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Detecting a Change in School Performance: 
A Bayesian Analysis for a Multilevel Join Point Problem 

Yeow Meng Thum 
UniversiQ of California, Los Angeles 

Suman K. Bhattacharya 
R. W. Johnson Pharmaceutical Research Institute 

A substantial literature on switches in linear regression,functions considers situ- 
ations in which the regression function is discontinuous at an unknown value of 
the regressor, Xk,where k is the so-called unknown "change point." The regres- 
sion model is thus a two-phase composite of y, -N(po ,+ PIIxI,of),i = 1, 2, . . . , 
k artd y, -N(POZ+ PI2xI,o:),i =k + 1, k + 2, . . . ,n. Solutions to this single series 
problem are considerably more complex when we consider a wrinkle frequently 
encountered in evaluation studies of system interventiorzs, in that a system hpi-  
cally comprises m~lltiple members (j = 1,2, . . . , m) and that menzber-s of tlze sys- 
tent cannot all be expected to change synchronously. For example, schools d~f fer  
not only in whether a program, implemented system-wide, improves their stu- 
dents' test scores, but depending on the resources already in place, sclzools rnay 
also differ in when they start to show effects of the program. If ignored, hetero- 
gerzeity among schools in when the program takes initial effect undermines any 
progmm e~,aluation that assumes that change points are known and that they are 
the same for all schools. To describe individual behavior witlzin a system better, 
and using a sarnple of longitudinal test scores from a large urban school system. 
we consider hierarchical Buyes estimation of a multilevel linear regression model 
in which each irzdilidual regression slope of test score on time switches at some 
unknown point in time, k,. We further explore additional results employing mod- 
els that accornn~odate case weights and shorter time series. 

Keywords: change andjoinpoirzt, hierarchical Bayes, longitudinal data, Markov Chain Monte 
Carlo, multilevel modeling, piecewise regression, program evaluation, school pefo~mance 

To evaluate the effect of a program on a certain relevant measure of school perfor- 
mance, the educational researcher could compare the school's performance after 
the intervention with its performance before. Frequently, the researcher compares 
the postintervention mean on a standardized test with its preintervention mean. A 
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better gauge of the program effects on performance can be obtained, if repeated mea- 
surements are available, by comparing the postintervention and preintervention 
trends in a piecewise regression of performance measure on time. This practice, how- 
ever, assumes that the time of intervention, t, coincides with the point in time, k, at 
which the program takes initial effect. Although a clear improvement, the analysis 
may be misleading if the change point, k, is in fact unknown and different from t. 

Figure 1 illustrates what can go wrong with the usual piecewise regression for 
this situation if the assumption that change in school is coincident with the inter- 
vention point is mistaken. Suppose we denote the preintervention and postinter- 
vention slopes as Py'and P:', respectively, if we assume that change occurred at time 
t, and let pr'and ~F 'denote  the pre and postintervention slopes, respectively, if 
change had occurred at k. Figure l a  depicts the situation in which an intervention at 
time t is coincident with when change starts, k. An evaluation based on this assump- 
tion correctly estimates the change in slope, as (P;'- Pr') = (pF'- P?'). This same 
analysis would however underestimate the effect if change actually begins at k > t, 
as depicted by the dashed lines in Figure lb,  because we suspect that (pF'- by') 2 
(P:l)- P;'). Figure l c  suggests considerably greater confusion for a routine multi- 
site evaluation when change points, k,, varies with site (such as schools, indexed by 
j) and are asynchronous with the time of intervention, t. 

The literature on switching linear regression functions considers typical situa- 
tions in which the regression function is discontinuous at an unknown value of the 
regressor, Xkrwhere k is the change point. The regression model is thus the two- 
phase composite 

w h e r e i = 1 , 2 , .  . . , n , p =  1 i f i I k a n d p = 2 i f i > k .  
Following Quandt (1958), similar attempts to reflect the uncertainty in change 

