from New York City, but rather has a flat appearance 
more reminiscent of the additive noise case we saw for 
chickenpox (figure 4 b) .  This result is corroborated by 
the comparison with the optimal linear model. For 
predicted changes in measles frequency one month in 
advance ( N  = 120), the best linear autoregressive 
model gives the result p = 0.797, which is not signifi- 
cantly different from the correlation obtained with the 
nonlinear predictor, where p = 0.790. Thus, unlike 
measles incidence in New York City, measles in 
England and Wales appears not to be chaotic. 

Thus we are faced with an apparent contradiction: 
why should measles in New York City be chaotic while 
the same disease in the United Kingdom is a simple 
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Figure 4. For description see opposite. 

biennial cycle with additive noise? Could the con-
tradiction be explained by differences in the population 
or spatial scales involved? For example, could in-
dividual cities in the U.K. be chaotic and nonlinear, 
but produce an emergent behaviour that appears 
linear when they are aggregated? 

( c )  Spatial dynamics of measles 

The analysis of the spatial dynamics of measles has a 
distinguished pedigree in both biomathematics 
(Bartlett 1957) and spatial geography (Cliff & Haggett 
1988). Before exploring the dynamics of measles in 
English cities, we clarify the dynamical implications of 
spatial heterogeneity with a simple model. 

( i )  Scale dependence in models 
The sensitivity of ecological models to aggregation 

and scaling has been discussed in a number of different 

contexts (see, for example, Cohen 1979; Livdahl & 
Sugihara 1983; Sugihara et al. 1984; Ives & illlay 1985; 
Allen & Starr 1985; O'Neill et al. 1986; Sugihara et al. 
1989). Here we test the theoretical possibility of 
emergent linearity from nonlinear parts with the 
following simple experiment. 

We approximate measles dynamics within a single 
city as a chaotic logistic map (X,=, = aX,(l-X,)), 
superimposed on a sine wave. We then investigate 
what happens as more of these 'sine +logistic' series 
are summed. In summing the series, we require the 
linear part (the sine waves) to be synchronized as the 
seasonal patterns in cities would be, but we allow the 
nonlinear parts to be independent to approximate 
spatial decoupling (or weak coupling by contagion). In 
effect, this is equivalent to averaging the output from 
independent logistic maps, and superimposing this net 
output on a sine wave. Because the dynamics in each 
city may not be perfectly identical, the logistic maps 
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Figure 4. (a) Time series generated by taking first differences, x,+,-x,, of the monthly number of cases of measles 
reported in New York City between 1928 and 1972 (the first 532 points in the sequence shown here). After 1963, the 
introduction of immunization against measles had a qualitative effect on the dynamics of infection; this can be seen 
in the later part of the sequence shown here. (b) By using the methods described earlier, the first part of the measles 
time series (216 points, from 1928 to 1946) was used to construct a library, which was then used to predict forward 
from each point in the second part of the series (1946 to 1963). The correlation coefficient, p, between predicted and 
observed results is shown as a function of the embedding dimension, E, for predictions one time-step ahead, T,= 1 
(and T = 1). The figure suggests an optimal embedding dimension of E - 5-7. (c) Here p, between predicted and 
observed results for measles, is shown as a function of prediction interval T,(for E = 6 and T = 1). The overall decline 
in prediction accuracy with increasing time into the future may be taken as indicative of chaotic dynamics, as distinct 
from uncorrelated noise. Figures 4d, e,f as for figures a, b, c, respectively, except now the data are for monthly case 
reports of chickenpox in New York City, from 1928 to 1972. Here, all 532 points are used in the analysis. Again figure 
4e suggests an optimal embedding dimension E - 5--7. In  marked contrast to figure c, J' (calculated on the basis of 
E = 5 and T = 1) indicates pure additive noise, superimposed on a basic seasonal cycle. For a more detailed discussion 
of figure 4, see Sugihara & May (1990). 

a r e  given some variability by  choosing the  parameter  a increasing aggregation. As more  independent logistic 
for each m a p  uniformly i n  the interval (2.67, 3 .67) .  maps (cities) a r e  folded into the picture the p-T, 
However, similar results a r e  obtained with indepen- signature becomes ever more shallow, giving much  the  
dently initialised logistic maps having identical para-  appearance of the linear noise case. This  is corrobo- 
meters. ra ted by  figure 6 6 where the linear predictor tends to  

Figure 6 a  shows how the p-T, signature varies with match  the nonlinear predictor more closely as  more 
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Time (months) 

