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Threshold Autoregression, Limit Cycles and Cyclical Data 

By H. TONGand K. S. LIM 

Deparrme~lt of Mathemutics, C'ni~.ersitj. of Mur~chester Iristitute of Sc.ie~ic,e urid Tec,/~~ioloy!. 

[Read before the ROYAL STATISTICAL at a meeting organized by the RESEARCH on Wednesday. SOCIETY SECTION 
March 19th, 1980, Professor P. WHITTLE in the Chair] 

The notion o f a  limit cycle, which can only exist in a non-linear system, plays the key role in 
the modelling of cyclical da ta .  We have shown that  the class of threshold autoregressive 
models is general enough to  capture this notion, a definition of which in discrete time is 
proposed. The threshold value has a n  interesting interpretation. Simulation results are 
presented which demonstrate that this new class of models exhibits some well-known 
features of non-linear vibrations. Detailed analyses of several real da ta  sets are discussed. 
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IT may be said that the era of linear time series modelling began with such linear models as 
Yule's autoregressive (AR) models (1927), first introduced in the study ofsunspot numbers. In the 
past five decades or so, we have seen remarkable successes in the application of linear time series 
models in diverse fields, e.g. Box and Jenkins (1970), and the recent Nottingham International 
Time Series Conference in March 1979. These successes are perhaps rather natural in view of the 
significant contributions of linear differential equations in all branches of science. In particular, 
as far as a one-step-ahead prediction is concerned, a linear time series model is often quite 
adequate. 

However, just as a linear differential equation is totally inadequate as a tool to analyse more 
intricate phenomena such as limit cycles, time irreversibility, amplitude-frequency dependency 
and jump resonance, a linear time series model should give place to a much wider class of models 
if we are to gain deeper understanding into the structure of the mechanism generating the 
observed data. For example, no linear Gaussian model can explain properly the saw-tooth 
cycles apparent in the Canadian lynx data (see, for example, discussion of papers by Campbell 
and Walker, 1977, and Tong, 1977a), and many riverflow data (see, for example, Lawrance and 
Kottegoda, 1977). 

The new era ofpractical non-linear time series modelling is, without doubt, long overdue. In 
this paper, we describe the theory and practice of a new class of non-linear time series models 
which are based on the idea of piece-wise linearization. Sections 6 and 9 of this paper are due to 
both authors while the other sections are due to the first author. 

We propose the following requirements for our non-linear time series models, in order of 
preference : 

(i) statistical 	 identification of an appropriate model should not entail excessive 
computation; 

(ii) they should be general enough to capture some of the non-linear phenomena mentioned 
previously; 
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(iii) one-step-ahead predictions should be easily obtained from the fitted model and, if the 
adopted model is non-linear, its overall prediction performance should be an 
improvement upon the linear model; 

(iv) the fitted model should preferably reflect to some extent the structure of the mechanism 
generating the data based on theories outside statistics; 

(v) they should preferably possess some degree of generality and be capable of generaliz- 
ation to the multivariate case, not just in theory but also in practice. 

Before describing a newly introduced class of non-linear time series models, it may serve us 
well in recalling some elementary, yet important, properties in the theory of non-linear 
differential equations or non-linear systems. Here, no stochastic element is involved and only 
those properties relevant to later exposition are included. 

2. NON-LINEAR EQUATIONSDIFFERENTIAL 
(i) By definition, the principle of superposition does not hold in the non-linear case. In 

addition, the notion of a "complementary function" and a "particular integral" ceases to be 
meaningful here. 

(ii) Unlike a stable linear system, in which the output (i.e. the solution of the differential 
equation) dies away when the input is "switched off', the output of a stable non-linear system 
may contain sustained oscillations which persist in the absence of input. 

To illustrate this, let x, and x, denote the numbers of two species. Kolmogorov (see, for 
example, Minorsky, 1962, p. 69) has considered the general system of non-linear differential 
equations, 

where a, and a, are continuous functions of x, and x, with continuous first derivatives. Under 
very general conditions, he has shown that sustained oscillations (of relatively small amplitude) 
prevail. It is instructive to quote the following words of Minorsky (1962) in his discussion of the 
above phenomenon, in which a "common sense" picture of a state of equilibrium is 
supplemented by relatively small fluctuations : 

"Topologically this . . . is precisely a stable limit cycle in the (x,, x,) plane onto 
which wind the spiral trajectories from the outside as well as from the inside. The 
outside spiral trajectories are those which characterise the establishment of the 
biological phenomenon and the limit cycle is its representation in a stationary state. . . . 
As far as is known, no experimental verification of these results has been made so far. If 
this is done eventually and the Kolmogorov theory is confirmed, this will give valuable 
information regarding the actual biological probabilities involved in the co-existence of 
the two species." 

As has been touched on by Tunnicliffe-Wilson (1977), limit cycles will play a central role in 
the modelling of cyclical data. We may write equation (2.1) in the following form, 

k = Ax, (2.2) 

where the over-dot denotes the time derivative, x = (x,, x ,)~,  is called the state vector,? and 

where, for greater generality, we may sometimes allow a,  and a, to be discontinuous. The 
(x,, x,)-plane is sometimes referred to as the phase plane (or the state space in higher dimensional 

t denotes transpose. 
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cases). As an example of the phase plane, Fig. 1 represents that of the following non-linear 
differential equations from the output of an analogue simulation? 