points in two-phase linear regression analysis have since appeared. The literature 
for two-phase regression is enormous, but a brief overview may be organized along 
three related themes. The first reveals a shared concern across various empirical 
research domains in identifying and detecting change in the course of develop- 
mental processes. Many applications are found in econometrics. Brown, Durbin, 
and Evans (1975) provide instances involving changes over time in the number of 
local telephone calls, in the demand for money, and in staff requirements in an 
organization. In climatology, Maronna and Yohai (1978) examine annual precip- 
itation over time for change. In geology, Esterby and el-Shaarawi (1981) employ 
a two-phase polynomial to describe change in measures of pollen concentration in 
lake sediment cores obtained at various depths. Morrell, Pearson, Carter, and Brant 
(1995). Slate and Cronin (1997), and Slate and Clark (1999) presented nonlinear 
regression models with transition smoothing functions at the unknown change 
point to monitor changes in Prostate-Specific Antigen (PSA) profiles as a means 
for early prostate cancer detection. In epidemiology, Joseph, Wolfson, du Berger, 
and Lyle (1996) are concerned that a prepost comparison may be biased if the inter- 
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vention point is mistaken for the change point in their study on the effects of dietary 
calcium supplementation on high blood pressure. 

A second theme in the research literature dwells on variants of Quandt's orig- 
inal formulation of the switching regression function, Equation 1, itself: whether 
the regression segments share a common intercept (a join point problem, e.g., 
Bacon & Watts, 1971), share a common slope but display a shift in their means 
(a mean shift problem, e.g., Hinkley & Schechtman, 1987), and share the same 
residual error variance (e.g., Worsley, 1983). Picard (1985) provides a more gen- 
eral consideration of unknown change points in time series analyses. Finally, the 
literature may also be organized along more methodological lines, with authors 
employing maximum likelihood solutions (e.g., Jandhyala & Fotopoupos, 1999), 
Bayesian methods (e.g., El-Sayyad, 1975), random regression mixtures (e.g., 
Quandt & Ramsey, 1978), as well as nonparametric approaches (e.g., Wolfe & 
Schechtman, 1984). The interested reader is directed to the comprehensive 
reviews of Hinkley, Chapman, and Runger (1980) and Zacks (1983). More recent 
efforts, laced with a stronger Bayesian flavor, extend beyond the two-phase nor- 
mal linear regression to other developmental processes. Miiller and Rosner (1 994) 
study triphasic linear models using a semiparametric Bayesian approach. Raftery 
and Akman (1986) and Carlin, Gelfand, and Smith (1992) formulate Bayesian 
procedures for changes in Poisson processes for count data, while Stephens 
(1994), Slate and Cronin (1997), and also Chib (1998) considered problems with 
more than one change point. 

The solution to Quandt's single series problem, Equation 1, is considerably 
more complex when we consider a wrinkle frequently encountered in evaluation 
studies of system interventions in that a system typically comprises multiple mem- 
bers ( j= 1, 2, . . . ,m )  and that, furthermore, members of the system cannot all be 
expected to behave similarly, or otherwise change synchronously. 

For a commonplace example in educational research, consider the putative 
effects of a large-scale intervention on student academic performance. Figure 2 
shows the variability of school means for third-grade Iowa Tests of Basic Skills 
(ITBS) mathematics scores for a sample from Chicago Public Schools from 1988 
to 1996. (Years are labeled 1 through 9 in the sequel.) For this analysis, we have 
placed the criterion-referenced test scores on an arbitrary linear scale. Displaying 
a series of box-plots for school test-score means over time invites inappropriate 
analyses which assume that school change is synchronous. The evidence suggests 
that schools vary in their patterns of change, a fact better represented by a plot 
of raw school test score profiles, as in Figure 3. Here, according to one interpre- 
tation, schools appear to differ not only in whether a program, implemented system- 
wide, improves their students' test scores, but depending on the resources already 
in place, schools may also differ in when they start to experience effects of the 
program. If ignored, heterogeneity among schools in when the program "kicks in" 
undermines any program evaluation that assumes that change points are known 
and that they are the same for all schools. It is important to recognize that an 
explanation of school reform in terms of the changes in test scores is not the goal 
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FIGURE 2. Distributions of school Grude 3 ITBS math means. 

Yeai 

FIGURE 3. Observed sclzool Grade 3 ITBS math profiles. 
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of the analyses. Any direct relation would certainly be naive given that many other 
unspecified causal mechanisms may also be at play in this context. Nevertheless, 
the issues considered here are theoretically instructive because how we determine 
the timing of change is critical to evaluation efforts for understanding what works 
in schools. 