Embedding Dimension, E Prediction Time, Tp 

Figure 5 (a) Time-series of first differences in the number of cases of measles reported across England and Wales 
between 1948 and 1966. For data-source see Anderson et al. (1984). (b) Correlation coefficient or predictability, p, 
as a function of embedding dimension, E, for measles from England and Wales. Because of the low number of data 
points available (iV = 216), we employed the whole series in forecasting in order to obtain the clearest estimate of 
optimal embedding (unbiased by the possibility of nonstationarity in the data). However, to ensure independence, 
the library used for each forecast was constructed to exclude points near the predictee in the time-series. A lag of 
T = 2 was used to embed these data. (c) Predictability, p, as a function of prediction time, T,,for measles from England 
and Wales. Here the optimal parameters obtained above (T = 2 and E = 8) were used in forecasting; the library of 
patterns from the first half of the data was used to predict the second half of the data. The relatively flat pattern shown 
here is similar to the additive noise case seen for chickenpox in New York City. This figure shows that the large-scale 
aggregate behaviour of measles across England and Wales does not appear to be chaotic (in curious contrast to 
measles in New York City, figure 4a). 

logistic series are summed. These trends are under- dependent chaotic nonlinear series are aggregated, the 
standable in light of the following two facts. First, as nonlinear part should begin to resemble noise super- 
more logistic maps are superimposed, the nonlinear imposed on a sine wave. 
signal becomes ever more complicated. High dimen- 
sional dynamics, chaotic or otherwise, are regarded as (ii) illearles in English cities 

noise. Secondly, as more such series are superimposed, To test the applicability of these ideas to the observed 
the amplitude of the nonlinear signal should decrease patterns for measles in England and Wales, we have 
roughly as the square root of the number of in- disaggregated the data, focusing on individual cities. 
dependent chaotic logistic maps; this exposes more The central question here is whether evidence for 
clearly the linear parts (seasonal sine wave) of the time chaotic behaviour (which is not apparent in the 
series which are synchronized. Thus as more in- countrywide analysis) emerges on a single-city scale. 
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Prediction Time, Tp Number of Logistic Maps 

Figure 6. (a) Predictability, p, as a function of prediction time, T,, at different levels of aggregation. Here we 
approximate measles dynamics in a single city as a chaotic logistic map superimposed on a sine curve, and investigate 
behaviour as more of these (sine+logistic) series are lumped (summed). The solid line with open boxes is for one 
(sine+logistic) (7 = 1, E = 3), the dashed line with closed diamonds is for 10 (sine +logistic) series summed (7 = 1, 
E = 7), and the solid line with solid boxes is for 20 series summed (7 = 1, E = 9). The effect of such aggregation on 
the dynamics is to diminish the nonlinear chaotic portion of the signal, so that the p-T, signature looks increasingly 
like the additive noise case. (b),  the difference in predictability, p, between optimal linear autoregressive methods 
versus our nonlinear methods is shown, as a function of the number of (sine +logistic) maps that are lumped together. 
The maps are as described in figure 6a, and here T,= 1 (and E = 3, 7 = 1). Note that the difference in p decreases 
with increasing aggregation. 

Table 1. Demographic summary for the seven English cities used in the spatial analysis of measles 

distance (road miles) 

distance matrix London Birmingham Liverpool Manchester Sheffield Bristol Newcastle 

London 
Birmingham 
Liverpool 
Manchester 
Sheffield 
Rristol 
populationa 

(thousands) 

" Estimated population in 1960; from OPCS (1960). 

We shall focus here on a representative sample of seven most isolated cities appeared to require higher dimen- 
large English cities: table 1 lists the cities, along with sional embeddings: for Bristol E = 10, and for New- 
their population sizes and a distance matrix, while castle E = 12. Although one must be cautious not to 
figure 7a shows the associated measles time-series for overinterpret the specific figures obtained here, 
the period 1948-67. especially in light of the low number of data points 

Figure 7 b shows the embedding analyses for each of involved ( N  = 240), it is interesting to note that both 
the seven cities (again, using the full data set ( N  = 240) Bristol and Newcastle fall well below the population 
to compute these correlations). All of the five most threshold believed necessary for the infection to remain 
populous cities, London, Birmingham, Liverpool, endemic (Bartlett 1957). I t  is possible, therefore, that 
Manchester and Shefield, had optimal embeddings in the higher dimensionality of the embedding here is 
a range similar to what was observed for New York because of the higher complexity coming from the 
( E  = 5--8; Manchester, however, also had a peak at  required coupling to the outside world. 
E = 4), and each had a local maximum at E = 7. In- Figure 7 c shows the p-T, curves for the seven cities. 
deed these results seem to match the embedding results The results here are not flat like the ones obtained with 
for New York better than those for the pooled data for the aggregated data, but rather have a look very 
Britain. O n  the other hand, the two least populous and similar to the chaotic signature observed in New York 
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Figure 7. (a) Time-scrics of first differences in the reported monthly cases of measles in scvcn major British cities 
bctwccn 1948 and 1966 (arranged in order of city population size). 