Note that the spiral trajectories do not wind, from the outside, into a (singular) polnt, but they 
eventually go round and round closed loops, leaving an interior region untraversed, 
demonstrating the existence of a limit cycle. Note also that as functions of t ,  P(t) and H(t) are 
both periodic after the transients have died out. In (2.3), the limit cycle is self-excited, while in 

FIG.1. Simulated phase plane of a continuous time TAR, initial point being denoted by a cross. 

some other cases limit cycles may require a certain input to excite them, e.g. in a grandfather 
clock. For further discussion of the many important properties of the class of piece-wise linear 
differential equations, see, for example, Aizerman (1963, Ch. V), which refers to the contributions 
of the Russian school of non-linear vibrations, consisting ofA. A. Andronov, F. R. Gantmakher, 
M. A. Aizerman and others. 

(iii) Unlike a linear system, in which the "amplitude" and "frequency" of the output (signal) 
are functionally independent, the frequency domain analysis (sometimes called the harmonic 
analysis) of a non-linear system is much more complex. Non-linear vibration engineers have 
introduced notions such as "amplitude-frequency dependency", "jump resonance" and others. 

3. A LIMIT CYCLEIN DISCRETETIME 
The discussion in continuous time of the last section is only relevant in so far as it gives us a 

reference frame for developing non-linear time series models in discrete time. This situation is 
not unlike that in which Yule (1927) first developed his celebrated AR models. 

In this paper, we focus on the notion of a limit cycle, leaving the mathematical formulations 
of the other notions for a non-linear system for future developments. We will, however, indicate 
how the latter notions manifest themselves in the data through some numerical examples in 
Section 6. 

t The unpublished M.Sc. dissertation by Mr P. K. Wong of UMIST (1978) may be consulted for more similar 
examples. 
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For each integer n, let x, denote a k-dimensional (state) vector, satisfying the equation 
X, = f(x, - (3.1) 

Definition 3.1. A k-dimensional vector x* is called a limit point if there exists an x,, not equal 
to x*, such that starting with n equal to zero, x, tends to x* component-wise, as n tends to 
infinity. 

Let 9 denote the set of k-dimensional vectors ci (of finite Euclidean norm), i = 1,..., IT; T 
being a positive integer < m. 

Definition 3.2. 9 is called a limit cycle of period Tif 
(i) 3x0$9such that starting with n equal to zero, x, will ultimately fall into 9 as n 

increases; 
(ii) ci = f(ci- ,), i = 2,3, ...,rT; 

C ~ + i= Ci, i = 1,2,..., and 

(iii) Tis the smallest such positive integer. 
If, in addition, the assertion of (i) holds on replacing x, by any point ($9) in its 

neighbourhood, then 9 is called a stable limit cycle of period T 
We shall introduce the notion of a fractional period later. A limit cycle of infinite period is 

sometimes referred to as a chaotic state (Li and Yorke, 1975). 
It is important to note that a surprisingly complicated structure can arise from a simple non- 

linear function f, in the recursive relation of equation (3.1), even when k is equal to one. We refer 
to Li and Yorke (1975) and May (1976) for some remarkable examples. Of particular note is the 
result in the former paper which states that a cycle of period 3 implies a chaotic state for almost 
every x, (in the case k = I), i f f  is continuous. 

The following example is instructive : 

Example 3.1. 

This simple example is a special case of the one given by Tong (1977b), and it admits limit cycles 
of period 3 with the "ascension time" being shorter than the "descension time". 

We describe a general extension of (3.2) in the next Section. 

A threshold autoregressive model in discrete time (TAR) was first mentioned in Tong (1977b) and 
reported briefly in Tong(1978,1980a). A fuller account was available for private circulation in an 
unpublished report by Tong in 1978. We now give a more systematic description here. 

Let {X,) be a k-dimensional time series and, for each n, let J, be an observable (indicator) 
random variable, taking integer values {1,2, ...,1). 

Definition 4.1. {X,; J,) is said to be a general TAR if 

where, for J, =j, A" and B") are k x k (non-random) matrix coefficients, C") is a k x 1 vector of 
constants, and (82)) is a k-dimensional strict white noise sequence of independence random 
vectors with a diagonal covariance matrix. It is also assumed that ( ~ 2 ) )  and {ej;")) are 
independent for j fj'. 

We now single out a few interesting special cases of the general TAR for further development. 
First, let {r,, r,, ...,r,) denote a linearly ordered subset of the real numbers, such that 

r, <r , <...r,, where r, and r, are taken to be -m and + oo respectively. They define a partition 
of the real line R, i.e. 

R =  R , u R , u  ... uR, ,  say 
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where 

(A)Writing X ,  = (X, ,  X ,  - ,, ...,X,-,+ ,)T , 

i 0 (a companion matrix), I 

~ ( 1 )= 0 &;) = 

(E ,
( j ),0 , ...,O),  C( j )= (a!), 0 ,  ... ,O),  

and Ry)  = R x R x ... x R x R j  x R x ... x R is the cylinder set in the cartesian product of k real 
lines, on the interval R j  with dth coordinate space (d some fixed integer belonging to { I ,  2, ...,k ) ) ,  
and setting J ,  =j if X,- ,ERT),we have 

conditional on X,-,  E Rj ;j = 1,2, ... ,1. Since {J,)  is now a function of {X,)  itself; we call the 
univariate time series { X , )  given by equation (4.2)a self-exciting threshold autogressive model of 
order (1;  k, ... ,k )  or S E T A R ( ~ ;k , ... ,k )  where k is repeated 1 times. If, for j = 1,2, ... , 1 ,  

alj) = 0 for i = k j+ 1 ,  k j+2, ...,k ,  

then we call { X , )  a S E T A R ( ~ ;k, ,  k2,  ... ,kl). We call r l ,... ,r , - ,  the thresholds. Note that an 
SETAR ( 1 ;  k )  is just a linear AR model of order k. 