We consider a fully parametric hierarchical Bayesian estimation of a multilevel 
linear regression model in which each individual regression slope of test score on 
time changes at some unknown change point, X,, unique to each school, j. Our 
approach and rationale closely resembles the multipath change point analysis in 
Joseph et al. (1996). They consider randomized trials in which the blood pressure 
of individuals under the same experimental conditions is not expected to respond 
to dietary calcium supplementation in the same way, nor within the same time 
frame. They suggest that a sound analysis must also account for the mediating 
effects of individual metabolism, as may be evidenced by variation in individual 
times taken in response to treatment. However, we extend their mean-change 
model by (a) estimating join point regression models for each individual school 
and, because the number of time points is relatively small and the within-school 
variability appears considerable, we also (b) reformulate the school level model 
with terrors at the school level. Also, because we expect that the uncertainty of a 
join point estimate becomes more considerable the shorter the time series, we also 
showed how inferences on school change itself can be easily constructed from the 
conditional posterior of the change in slopes, (Pz, - PI/I k, = i,), where i, is the 
modal estimator of the join point %, for example. 

Our basic model is also similar to another recent study by Slate and Clark (1999), 
which traces the change in a bio-marker to give an early detection for prostate can- 
cer for individual patients. In their application join points vary among units, but 
are assumed to be continuous rather than discrete. Both of the studies above share 
the major goals of our general modeling framework, which is to reflect individual 
differences in development within a system better when the timing of change is 
unknown. 

Our study contributes to the literature on change point analysis for rtudying a 
bundled system of change processes. In the context of programmed interventions 
in school systems, the analysis brings an increased measure of sensitivity to pro- 
gram evaluation. It could, for example, help us answer the question of whether the 
overall improvement in performance could have resulted from a well-publicized 
intervention, given that improvement for some schools began later than projected. 
Additionally, this model is easily extended to accommodate school and commu- 
nity characteristics as covariates at the school level, an analytic strategy that could 
help identify and explain a school's delay in showing the anticipated effects of an 
intervention. 

In the next section, we provide an overview of Quandt's change point model, 
and describe the features of the hierarchical Bayes formulation due to Carlin et al. 
(1992). We detail extensions to the multilevel change point regression assuming 
normally distributed errors. We then examine an analysis using data from an ongo- 
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ing study of school trends in test scores conducted by the Consortium on Chicago 
School Research. An extension to our basic approach will be suggested with illus- 
trative analyses incorporating case-weights. With another extension, we further 
evaluated our results for sensitivity to outlying observations through the use of t 
distributed errors. We conclude based on our preliminary evidence that join points 
for individual school Grade 3 ITBS mathematics profiles (from 1988-1996) indeed 
differ among a sample of urban elementary schools. The estimated posterior dis- 
tribution of the join points suggests that although the estimated timings of change 
in Grade 3 mathematics performance do not contradict the claim that school reform 
may have been a contributing factor, changes have nonetheless not been uniformly 
positive. 

Single Series Solutions 

Suppose we observe multiple test performance profiles for a sample of schools in 
a system. A single series change point solution would model each series separately. 

Maximum Likelihood 

For Equation 1, Quandt (1958) shows that the log likelihood for fixed k is propor- 
tional to 

-k log 6 ,  - (n - k )  log 6 ,  

That k is not continuous suggests that we take the maximum likelihood estimate of 
k to be the value of k that corresponds to the maximum maximorum. The likelihood 
ratio test against the full hypothesis 

is e = maxke(k). Here, 

&(k)= n log 6 ,  - k log 6: - (n - k) log 6:, 

k = 3, 4, . . . , n - 3, and 6; and e2are the maximum likelihood estimates of oi 
and 02, respectively. Further details of this model and its subsequent development, 
including tests of a related model that assumes equal variances, are given by 
Worsley (1983). 

Hierarchical Bayes 

Carlin et al. (1992) pose Equation 1 on page 444 as the first in a three-stage hier- 
archical Bayes linear regression model. At the second stage of this model PI = 
(Poi, Pil)' and p2= (Poz, PI2)' are independent N(y, T) where T is 4 x 4. o: and o: 
are independent IG(ao, bo). A discrete uniform, U,, represents our prior knowl- 
edge of the unknown change point k. Stage three hyperpriors in this model for 
(y, T) are normal-Wishart; y -N(p, C); and T - Inv-W(S-I, p). 
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The intermediate objective for the Gibbs solution is to derive the marginal pos- 
terior of k. Standard results from the multivariate normal show that the conditional 
posterior for each regression segment is, 

