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Discontinuous decision processes and threshold 
autoregressive time series modelling 

BY H. TONG 

Department of Mathematics, University of Manchester Institute of Science and Technology 

Setting the problem of approximating an underlying nonlinear time series model 
within the framework of Bayesian decision theory, we demonstrate how the general 
analysis of discontinuous decision processes developed by Smith, Harrison & Zeeman 
(1981) leads naturally to a threshold autoregression. 

Some key words: Bayesian decision theory; Bounded loss function; Multimodality of expected loss; 
Nonlinear time series; Threshold autoregression. 

1. INTRODUCTION 
Let {X,: n = 0,1 ,2 ,  . . . I  denote a discrete parameter time series. Given a realization 

{x,), we consider the modelling of the time series. Typically, a nonlinear model is 
called for. For concreteness and simplicity of discussion, we address ourselves to the 
simplest case, namely 

E(Xn I Xn- 1 = x) = y(x) x, (1.1) 

where y is a 'smooth' function. Suppose that we approximate y(x) by 8 , a constant, for all 
x. In  subsequent discussion we suppress the argument x whenever this may be done 
without obscuring the context. Clearly this approximation will incur some errors. On the 
other hand, as argued by Tong & Lim (1980), we could approximate y arbitrarily closely 
by a step function. At first sight, it seems that this could pose a horrendous 
computational problem. Indeed, this is the case from a purely deterministic point of 
view. However, we usually approximate the 'true' model with some purpose in mind, e.g. 
forecasting, control, filtering. Thus, we should really specify what we mean by 
approximating y arbitrarily closely. Bayesian decision theory seems a natural approach 
to this problem. In particular, the recent general results of Smith et al. (1981) provide the 
necessary framework. 

2. BAYESDECISION 

Since a linear model has been found to be a generally acceptable first approximation, 
we start with the Bayesian linear model, 

In  order to quantify the closeness of the approximation model (2.1) to the 'true' model 
(1.1), we introduce the loss function, L, which is conjugate to the Gaussian belief given 
by (2.2) 

L(8)= h[l -exp (-;k-'(8 -y)2)]. (2.3) 

Here y is the most desirable value of 8, Ic represents the relative tolerance to differences 
between y and 8, and h quantifies the maximum loss. 
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With the explicit quantification of closeness by (2.3), we may now decide whether or 
not (2.1) is an acceptable approximation of (1.1) by evaluating the expected loss of 
making the decision. For this, we let D denote the class of possible decisions. The 
expected loss function, EV, is defined by 

where FV(O16) denotes the distribution of 8 given that the decision 6 is employed. As a 
consequence of Gaussian belief and conjugate Gaussian loss, FV(O16) is N(c+ 6, V), from 
which we may write 

where d = ,u -c represents the distance of the desired value of 0 from the expected value 
of 6. The minimizer of EV(6) with respect to 6 s D is called the Bayes decision. We denote 
it by 6". In  Bayesian decision theory, a decision is acceptable if and only if it is a Bayes 
decision. Following are two results pertinent to nonlinear time series modelling. 

(A)If both Ic and V are unaffected by the decision 6, then 6" equals d. This implies that 
no approximation, linear or not, is acceptable, i.e. a Bayes decision. However, Smith et 
al. (1981) have discussed a t  length the unreasonableness of this attitude in many 
practical situations. 

(B)They have also argued that,  in many practical situations, it is not unreasonable to 
suppose that the uncertainty, V ,  of belief of the value of 0 is an increasing function of 6, 
that is a bold decision increases the uncertainty of belief. In  our context, if we accept 
that ~ ( x )  is a priori 'smooth' in x, then we would not expect to have to make drastic 
adjustment in the value of 8. A mathematical expression of this supposition is that V 
depends on 6 via 

V(6) = a+P161, (2.6) 

where a , p  > 0. In this case, for d > 0,6* E [O,d], and by measuring 6 in units of 
J (Ic+ V(0)), that is J (k+ d), and on replacing (k + 6)-*  by y we obtain 

0 for 0 < d < {(l+y2)*-1)y-I 
'* = {![/4(1+ yd)2+ y4)+-(2+ y2)]/y otherwise. 

' (2.7) 

The most significant implication of the Bayes decision given by (2.7) is that a 
discontinuous model, i.e. a threshold time series model, is the natural outcome. Next, so 
long as p (x ) - c  < ( ( 1 + y 2 ) + - 1) y - l ,  the linear model (2.1), (2.2) is as true as the 'true' 
model (1.1)! We may therefore conclude that the class of threshold time series models 
introduced by us in a series of papers (Tong & Lim, 1980), is a natural approach to 
nonlinear time series modelling. 

3. DISCUSSION 
Smith et al. (1981) have considered many other interesting cases which include, for 

example, a skew belief distribution, a 6-dependent Ic, a loss in the form of a step function, 
etc. We leave further exploration of this rich area for the future. Nevertheless, on the 
basis of our results here, it seems that we are not unjustified in believing that threshold 
time series modelling is founded on a sound principle. 

I am most grateful to Professor Jeff Harrison for introducing me to the key reference 
before its publication. 
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