(B)(X, ,  Y,)is called an open loop threshold autoregressive system with { X , )  as the observable 
output and {Y,) as the observable input, if 

conditional on Y,-,E Rj;  (j = 1 , ..., l ) ,  where { ~ k j ) ) ;j = 1,... ,I ,  are strict white noise sequences, 
with zero mean and finite variances and each being independent of {Y,,}. The 1 white noise 
sequences are assumed to be independent of one another. We denote this system by TARSO(/ ,(m, ,  
m'l), . . . 5 (mi, mi)). 

(C){X, ,  Y,,)is called a closed-loop threshold autoregressive system, or TARSC, if (X, ,  Y,) and 
(Y,,X,) are both TARSO.We assume that all the stationary white noise sequences involved are 
independent of one another. 

5. SOME PERSPECTIVES 
The essential idea underlying the class of threshold autoregressive models is the piece-wise 

linearization of non-linear models over the state space by the introduction of the thresholds 
{ro ,r l ,... , r l ) ;  these models are locally linear. Similar ideas were used by Priestley (1965), 
Priestley and Tong (1973)and Ozaki and Tong (1975),in the analyses of non-stationary time 
series and time dependent systems, in which local stationarity was the counterpart of our 
present local linearity. 

Of course, local linearity abounds in many practical situations. Indeed, if this were not the 
case, linear time series analysis could not have survived this long. For example, it may be argued 
that many real systems are non-linear only in so far as they exhibit the phenomenon of 
saturation. Another example is an electrical relay which is a particularly simple piece-wise linear 
system. In fact, by some co-ordinate transformations of the relay systems, a general class of 
piece-wise linear differential equations has been established and studied in depth. (See, for 
example, Aizerman, 1963.)Tong (1980a)has argued, on physical and biological grounds, for the 
adoption of piece-wise linear models in the analysis of the Canadian lynx data and Wolfs 
sunspot numbers. Sugawara (1952, 1961), Todini and Wallis (1977) and Chander in an 
unpublished Ph.D. thesis (1965)have studied the rainfall-riverflow system from the standpoint 
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of piece-wise linearization. Other related works include Fujishige and Sawaragi (1974) ,  
Robinson and Sworder (1974) ,  Rishel (1975) ,  Waltman and Butz (1977) ,  Jacobs and Lewis 
(1978) ,  Haggan and Ozaki ( 1 9 8 0 )  and Ozaki (1980) .  

Although at a deeper level, our general TAR must be considered at present as an ad h o e  class 
of non-linear time series models, in a certain sense this class is not without some generality. 
Consider a general first order non-linear autoregressive process, N L A R ( ~ ) ,of the form 

It seems intuitively clear that subject to general conditions on f; an N L A R ( ~ ) may be 
approximated arbitrarily closely by a TAR. We may argue heuristically as follows. Suppose that 
f ( x )  is continuous in a closed interval [x', xu]. It is well known that f ( x )  is uniformly continuous 
in [x', x"] and that the Weierstrass theorem ensures that f ( x )  may be approximated arbitrarily 
closely by f (x ) ,  where 

=f(x(ik-,)I +uk X, 
for 

where 

X(io) = x', X(i,) = x", 
and the partition 

is defined depending on the degree of accuracy of the approximation required. Therefore we 
have obtained an ~ E T A R ( ~ ;  ,... , x ( ~ ~ - , ) ) .1 , l ,  ...,1 )  to the NLAR, with thresholds { x ( ~ ~ ) , x ( ~ ~ )  For an 
NLAR (k), 

we may re-write it in vector notation 

where 

and 

A vector version of the Weierstrass theorem will then establish a general TAR approximation of 
an N L A R ( ~ )under general conditions on J: 

A more challenging problem concerns the following non-linear Markovian system (NMS) : 

Xn = f (Xn- l ) + ~ n ,  (5 .5)  
y n  = g(Xn), 

where X n  and Yn are a k-dimensional unobservable vector and a q-dimensional (qdk)  
observable vector respectively, and E, defines a zero mean stationary k-dimensional strict white 
noise sequence and is independent of Xn- ,. 

Suppose that g is a partition preserving mapping from Rk to Rq,  k >q, in the sense that 
{g(Rf))) defines a partition of R q  for every partition { R r ) )  of Rk, where for any set A ,  
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It seems plausible that an NMS with a partition preserving mapping g may be arbitrarily closely 
approximated by a T A R  under general conditions on f. The problem arises as to the 
characterization of the class of such mappings. In the case of k = q, we know that it contains at 
least one element, the identity mapping. 

Next, consider the recursive relation, 

wheref is such that / xj  / < x for all j < co. It is well known that unless some "stability" condition 
is placed onf ,  the recursion will diverge. One example is a polynomial in x , - , ,  x ,-,, ...,x,-, .  
However, in practice, we can usually circumvent this problem by introducing some inbuilt 
restrictions on the range space off: 

Let d be a pre-fixed integer chosen from { I ,  2, ... ,k ) ,  k <  x.We agree to set 

x i = O , V  i<O. 

Dejnition 5.1. Let f be a point transformation from Rk to R given by (5.6).Let S be a finite 
interval of R .  fs is said to be a stabilizer o f f  induced by S if it has the following properties : 

(i) fAx,- 1 ,  ...,x,-k) = x,, 
(ii) X ,  - d  E SJ f&x, - ... ,X ,  - k )  = f ( x ,- ... ,X ,  - k ) ,  and 

(iii) X , - ~ $ S J ~ S ( X , - ~,..., x , - ~ )= C,c $ S  and IcI < c o .  