Furthermore, the full conditional distributions of the unknowns (o:,o:, y, T, k) 
can be given as 

y - N{A[T-'(PI + P,) + C-'PI, A), 

T - - (P,  - Y ) ( P ~- Y) + ~ 1 - l .+~ 2).w{[zP 
Delta. (A). the variance-covariance matrix of the full conditional distribution for 
y, is (2T-' + C-l)-'. The full conditional distribution for the join point, k, is in turn 

where the likelihood is 

Single Data Series Example 

Before we proceed with the case of multiple time series, we compare results for the 
single series formulations above for a simulated data series with the evaluation of 
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change based on piecewise regression. Without loss of generality, we would work 
with a join point regression model (Cohen & Kushary, 1994) denoted as follows: 

y, - N[P, + p, min(0, x, - x,) + P, max(0, x, - x,), 02]. (2) 

If 2 < k < (n - 1) for example, the predictor matrix Xkis 

We argue that, for shorter time series with no dramatic level change expected, a 
model such as Equation 2, with constant error variance for which only the slope 
changes after a join point, appears realistic. The first coefficient, Po, is the expected 
value of the outcome variable at the join point, k. PI represents the regression slope 
before and up until the join point, and P2 is the slope thereafter. Alternative cod- 
i n g ~for Xkare of course possible, including a parameterization which estimates 
directly the difference, (P, -PI),representing a change in slopes. For our illustration, 
we generated the series 

for i = 1,2,  . . . , 10 based on model 2 above, setting n = 10, k = 5, Po= 3.0, PI= -.2, 
(Pz- PI)= .2, and o = .15. 

Results for ordinary least squares regression in Table 1 show that, not surpris- 
ingly, the model is misspecified if we are mistaken about when change actually 
occurred. If we are wrong about when change actually occurred, we fail to detect 
a positive change in regression slopes. The maximum likelihood solution correctly 
identifies k =5 for this series, with regression estimates po= 2.98 1, p, = -.213, and 
p, = 0.009. Table 2 gives the solution, based on 10,000 updates, for Carlin's hier- 
archical Bayes approach, employing the discrete prior, 

for the unknown change point. With only 10 observations, our choice for U , is 
motivated by our presumption that the regimes before and after the change point 
are both linear, so that it seems reasonable to force k from the extremes of the series 
at the very least. This is ultimately a model selection issue that is beyond the scope 
of this article. 

The point estimates in Table 2 are of limited use for inference, however, because 
they average over a change point distribution in U,,.A critical feature for the Gibbs 
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TABLE 1 
OLS Piecewise Regression Results for Simulated Data Series. 

Model P o  b I s? L - P I  R2 

No change 3.249* 
(.078) 

Change at k 
3 3.219* 

,123 
4 3.104* 

,121 
5 2.980* 

,109 
6 2.956% 

,132 

Note. *(Prob > 1 t 1 ) 5 0.05 

solution, indeed a significant advantage, is the ability to closely examine the mar- 
ginal posterior distribution of k, in Figure 4, for symmetry and multimodality. Fig- 
ure 4 suggests that the mode, at k = 5, probably summarizes the marginal 
distribution more adequately, in agreement with our previous solution via maxi- 
mum likelihood. The conditional posterior means for the regression function given 
k = 5 are provided in the lower portion of Table 2. These conditional results are 
comparable to the previous ordinary least squares and maximum likelihood solu- 
tions for change occurring at time point 5. with a 0.988 probability that the change 
in slopes is positive, that is, p (P?2 PI 1 k = 5) .  

TABLE 2 
Some Features of the Marginal and Condirional Posterior Distributions for Sim~~lared Dara. 

Parameter M SD 25% Mdn 95% 

Features of the Marginal Posteriors 
Po 3.100 0.210 2.713 
Pi -0.301 0.22 1 -0.901 
P? -0.016 0.099 -0.148 

Pz-PI  0.287 0.236 -0.102 
0 0.219 0.077 0.123 

Posterior Features Conditional on Join Point Mode, k = 5 

Po 2.982 0.130 2.729 
P I  -0.213 0.057 -0.327 
Pz 0.008 0.045 -0.083 

P ~ - P I  0.221 0.092 0.038 
CT 0.195 0.061 0.1 15 
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1 2 3 4 5 6 7 8 9 
Join Point, k 

FIGURE 4. Marginal posterior distribution of join point for simulated data series. 