where predictability falls off steeply with increasing 
prediction time. Moreover, the results of the com-
parisons with the optimal linear predictor for each city 
shown in table 2 (plinear against pnonlinear = 1, with a t  Tp 
the resulting p-level) firmly support the view that the 
dynamics are chaotic. Thus, it appears that scale 
considerations may help to resolve the apparent 
contradiction between the lumped analysis for measles 
in England and Wales, and the earlier analysis for New 
York City measles. In  this regard, it is interesting that 
London, the most populous and geographically the 
largest of the British cities by almost an order of 
magnitude, appears to show the most gradual decline 
in its p-T, curve. 

These results show that the nonlinear dynamical 

features that are present in the individual cities of the 
U.K. are averaged out in the aggregate. Although a 
linear predictor worked well (at least as well as the 
nonlinear predictor) a t  forecasting changes in measles 
incidence country-wide, the greater success in pre-
dicting on a city-scale using a nonlinear predictor 
suggests that one might expect to produce better 
forecasts country-wide by combining the results of thc 
component nonlinear predictors. 

( d )  Stationarity 

Finally, an issue that seldom appears in simple 
models but that is important when analysing data from 
the natural world, concerns the stationarity of the 
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Figure 7. (b) Predictability, p, as a function of embedding dimension, E, for measles from seven major British cities. 
Clearest results were obtained by using T = 1 for Liverpool, Manchester, Sheffield and Newcastle, and 7 = 2 for 
London, Birmingham and Bristol. 
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Figure 7.(c) Predictability, p, as a function of prediction interval, T,, for measles from seven major British cities. The 
following parameters were used : London T = 2, E = 7 ; Birmingham T = 2, E = 7; Liverpool T = 1,  E = 7; 
Manchester r = 1, E = 7, Sheffield T = 1, E = 6;  Bristol T = 2, E = 10; Newcastle T = 1, E = 12. With the possible 
exception of London, all of the above cities show the characteristic decline in predictability with increasing prediction 
interval associated with chaotic dynamics, as seen in New York City (figure 4 a ) .  
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Table 2. Comparison between linear autoregressive methods 
and the nonlinear simplex predictor 

City P~inea r  pnonlinear Significance 

London 0.63 0.76 p < 0.001 
Birmingham 0.37 0.7 1 p < 0.0005 
Liverpool 0.40 0.48 p < 0.05 
Manchester 0.38 0.57 p < 0.0005 
Sheffield -0.02 0.64 p < 0.0005 
Bristol -0.0 1 0.67 p < 0.0005 
Newcastle -0.10 0.69 p < 0.0005 

process generating the time-series. In  all of the p-T, 
analyses above, the first half of the series was used to 
construct a library of patterns that was then used to 
predict the second half of the time series. In  the natural 
world, where parameters can undergo systematic 
changes over time, past patterns can be of dubious 
relevance to an altered present or an even more 
different future. An inspection of several of the time 
series in figure 7a, particularly those for Shefield, 
Rristol and Newcastle, suggests that non-stationarity 
might indeed be a problem here. 

One way to gauge whether secular trends might 
confound the forecasting results given above has been 
discussed by Sugihara & May (1990). Rather than 
using the first half of the time series to construct the 
library, and the second half to compute correlations 
between predictions and observations, we instead 
investigate what happens when the library and 
predicted halves are chosen in all combinations (table 
3 ) .  That is, we use the first half to predict itself (1 -t 1) 
and then use it to predict the second half (1 +2) ,  and 
the second half to predict itself (2 -t 2) and then use it 
to predict the first half (2 -.1).  We then compare the 
correlation coefficients obtained in each of these four 
cases. If the time-series shows a secular trend, we 
should find higher correlations when the library and 
predicted segments span the same time period, and 
lower ones when a library from one time span (e.g. first 
half) is used to forecast values from another time span 
(e.g. the second half of the series). 

Table 3 shows the results of such an analysis for each 
of the English cities in figure 7. Although there is a 
certain amount of variation in the predictability of 
each of the reciprocal combinations, there is no 
systematic trend for higher correlations when the fitted 
half is used to predict on itself. This is most clearly 
evidenced in the summary statistics given a t  the 
bottom of table 3. Moreover, all reciprocal combin- 
ations gave similar p-T, curves. Thus a t  least from a 
nonlinear perspective, these time series do not appear 
to contain secular trends. 