Theorem 5.1. fs defines a stable recursion in the sense that 

V ( X , - ~  and all n. Ifs(x,-l  ,... ,x , - ~ ) /< a, ,..., x , - ~ ) E R ~  

Proof: Denote the row vector (x , , ... , x , - , +  ,) by x,. We agree to call xi  an outlier if x i $ S .  
Suppose that x,, is the first vector with its first component x,, being an outlier. Under the 
recursion fs, 

Obviously, V n>no+d, x,  has at least one component equal to c. It now remains to be shown 
that the number ofcomponents of x,  equal to cis monotonically nondecreasing as n increases to 
infinity. There are two possibilities subsequent to xno+,.One possibility is that no more outliers 
will occupy the first component, except for the recurring c, in which case fs defines a stable 
recursion. The other possibility is that a new outlier will occupy the first component in addition 
to the recurring c. Because each outlier will subsequently produce one further component equal 
to c, we have proved by induction that the number of components equal to c is monotonically 
non-decreasing. Hence, there exists an M < x,such that for all n 2 M, 

I f ( , l . . ~ - ) < a ,  V ( X , - ~S ~ - , . , , k / ,...,x , - ~ ) E R ~ .  
Therefore, by the finiteness of M, 

I f s ( x , - i , . . . , x , - k ) I < ~ ,  V ( X , - k , . . . , x , - k ) € R k  anda l l n .  

This completes the proof of the theorem. 
It is interesting to note that fs corresponds to a threshold model. 
Finally, the question of stationarity for an N L A R ( ~ ) ,as well as its marginal and conditional 

distributions, has been studied by Jones (1978),who has applied Tweedie's (1975)general results 
concerning ergodicity of a Markov chain over a general state space to N L A R ( ~ ) ,and has also 
indicated possible extension to NLAR (k) ,  k 2 1 .  It is possible to show that a sufficient condition 
for the ~ E T A R{X,) described in case (A)of Section 4 to be ergodic in the sense of Tweedie (1975)is 
that the maximum eigenvalue of A(j)T A"' is strictly less than unity, j = 1 ,  ... ,I, and the $)'s have 
absolutely continuous distributions. This is obtained by applying Corollary 5.2 of Tweedie 
(1975)with 1 1 x 1 1 = xT x for a k x 1 vector x,  and 1 1 A 1 1 = maximum eigenvalue of AT A for a 
k x k matrix A. However, it is interesting to investigate if the eigenvalue requirement could be 
weakened. 
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6. TAR MODELSA N D  NON-LINEARVIBRATIONS 
We now describe some simulation results which demonstrate that TAR models exhibit 

interesting features well known in non-linear vibrations. 
(1) Jump resonance. It is well known that, unlike a linear system, the output amplitude may 

have a "resonance jump" at different frequencies depending on whether the input frequency (of 
constant amplitude) is monotonically increasing or monotonically decreasing. (See Figs 2a, 2b 
and 2c.) 

Output 
am~litude 2a 

Output Output 
amplitude 2b amplitude 

n 

Input 
frequency 

FIGS2a, 2b, 2c. Jump resonance. 

The time plots of Figs 3a and 3b clearly show that our SETAR can capture this engineering 
notion. The engineering terminology of a "hard spring" and a "soft spring" is an indication of the 
mode of the "restoring force" of the system. Figs 3a and 3b correspond respectively to the 
SETAR (2; 9, 3), d = 5 and SETAR (2; 3, 8), d = 6 given below. (White noise inputs are replaced by 
sinusoids in this exercise.) 

X, = { +0+2186Xn-, +0.0526Xn-, +input if Xn- ,  C 3.05, (6.1 a) 

( - 0 . 0 5 5 1 ~ ~-,+input if X,-,> 3.31. 
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. . 
12 !--

10 -
8 L- Output 

-4 -

-4 

2 

I 

Input 

JUMP PHENOMENA OF SETAR 

FIG.3a. Jump resonance, hard spring. 

(2; 9, 3) d = 5  

I#jbI 

SO 

Hard spring 

Output 

-4 L. 

-6 
-R , 

2 Input 

Gl 

JUMP PHENOMENA OF SETAR (2; 3, 8) d = 6 Soft spring 

-10' FIG.3b. Jump resonance, soft spring. 
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It is also well known that the output amplitude of a non-linear system may have a resonance 
jump at different amplitudes depending on whether the input amplitude (of constant frequency) 
is monotonically increasing or monotonically decreasing. Fig. 4 corresponds to the time plots of 
the following threshold model : 

input 

FIG.4. Jump resonance. 

(2)  Amplitude-fvequency dependency. It is well known that, unlike a linear system, the output 
signal may show different frequencies of oscillations for different amplitudes. The time plots of 
Figs 5a and 5b correspond respectively to the two SETAR (2; 3,3), d = 1 given by equations (6.3) 
and (6.4) respectively : 

[ 1.6734-0;8295Xn-,+0.1 309X, -,-O.0276Xn-,+6;') 

\ if X, -,<0.5, var 8:) = 0.003', i = 1,2, 

0.15 +0.85Xn-, +0.22Xn-2 -o.7Oxn-, 	+E',') 

if X, -,<3.05, 

0.30 -0.80Xn-,+0.20Xn-,+0.70Xn-,+EL') 
if X, -,>3.05, var 6:) = 0.003', i = 1,2. 
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Note that Fig. 5a shows the tendency of high frequency of oscillations when the amplitudes are 
high. Fig. 5b shows the reverse tendency. 

(3) Limit cycles. Quite a few figures showing limit cycles for SETAR will be given in Section 9. 
(4) Subharmonics. By a subharmonic it is usually meant an output oscillation at a fraction of 

FIG.5a. Time plots of (6.3) : amplitude-frequency dependency, high (low) amplitudes having high (low) frequencies. 

FIG.5b Time plots of (6.4) : amplitude-frequency dependency, high (low) amplitudes having low (high) frequencies. 

the input oscillation frequency. The time plots of Fig. 6 correspond to the following simple 
SETAR(~;  :0,1,0) with a periodic input {Y,,) 

2Xn-i+U. i f l X n - i < 2 ,  where x =  - 1 if n is odd, 
xn= {v. if I x , - ,  I>2, 1 if n is even. 