Multilevel Regression with Random Join Points 

If the essential features of each data series are considered exchangeable, the 
researcher will also be interested in characterizing parameters of the population. 
We derive our multilevel regression model with random change point guided by 
earlier results from Carlin et al. (1992) and Joseph et al. (1996). 

The Model 

For a sample of schools, the multilevel formulation for model 2 assumes pj = (Poj,  
P l j ,  Pzj)' are independent N(y, T )  and o2 is distributed ZG(a, b). Hyperpriors in this 
model for (y, T1)  take the normal-Wishart form as before. The discrete uniform, 
U(7cl,  IT^, . . . , IT,), represents our prior knowledge of the unknown join point kj, and 
7t' is distributed as a Dirichlet (al, a2, . . . , a,). Results resemble closely those of 
Carlin et al. (1992). The conditional posterior of Pj is 

where 
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Implementing the Gibbs Sampler 

From the above specification, the joint distribution of the data and all parameters 
is proportional to 

To implement the Gibbs sampler, we require the full conditional distributions for 
(o ' ,  y , T, n): 

A, the variance of the full conditional distribution for y, is (mT-I + C-')-I. The con- 
ditional distribution for the join point, k,, is in turn 

where the likelihood is 

~ ( y , :k,. P,.0 2 )= exp [-(y: - x?P,)'(Y:- ~ > ~ , ) ; Z o ~ ] / o n  

The discrete uniform prior for join point, k,, may be represented as 

by using the indicator function 

1 if k,  = i, 
0 otherwise. 

The Dirichlet (a')hyperprior, the conjugate prior for the probabilities n' (DeGroot, 
1970), is 
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Conditional on (k,, a),.rr: is distributed 

which is Dirichlet [m(a,- 1) + C,"I,(k,)],so that the full conditional for z' is 

Estimation of the parameters of interest requires iterative Monte Carlo integra- 
tion. Following Gelfand and Smith (1990),we perform the integration using Mar- 
kovian updating via the Gibbs sampler. 

Academic Outcomes and School Reform 

Recent research on the academic productivity of Chicago's public elementary 
schools concludes that there was system-wide improvement in Grade 3 mathe-
matics learning, as measured with the ITBS, from 1987 through 1996 (Bryk, 
Thum, Easton, & Luppescu, 1998). Bryk's three-level hierarchical linear regres- 
sion models an individual student's input to the grade and the gain he makes in that 
school. That is, the first stage student-level model employs both the student's 
Grade 3 test score (output from Grade 3) as well as his Grade 2 test score (input to 
Grade 3) ,along with their individual standard errors of measurement. Data are lon- 
gitudinal within the school. Presuming growth is linear throughout, trends for input 
and for gain over time are estimated for each school. These growth factors are then 
allowed to vary across schools in the system.' 

A natural follow-up question, in a politically sensitive school reform environ- 
ment, is whether the observed improvement is the result of school reform. Specif- 
ically, do the gains occur within some reasonable time frame after the Chicago 
School Reform Act of 1988? Although suggestive of a positive school reform 
effect to the advocate, this is not a question the original analysis is set up to answer 
and none is ventured. First, if reform has had an effect it is believed not to have 
been appreciable until at least 1990. The value of t for 1990 under model 2 is 3 ,  
two years after the legislation has passed, when it is argued that school resources 
and reorganization were finally in place for most schools in the system. This phe- 
nomenon cannot be captured by linear growth parameterization with a unitary 
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slope used in Bryket al.'s stage two model. Instead, a two-phase regression on time 
with the break-point at 1990 would be necessary, a strategy that nevertheless also 
depends on the unstated assumption of synchronous change, occurring in 1990. 
This assumption appears unlikely from Figure 3. We attempt to give a tentative 
answer to this question, showing how we may evaluate the impact of system-wide 
school reform employing our multilevel join point analysis, Equation 2, using a 
representative subset of the schools (m = 58). If the reform is causal of positive 
changes in academic performance, we expect to see school test score trends change 
for the better after 1990. In the present analysis, however, student gains are not the 
focus. We use only school means calculated from students who have been in a 
same school for two consecutive assessments. For simplicity, analyses involving 
student and school covariates will be considered elsewhere. 