O n  the other hand, when reciprocal pairings 
between fitted and predicted halves are made using the 
linear autoregressive approach, they can appear highly 
nonstationary (table 4). Notice that the linear auto- 
regressive model keys on repeated patterns in one 
dimension (the time-series itself). Thus the time series 
for Sheffield, Bristol and Newcastle, for which there 
was almost no linear predictability between the first 
half and the second half, appear most clearly non-
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Table 3. Test of measles data for nonlinear stationarity (AT= 
120, T,= 1) 

library half-. predicted half 
-- 

City 1 1-22 2 > 1  2+2  

London 
Birmingham 
Liverpool 
Manchester 
Sheffield 
Bristol 
Newcastle 

0.65 
0.67 
0.51 
0.48 
0.67 
0.43 
0.55 

0.72 
0.71 
0.49 
0.54 
0.44 
0.65 
0.69 

0.73 
0.72 
0.17 
0.48 
0.47 
0.70 
0.60 

0.46 
0.68 
0.53 
0.27 
0.44 
0.51 
0.60 

Table 4. Test of measles data for linear stationarity ( N  = 
120, T, = 1) 

fitted half --2predicted half 

City 

London 
Birmingham 
Liverpool 
Manchester 
Sheffield 
Bristol 
Newcastle 

stationary to the naked eye. None the less, when these 
time series are embedded in higher dimension?; the 
obvious secular trends disappear. The moral that 
emerges from this is that if a process is truly nonlinear, 
one needs to be careful in proclaiming nonstationarity 
based on linear criteria. A stationary process in higher 
dimensions may only appear to contain secular changes 
when viewed in one dimension. 

5. DISCUSSION 

O u r  preliminary analysis of the spatial dynamics of 
measles suggests two fruitful avenues for future work. 
First, the measles data for England and Wales are 
available on a much finer spatial scale than the crude 
city-by-city division examined here. In  particular, a 
further subdivision of the London measles data would 
provide a much more refined test for the 'emergence' 
of chaos at smaller spatial scales. Secondly, we require 
more detailed mechanistic models, which allow ex-
plicitly for the impact of spatial heterogeneities in 
transmission on the dynamics of the host-parasite 
interaction (May 1986; May & Anderson 1984). As 
shown by the simple ('sine +logistic ') spatial model 
considered above, the analysis of time series simulated 
from such models can provide important insights into 
the dynamics of the real system. 

Two main points emerge from our paper, the first 
having to do with dynamical details and the second 
with general principles. First, growing understanding 
of deterministically chaotic systems suggests that 
apparently random time series may in fact be 
generated by deterministic mechanisms, and that 
techniques may be available to distinguish such low- 
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the only alternative to chaotic dynamics is measurement 
error. However, in nature stochastic factors affect population 
trajectories, not just their measurement. Thus one should 
expect populations to fluctuate (to have stochastic dynamics) 
as a consequence of these stochastic factors, quite apart from 
any apparent fluctuations that are introduced as an artefact 
of measurement error. I t  is quite likely that such stochastic 
factors will not be additive and will cause effects that are 
vastly different from the additive measurement error that 
Professor Sugihara considers. 

His technique of distinguishing chaos from additive error 
will work when these two are the only alternatives, but will 
be incapable of distinguishing between stochastic dynamics 
and chaos. I accept Professor Sugihara's point that fi-om 
some perspectives, high dimensional chaos and stochasticity 
are the same. I t  then appears that he intends his technique 
to distinguish between measurement error and dynamical 
uncertainty, whatever the cause of the latter, be it low- 
dimensional chaos or stochasticity. 

H .  M.  PLATT ( The Natural History Museum, London). As I 
understand it, Professor Sugihara became interested in the 
England and Wales measles data because, unlike those of 
New York, they seemed to be additive noise. However, when 
he backtracked to individual sets fbr cities he fbund the chaos 
patterns again. How does Professor Sugihara know that those 
data which he suggests display real additive noise patterns, 
such as the chicken pox set, are themselves not in fact 
assemblages of chaos patterns, which he may or may not be 
able to get at. 
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M.  WILLIAMSON(University of York, York, U.K.). Is it not 
possible to get almost any shape of prediction curve by 
choosing various models for both dynamical chaos and for 
systems with measurement error? 

G. SUGIHARA.AS discussed more fully in the Nature paper 
(Sugihara & May 1990), it seems likely that a specific pattern 
of autocorrelated noise could be hand-tailored, to mimic any 
specified relation between p (correlation coefficient) and T, 
prediction interval), such as that found fbr the chaotic test 
map. The  converse is surely not true! Chaotic dynamical 
systems of low dimension will always show a systematic 
decline in with increasing T, (at a characteristic prediction 
interval set by the Lyapunov exponent). We conjecture that, 
in general, such artificially designed patterns of auto-
correlation will typically give flatter p-E (embedding 
dimension) relations than are found for simple time series 
generated by low-dimensional attractions (see Farmer & 
Sidorowich 1989; Sugihara & May 1990). 
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