(5) Higher harmonics. By a higher harmonic it is usually meant an output oscillation at a 
multiple of the input oscillation frequency. The time plots of Fig. 7 correspond to the following 
simple TARSO model model with a periodic input {Yn) : 

In Section 2(ii) we described a limit cycle as one possible mode of oscillations of a system 
when the input is "switched off'. This motivates the following definition of a limit cycle of a 
stochastic system in which the input may consist of some random and some deterministic 
components. 
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INPUT: -OUTPUT: -----

FIG.6. Sub-harmonics. 

INPUT1-OUTPUT, -------

FIG. 7. Higher harmonics. 

Dejinition 7.1. A stochastic model 

Xn = f(Xn-l,~!),~~L1,...,c:Lpi, u!) ,...,ultjLPi.,i= 1,...,q), (7.1) 

where {X,) is an observable k-dimensional time series and for i = 1,...,q, {E!)) is an 
unobservable one-dimensional time series and {ut)) is a one-dimensional deterministic 
sequence, is said to admit a limit cycle if, by denoting g'," as the conditional expectations of E'," 

given Xn- ,,X,-,, ..., (assumed to exist), 

(where the vector of zeros is of dimension pi+ 1) induces a recursive relation in g,,say, 

gn= g(gn- 11, (7.3) 
which has a limit cycle in the sense of Definition 3.2. 

Note that if&!) is a zero mean random variable and independent of Xn- ,,Xn-,, ...for each i, 
then 

where the zero vector of dimension K = Zp=,(pi+pi +2). In what follows we assume this 
independence. 

Now, for simplicity, consider a k, k, k) with at ) =(stable) SETAR(~ ;  0; i = 1, 2, 3 and 
-co<r, <0 <r, <co. In this case, equation (7.3) takes the specific form 

Let p(A) denote the modulus of the maximum eigenvalue of the matrix A. Suppose that 
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The only stationary solution of the equation 

is the zero vector, which belongs to Rg). However, that p(A(") is strictly greater than unity 
implies that this solution cannot be stable, i.e. there is no stable limit point. On the other hand, 
the system is stable. Therefore the only stable solutions are periodic, i.e. limit cycles. The 
extension to an SETAR (I; kl, ... ,kl) with a$) = 0; i = 1,...,I, and 0 E Ri for some i not equal to 1or I, 
is straightforward. However, the problem of the theoretical classification of solutions, into the 
number of admissible limit points and limit cycles, for a general SETAR, in terms of the coefficients 
a',"'s, is not completely solved. In practice, this is not necessarily a serious drawback because 
once an SETAR model has been fitted, we can always check numerically whether it admits a limit 
cycle with the current observation being the intial point x,. We develop this point in Section 8. 

8. STATISTICALIDENTIFICATION 
Given a finite record, a linear autoregressive (AR) model can be very easily fitted by efficient 

computational algorithms such as Levinson-Durbin's or the Householder transformation. (For 
discussion of the former, see, for example, Box and Jenkins, 1970, and of the latter see, for 
example, Golub, 1965.) 

For the fitting of a general non-linear autoregressive model, the above techniques would no 
longer be suitable, and a much more time-consuming search algorithm would be necessary. 
However, in view of its piece-wise linearity, a threshold model can still be fitted by the efficient 
method of Householder transformations. The Levinson-Durbin method cannot be applied here 
in view of the lack of "Toeplitzian property" of the TAR. 

We give only a description of a statistical method of identification. Sampling properties of 
the estimates of parameters are not included but an application of the recent results of Klimko 
and Nelson (1978) may prove fruitful. A Gaussian assumption is made on all the white noise 
sequences. This enables us to write down the likelihood function and derive the maximum 
likelihood estimates of the unknown parameters, much in the same way as in the linear AR case. 
It is easy to check that the Jacobian of the transformation from the white noise terms to the 
observations is unity. The initial part of our identification procedure is based on Akaike's 
Information Criterion (Akaike, 1973), denoted by AIC, which, for each specified threshold model, 
takes the generic form, 

AIC (k) = N In (RSSIN) +2k, (8.1) 
where RSS is the residual sum of squares of the fitted model, based on maximum likelihood 
estimates ofthe defining parameters, N is the "effective number of observations" (to be explained 
later) and k is the number of independent parameters of the model. Equation (8.1) is, of course, 
strictly speaking, valid only when the "end effects" of the likelihood function are negligible, as 
are usually assumed in this kind of analysis. (See, for example, Bartlett, 1966, p. 271.) We 
sometimes normalize the AIC by dividing it by N. 

We describe, in some detail, one computational procedure implementing the proposed AIC 

identification for the class of SETAR(~;  k,, k,) Other classes may be considered in a similar way. 
First, let d and L be prefixed, where L is the maximum order to be entertained for each of the 1 
piece-wise linear AR models. The choice of L is subjective and usually depends on the sample 
size. It may be allowed to be different for different regions R ,  but, for the convenience of 
description, we have set them to be all the same here. (In our program the more flexible 
alternative is adopted. The programs are obtainable from the authors upon request.) Let no be 
the maximum of d, L. Let {x,,x,, ...,x,) denote the observed data and t, the sample 100qth 
percentile. Suppose that we agree to use {to.,,, to,,, t,.,,, t,.,, t,.,,) as a set of potential candidates 
for the estimation of r,, the threshold value. Note that this choice is, of course, arbitrary but 
convenient, and may be changed if necessary. For each choice oft,, we re-arrange the data set 
into two sub-sets and set up two sub-systems of linear equations, one for R,  and the other for R,. 
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The following is a typical example. Suppose xno-,+ ,,xno-,+,, xno-,+ ,,...are less than or equal 
to t,, and the others are greater than t,. Then 

say, (8.2a) 

... . . . . . .  . . . . . .  ... 