Model Hyperpriors 

We employed the following conjugate hyperpriors in our multilevel Bayesian join 
point regression analysis: 

Unlike the single series example above, we did not constrain k, away from each 
end of the time period. Our experience indicates that with multiple series, there is 
a borrowing of information when we treat k, as exchangeable, leading to shrinkage 
in the distribution of k, as reflected by the marginal posterior of n.In our analyses, 
we also experimented with alternative noninformative priors, especially with the 
Dirichlet (a')because they are the principal objects of our inference. In general, 
we observe substantial differences in convergence rates but reasonably compara- 
ble marginal estimates. All calculations are obtained using the Gibbs sampler 
implemented in BUGS (Spiegelhalter, Thomas, Best, & Gilks, 1995). Diagnostics 
suggest that the solution, based on updates totaling 30,000, converged. 

Results 

Table 3 summarizes results from the multilevel join point analysis. Figure 5, in par- 
ticular, plots the marginal posteriors for n,,and shows that only for i =k = 3 is there 
density appreciably higher than the equally likely prior probability of '/,. Thus, 
pooling information across schools in the multilevel analysis, also an attractive fea- 
ture for Joseph et al. (1996), suggests that most of the school regressions switched 
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TABLE 3 
Multilevel Join Point Solution: Marginal Posterior Features 

Hyperparameter M SD 25% Mdn 95% 

Regression Parameters 
Yo 39.000 1.347 
YI 0.174 0.255 
Y2 0.127 0.213 

Variance Components of Regression Parameters 
71I 90.120 18.860 
712 7.743 3.037 
711 -2.872 1.661 
222 1.186 0.525 
723 -0.258 0.204 
731 0.465 0.187 

Error Variance 
o2 3.299 0.120 

Posterior Probability at Join Points 
n I 0.092 0.082 
n2 0.089 0.082 
n3 0.194 0.125 
j'h 0.129 0.111 
n5 0.105 0.093 
n6 0.095 0.085 
n7 0.106 0.094 
na 0.096 0.089 
n9 0.093 0.083 

at kj = 3, that is, in 1990, which may be good evidence for attributing school 
improvement to school reform (lacking other competing explanations of course). 

If we fix the join point for a school at the modal value of join point, k,, we obtain 
the fitted piecewise school trends in Figure 6. We base our inference on the growth 
factors for the school on the posterior distributions of Poj, Pv, and Pv conditional 
on the modal estimate of k, because, although it does not reflect completely the 
uncertainty in k,, its determination is based not just on the data for a school but from 
a pooling of information from schools in the population. Employing the marginal 
posterior distributions in this case will over emphasize the uncertainty in deter- 
mining k,; but that may sometimes appear preferable (see Joseph et al., 1996). 

Our results further indicate that schools have not uniformly improved. Table 4 
shows the means of conditional posterior distributions of the regression functions for 
each school for the subset of schools with change occurring away from each extreme 
of the time span. The largest slope gain is [.15 1 - (-1.592)] = 1.643 score units per 
year, showing a productivity gain of some 1.643 x 3 = 5 score points from 1993 
through 1996 (School 54). About 14 schools improve with change coming at the 
heels of reform in 1990 or shortly thereafter, forp(Pv 2 P$ / k, greater than 30 .  After 
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FIGURE 5 .  rc', Marginal posterior distribution of the  probabilify of join point at k. 

1990 changes in their slopes are positive, of at least 1.1 score units per year each. 
This analysis also suggests that an almost equal number of schools show declines 
after 1990, with slope changes of at least -1.0 and with probability greater thanp.8. 

Figure 7a shows a scatterplot of the posterior means of change in slopes, (PZ, -
p,,), versus the slopes before the detected join point, PI,. TGe size of the plot symbol 
varies proportionally with the expected attainment level, Po,, at the join point. The 
analysis shows that schools that have performed relatively well, for example, schools 
with higher estimated join points such as School 17 and School 45, generally take a 
turn for the worse. On the other hand, among poorly performing schools (e.g., School 
54), changes in slopes are on the whole positive. Based on some initial analyses to 
be considered elsewhere, we suspect that the strongly negative correlation between 
the growth rate prior to change and the change in growth rates afterwards is quite 
typical of piecewise models for developmental processes over the shorter time frame. 

Alternative Models 

Two characteristics of our application deserve further attention: (a) the school 
means we have employed are measured with varying precision, and (b) trend esti- 
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FIGURE 6.  Estimated school trendsfor Modal k,. 

mates for shorter time series data can be especially sensitive to influential or out- 
lying observations. Both factors present a potential danger to a routine regression 
analysis. However, they also provide a good opportunity to present simple exten- 
sions to our basic approach. 