, i.e. x, =A2B2, say. (8.2b) 

... . . . . . .  . . . . . .  ... 
We may obtain estimates of 8, and 8, by Householder transformations of the matrices A, 

and A, respectively. For each fixed t, and d, we use AIC to determine the orders of the two piece- 
wise linear AR'S, kl and k,. Specifically, L, is the minimum AIC estimate of k,, i.e. 

A I C ( ~ , )= min {N, In (RSS,(k,)/N ,)+2(k1+ I)), (8.3)
O < k l $ L  

where N is the number of elements in x, and RSS,(k,) is the residual sum of squares 
x, - A ,  b, 1 1  '. Here 6, is the least squares estimate of B,, assuming a k,th order AR model, and 

1 1  denotes the Euclidean norm of a vector. k, is obtained in a similar way. 
Recalling that the computation is fixed at t,, we may write 

AIC (t,) = AIC (kl)+AIC (k,), (8.4) 
because E ~ ) ' sand E ~ ) ' sare independent of each other. Next, we allow t, to vary over a pre- 
selected set of t,'s and minimize the AIC (t,) over this set. That value oft,, r*, say which is such that 

AIC (i,) = min {AIC (t,)), (8.5)
hJ 

is adopted as our current estimate of r,, the threshold value, and the R,,R, corresponding to this 
6 our estimates of k, and k,. Therefore, the minimum AIC model adopted for the fixed value of d 
is SETAR(~; El, R,) with threshold 6.In all the above searching stages, the total efjctive number 
of observations remains the same, namely n -no, while the effective number in each region is 
smaller. (Care should be taken to ensure that they are sufficiently large.) 

Finally, we have to search over d for a set of pre-selected positive integers. The different 
choices of d may alter no and hence n -no. In order to get some cross-comparison between the 
A1c(ilYs for the different choices of d, we normalize the former, Thus, for each d, we write 

AIC (d)= AIC (i,)/(n -max {d, L)), (8.6) 
where AIC(~ , )  is defined in (8.5) for this choice of d. After this last search stage over d, we have 
completed the minimum AIC identification, which will give us estimates of d, r,, k1,ai1); i = 0, ..., 
k,, aj2); i =0,..., k,, var e:') and var ey). 

To complement the final stage of the identification, namely that of d, we also compute the so- 
called eventual forecasting function, eff (d), for each d. Specifically, for each fixed d, we go through 
all the afore-mentioned search stages, ending with a minimum AIC estimated SETAR(~; El,k,)  
with threshold value 6.Using the observed data and the fitted model, we may easily obtain the 
one-step-ahead prediction of Xn+,,because the observed value of Xn-, determines in which Ri 
region it falls. Denote this predicted value of Xn+,by xn+,. Now, pretending that this xn+,was 
the observed value of Xn+,,we may repeat the same calculation and obtain xn+,,etc. The plot of 
x,+,, m = 1,2, ...,against m is, in fact, just a convenient way of visualizing the "systematic part" 
of the fitted SETAR (2; R1, k,) model, given the observed data. It should not, however, be confused 



with the more-than-one-step-ahead prediction function. The eff (d) should therefore either tend 
to a constant or a periodic function, unless an unstable model has been fitted. The former 
indicates a limit point and the latter a limit cycle. By comparing the eff(d) for the different 
choices of d, we may be able to form some subjective judgement as to the preferred choice. 

Yet another complementary technique we sometimes find useful in the final stage is that 
based on a kind of pseudo-cross-validation. We delete the last 10 per cent of observations, say, in 
the identification procedure, and then compare the one-step-ahead prediction errors on using 
the fitted model to forecast these deleted observations. Suppose that with d equal to do the total 
of the prediction errors is a minimum. We then repeat the identification procedure with the 
complete data set, with d fixed at do. If the fitted model using the complete data set does not differ 
much from that based on the incomplete data set, then adopt the former as our final model with 
d equal to do. 

A final check is obtained by studying the fitted residuals and the one-step-ahead prediction 
errors. The plotting of these is routine in our computer package. 

9. TAR MODELSFOR REALDATA 
(A) The Canadian lynx data (1821-1934). This set of data has been analysed extensively by 

many statisticians. (See, in particular, Campbell and Walker, 1977; Tong, 1977a, and Bhansali, 
1979.) We now list what we regard as significant features of these data as follows: 

(i) obvious cycles of approximately 10 years with varying amplitudes; 
(ii) the rise period, from a local minimum to the next local maximum, exceeding the descent 

period, from a local maximum to the next local minimum, thereby showing time 
irreversibility. 

The proposed identification procedure has enabled us to select the following SETAR(~;  8,3) 
model as our model for the data which has been logarithmically transformed (to the base 10) : 

where var E L ' )  = 0.0255, = 0.0516. (The pooled mean sum of squares ofvar &i2) 
residuals = 0.0360.) 

Fig. 8 shows that the eff is an asymmetric periodic function of period ten years (counting 
minimum year to minimum year inclusively), i.e. model (9.1) has a limit cycle of period 9 years as 
determined by Definition 7.1. The rise and descent periods are six and three, respectively. The 
limit cycle may be generated from (26226,2.8945,3.2523, 3.4601,3.4257,3.2281,2.9793,2.7884, 
2.6639). It is interesting to note that a similar limit cycle can be picked up even by fitting a SETAR 
to just 80 of the 114 observations. The fact that the threshold value depends on X,-,is 
particularly interesting in view of its implications of a lead-lag relation of approximately 2 years 
between the lynx population and its prey (cf. Bulmer, 1975). We will consider this point again in 
Example C. 

Tong's AR (1 1) model (Tong, 1977b) and Campbell-Walker's harmonic-component-plus-
AR (2) models (Campbell and Walker, 1977) have been recognized to be inconclusive owing to 
their linearity. (See Tong, 1980a, and the discussion of the above papers.) Threshold models 
certainly seem to offer exciting possibilities here. (See also Haken, 1978, p. 9.) The estimated 
threshold at about 3.1 gives us a rough idea ofthe critical lynx population in its co-existence with 
their prey. Figs 9a and 9b show the gain spectra of the fitted model, corresponding to 
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I FROM FITTED MODEL NAIC = -3.13559 
EVENTUAL FORECASTING FUNCTION Root Mean RSS = 0.18939 

+ REAL DATA 

FIG.8. SETAR for lynx data. 

db? GAIN SPECTRUM IN DB dbt 

FIGS9a, 9b. Gain spectra for lynx data. 

X, -,>3.1163 and X, -,<3.1163 respectively. They appear to peak at different frequencies 
which might be interpreted as indicating some "amplitude-frequency dependency". 

Tong (1980a) has compared the one-step-ahead predictions based on the linear models 
mentioned in the last paragraph with those based on a SETAR. In particular, the SETAR(~;6,3), 
d = 2, fitted to the years 1821-1920 (op. cit.) reduces the root-mean-square-error of one-step-
ahead predictions (RSME)by 10 per cent when compared with the ~ ~ ( 1 2 )reported in Tong 
(1977b, p. 466). 

At this point we may anticipate a predator-prey system behind the whole scene, for the 
modelling of which our TARSC may offer interesting possibilities. Unfortunately, we have been 
unable to obtain reasonably "clean" snowshoe rabbit data in the Hudson Bay area of the same 
period of time. Some other "dirty" rabbit data of (probably)not exactly the same region were 
extracted from MacLulich (1937)and discussed in an unpublished report by Tong, which did 
not give any definite conclusion. 

(B) Sunspot data. In his discussion of Morris' analysis of the sunspot data, Priestley (1977) 
has noted that a threshold AR model may be appropriate. 
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The following SETAR(~ ;4, 12) is fitted to Wolfs sunspot numbers {X,; t = 1700,...,1920). 

where varej1) = 254.64, var&j2)= 66.80. (The pooled mean sum of squares of 
residuals = 153.71.) 

Fig. 10shows the fitted residuals, the one-step-ahead predictions and the eff. Note that the eff 
is a periodic function of a 31-year period, consisting of 3 local maxima and 3 local minima, i.e. 3 
"local cycles". The local cycles are asymmetric with rise (descent) periods being 4 (6),4 (6),4 (7). 
We may regard 3113 as a "jractionalperiod" of the sunspot cycle. We note that the asymmetry of 
these cycles runs in a reversed direction to that of the lynx. Fig. 11 shows the "high" and "low" 
gain spectra, which tend to be related to the empirical observation that the skewness of the 
sunspot cycles depends on their amplitudes. Logarithmic and square-root transformations of 
the data have been tried but we have not observed any obvious advantage in this case. 

Using a method due to Ozaki and Tong (1975), Akaike (1978) has shown that the sunspot 
data are better modelled as non-stationary over a long period, although they may be regarded as 
stationary over a shorter period. Some of the non-stationarity must be due to the introduction 

FROM FITTED MODEL 
0 PREDICTION (1 -STEP AHEAD) (1921-1 955) NAlC = 4.99995 

RMSE = 12.17397 

1750 1800 1850 1900 1950 2000 
SETAR (2; 4,12) d = 3 (1720-1 920) 

FIG.10. SETAR for sunspot data 1700-1920 
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FIGSl la ,  l lb .  Gain spectra for sunspot data 17OC-1920. 

of the photographic recording technique towards the later part of the record. We therefore look 
at the data from 1837 to 1924 more closely and the following SETAR(~; 4,2) model is fitted : 

where varcjl) = 231.030, v a r ~ $ ~ )63.075. (The pooled mean sum of squares= of 
residuals = 157.819.) 

We note that the one-step-ahead predictions for the period up to 1944 are reasonable but 
deteriorate rapidly from then on thereby suggesting some non-stationarity of the sunspot data. 

(C) Mink-muskrat data (1767-1849), from Jones (1914). Bulmer (1974,1975), Jenkins (1975) 
and Chan and Wallis (1978) have attempted to explain the predator-pray relation of animal 
population data such as the mink-muskrat by means of essentially linear models. In contrast to 
these approaches, and motivated by Section 2(ii), we have fitted the following non-linear time 

0 PREDICTION (1 -STEP AHEAD) (1 9 2 5 1  955) NAIC = 5.081 7 

C] EVENTUAL FORECASTING FUNCTION RMSE (1 925-1 944) = 9.2342 


1940 1960 1980 2000 2020 
SUNSPOT SETAR (2; 4, 2) d = 5 based on 1837-1924 

F I G .  12. SETA'R for sunspot data 1837-1924. 
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IFROM FllTED MODEL NAIC = -1.3761 07 
EVENTUAL FORECASTING FUNCTION 

2.0 + REAL DATA 

TARSC for Mink 

FROM FITTED MODEL NAIC = -0.81 344 
EVENTUAL FORECASTING j FUNCTION 

I ? 
I f 

-2.0 L 

TARSC for Muskrat 

FIGS13, 14. TARSC for mink and muskrat data. 
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series model, specifically a TARSC model, to the mink and muskrat data (to the base e) of 
1767-1849 after first differencing the logarithmically transformed data. We denote them by P, 
and H,, respectively : 

where varsj" = 0.2907, varej2)= 0.1506 (pooled value = 0.2170), varqj') = 0.4616, 
var qj2) = 0.3073 (pooled value = 0.3588). 