Case Weighting 

Recall that our data comprise annual summaries in the form of grade-level test 
score means. Because schools not only differ from one another in the number of 
third grade classes they offer, the number of third grade classrooms within a school 
may also vary over time. At the same time, enrollment often fluctuates from year 
to year within a classroom. The result is that school-grade means are typically mea- 
sured with varying degrees of precision. Under these circumstances, we can 
strengthen our previous exploratory study of our school test score data consider- 
ably by weighting the means we have for each year in each school by the number 
of observations, n ,  r,,, on which the means are based. The weighted analysis 
begins with Equation 2. We simply multiply the ith row of [y, ~ , k  and] by yq, 
proceed with the previously outlined Gibbs sampler. 

Shorter Time Series 

As far as trend estimation is concerned, nine observations might be considered barely 
adequate with noisy data although many studies in the social sciences have touted 
results based on trend estimates with as few as three or four repeated observation^.^ 
We explore a minor extension to our multilevel random join point model above for 
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TABLE 4 

Mean Estimates of School Regressions Conditional on Modal Join Point . 


School Ei 0. b I. P s P (  P*j2 PI,^ Ikj) 

(continued) 
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TABLE 4 (Continued) 

Mean Estimates of School Regressions Conditional on Modal Join Point. 


School P 01 P 11 P 21 P ( I , P ~  P I I  Iki) 

Note Synlbols for p( P2, 2 P,, (k , )  In last column s ~ g n ~ f ymodal join polnts 

our data by replacing the assumption of normally distributed errors with a heavy-tailed 
density such as the r distribution. With degrees of freedom h set smallish, at about 4, 
the t robustifies inferences against moderate misspecification of the distributional 
assumption when the sample size is small (e.g., Lange, Little & Taylor, 1989). 

Briefly, we now suppose that the independently and identically distributed nor- 
mal errors for model (2) are weighted by w,, so that observations with smaller 
weights are down-weighted. Given wi, (and P,, 02),y ,  is distributed normal with 
variance (02/w,.). Additionally, w,, is assumed to be distributed gamma, or w,,-
Xi/h.  The results given above hold for a revised Gibbs sampler, and are augmented 
by the full conditional for the weights 

Because the expected value of the individual weight w,, is inversely proportional 
to the square of a standardized residual, data more distant from the predicted val- 
ues will count less for a specified degree of freedom. This weighting is amplified 
as we reduce h. Seltzer, Novak, Choi, and Lim (in press) explored this strategy in 
an intervention study in order to accommodate some unusually low achieving stu- 
dents nested in remedial reading c lassr~oms.~ 

Further Results 

We now present results from weighting school-level regressions with (a) informa- 
tion about the precision of the school mean from its sample size, (b) ts with 4 and 1l 
degrees of freedom to evaluate the importance of outlying data points, and (c) their 
combination-case weighting of t-distributed observations at the school level. With 
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reasonable adjustments to the hyper-priors previously employed in the unweighted 
analysis, all modifications to the Gibbs sampling procedure detailed above pro- 
duced convergence after 30,000 updates. 

Marginal posterior distributions of join points for school-level regressions 
employing ts with 4 and 11 degrees of freedom is shown in Figure 7b, and a 
normal-normal model employing case weights. Further details are omitted for 
brevity. Results suggest overall agreement between the normal-normal and the tl,-
normal model, not unexpected because a t,, density approaches the normal, identi- 
fying k = 3 as the join point when change occurred for almost 19% of the schools in 
the system. A model using t, errors however suggests that closer to 20% of the 
schools changed but at k =4, a year later. When analyzing our data with case weights 
using the normal-normal model, ajoin point for the system change is less distinctive. 

We compare the relative fits to the data of the alternative models using nai've 
Bayes factor computations via Schwarz's criterion (Kass & Raftery, 1995).Vor 
the unweighted data, the model with t, errors produced a better fit than either the 
normal-normal model or the model with t l lerrors. For the weighted data, the nor- 
mal-normal model fit the data better than the t4-normal model, and even better than 
the t,,-normal model. This suggests that the relative instability of the within-school 
piecewise regression due to a small number of time points in the series can be mit- 
igated with enough data for each time point. 

Figure 8 shows the fits of various models for four selected schools. Plotted 
against the horizontal axis are the locations of the posterior mode of individual join 
point for (1) (unilevel) maximum likelihood, (2) Carlin et al. (1992) (unilevel) 
hierarchical Bayes, (3) normal-normal multilevel join point, (4) weighted normal- 
normal multilevel join point, (5) t4-normal multilevel join point, and (6) t,,-normal 
multilevel join point solution. Overlaying the observed data are fitted curves from 
the normal-normal, the weighted normal-normal, and the t4-normal models. Many 
solutions are typically consistent across models, the fits to data for School 11 above 
may be suspect if one were to focus on this school on its own. This is likely to be 
the result of excessive shrinkage, as suggested by a more reasonable fit from a sep- 
arate hierarchical Bayes solution for each school. The effect of shrinkage is poten- 
tially a serious concern for interpretation. A more thorough analysis needs to 
identify all such schools for further investigation. 

Conclusion and Discussion 

In this article, we have illustrated an analysis for detecting changes in multiple 
time series for a multilevel setting. We have shown how it can be employed for 
evaluating intervention effects associated with a treatment to which the lengths of 
delay in the response may be unique to each treated units (see, e.g., Campbell & 
Stanley, 1963, pp. 37-43, for other possible outcome patterns). We argue that a 
more realistic description of change is possible when using an approach which 
neither assumes that the change point for a unit is known nor that units change 
synchronously. Thus our approach is in stark contrast to the presumption that the 
change point is known and is coincident with the time of intervention, the modus 
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operandi in educational evaluation (e.g., research on the effects of class size 
reduction by Nye, Hedges, and Konstantopolous, 1999; Hanushek, 1999) and in 
behavioral research (in single subject designs, see Sidman, 1960; Barlow & 
Hersen, 1984; Crosbie, 1995), irrespective of the particular methodological strain 
employed for analysis. Additionally, we may also have an interest, in such situa- 
tions, in estimating and understanding the time a treated unit takes to respond. For 
example, when the onset of a medical condition is not directly observed, detect- 
ing a change in a marker for the condition may provide a basis for inferring the 
time of onset, leading to a better description of the condition (see, e.g., Slate & 
Turnbull, 2000). 

Other methods have been proposed in the past for determining the timing of 
important events. For example, if the timings of critical events (such as onset of 
drug use by minors in a particular urban community) are observed for all or most 
units, and we wish to estimate the time of onset for the collection of units (in order 
to improve the intervention), survival analysis may be helpful in determining aver- 
age time of onset, recidivism, recovery relapse, and reoccurrence. Willett and 
Singer (1995) provided forceful arguments for considering such methods in edu- 
cational modeling. However, survival analysis requires that the change event is 
itself observed for some of the units. If event occurrence is unobservable, as is the 
hallmark of our example above, both the timing (when) and the detectability 
(whether) of change must be inferred from the course of some observable marker 
of the unobserved process. In such situations, m', the posterior distribution of the 
join points, is particularly relevant. 

We note briefly several avenues for future research in school effectiveness and 
accountability using the multilevel random join point model. To be an even more 
useful instrument for detecting and explaining change in educational processes, 
this model can easily be extended to accommodate the study of school readiness 
variables (covariates, e.g., teacher and principal turnover), in order to investigate 
their roles in the timing and the outcome of academic intervention. There remains, 
however, a static quality to the models treated here that is unsatisfactory. It should 
also be clear that our brief review is limited to the nonsequential change point prob- 
lem and ignores, for reasons of scope and space, the significant research on moni- 
toring sequential processes for changes (e.g., Smith, 1975). Finally, we also expect 
more work on detecting structural shifts in higher dimensional situations (Moen, 
Salazar, & Broemeling, 1985). 

Notes 

'The interested reader should also consult the original article for information on 
various adjustments made for student and school-grade demographic composition, 
as well as for a suspected test form effect. 

2Like many similar studies of school performance currently underway, more 
and more information about students, their parents, teachers and schools are rou- 
tinely added over time to this database to give a more complete portrayal of stu- 
dent development. 
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3We may also allow h to vary by employing an adaptive t error distribution. 
Although this strategy renders our inferences independent of our choice of a par- 
ticular h value, it will produce wider interval estimates due to averaging over the 
uncertainly in h. 

4The reader is warned that this makes only for a rough comparison because the 
accuracy of Schwarz's criterion is unknown for heavy-tailed distributions. 
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