This model seems to lend some support for a predator-prey model in this case. The fitted 
threshold values are also interesing and seem to give some support for the approximate 2 year 
lead-lag relationship between the "muskrat cycle" and the "mink cycle" noted by Bulmer (1975). 
Note also the signs of coefficients of H,-,and P,-,in (9.4). Indeed, this fitted model has a limit 
cycle of period 5 years. The mink and muskrat effs show periodic functions with opposite 
skewness. (See Figs 13 and 14.) This is again what one might expect in a predator-prey situation, 
adding yet further support to the predator-prey hypothesis. (See Fig. 15.) The fact that the mink 
limit cycle is wholly above the threshold value while the muskrat limit cycle oscillates about the 
threshold value seems to be tentatively related to Bulmer's conclusion that the muskrat cycles 
drive the mink cycles and not the other way round. 

However, this example has also revealed the difficulty of bivariate TAR time series modelling 
to very short data sets. The desire to keep the number of parameters to a reasonable level has led 
to a rather high residual variance. Bearing this in mind, we must emphasise the tentative nature 
of the model (9.4), which cannot be taken as giving conclusive evidence in support of the 
predator-prey hypothesis. On the other hand, the limitation of a linear model in this respect is 
well known. (See, for example, Tong, 1980a.) 

(D) Kanna riverjlow and rainfall data (daily record of year 1956). It was Sugawara's tank 
model (1961) for the analysis of the riverflow-rainfall relation which led Tong (1977b, 1978, 
1980a) to the formulation of the threshold models. It therefore seems appropriate that we should 
conclude our case studies with a hydrological example. 

Mink 

O.I5 3b41 

1Muskrat 
0.05 0.1 0 

FIG.15. Phase diagram for mink-muskrat. 
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The Kanna River is a river with a small catchment area (under 1000 km2) in Japan. Seasonal 
variations of Japanese rivers are quite regular due to the rather well-defined rainy season there. 
The ground soil is also rarely dry. It is, therefore, reasonable to expect that most of the cyclical 
variation of the riverflow data can be explained by that of the rainfall data if only the 
transformation from the latter to the former is adequately modelled. As a result, we may treat 
the latter (denoted by x)  as an instrumental time series and fit a TARSO model to the former 
(denoted by Xi, after a logarithmic transformation to the base 10). 

The following model is fitted, using only record of the first 280 days. 

0.0185+0.9992Xi-1 +0.0065Y,-1 -o.1519Xt-2 -o.0017&-2 

+0.1236Xi-3 -o.0004x-3 -o.0295Xt-4-0~0014~-4 =I 
 +0.0065Xi-,+ejl) if x-,<4.6000, (9.5) 

0.1281+0.5044Xi- +0.0146Y, - +0.2767Xt- +04014 Y, - +6:') 

if x-,>44000, 

where varejl) = 0.0012, varej2) = 0.0173 (pooled variance = 0.0047). 
Based on this fitted model (9.5), we have obtained one-step-ahead predictions of the next 86 

days, and Fig. 16 represents an 18 per cent reduction in the RMSE when compared with the linear 
model. We would suggest that the TARSO models could be useful for the purpose of synthetic 
hydrology. However, a practically more important problem is the modelling of the rainfall, 
which so far seems to have bedevilled time series analysts! The solution of this difficult problem 
will pave the way for a long-range forecasting of floods. 

10. SOME DISCUSSION 
Through our practical experiences in applying the threshold models to real data, we are led 

to believe that this new class of models offers exciting potential in the analysis of cyclical data 
and opens up new vistas. However, much work remains to be done and we would just mention a 
few areas. 

Following the same idea as in Ozaki and Tong (1975), we can partition the time axis suitably 
so as to arrive at a class of locally stationary TAR models. For example, the rainfall-riverflow 
relationship may change in an obvious way between the summer seasons and the winter seasons 
for some rivers. We have some encouraging results in a non-stationary TARS0 modelling of the 
River Cam data, which will be reported elsewhere. 

We are certainly conscious of the possible shortcomings in using the minimum AIC method 
in our model identification. We have made it clear in our proposed procedure, and we 
emphasize once again, that this method is not the only tool we have used, although our 
experiences have led us to believe that it can give us good service, provided we use it sensibly. 
For example, we have been particularly cautious when the minimum AIC method selects a model 
whose parametric dimensionality is near to the maximum possible dimension entertained. (See, 
for example, Shimizu, 1978.) It seems that the latest Bayesian extension of the minimum AIC 

method developed by Akaike (1979) holds out the possibility of a more sophisticated procedure. 
Briefly, we may treat exp (-~ A I C(k)) as the "likelihood" of the kth order model from which we 
may obtain the posterior distribution over the class of models under consideration, prior being 
some reasonably simple distribution, say, proportional to (k + I)-'. A Bayesian model may 
then be obtained by averaging the class of models under consideration with respect to the 
posterior distribution. 

Of course, in principle there is no difficulty in extending our TAR by including the moving 
average terms, obtaining a TARMA. We have as yet insufficient practical experience in the 
identification of a TARMA, the main difficulty being the computer time consideration. Another 
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possibly useful direction of extension is to allow the A(% and BW's of (4.1) to be functions of 
X,- ,,which includes the piece-wise polynomial approximation. (See also Tong, 1980a.) 

Finally, in the case of linear models, the notion of a state has been fully developed and is 
identified with a set of observable basis vectors of the predictor space of Akaike (1974). This 
fundamental notion gives a precise mathematical meaning to the information reduction process 
expressed by the linear ARMA model under the only assumption of finiteness of the dimension of 
the predictor space. Such a notion is lacking in the non-linear case. In this respect, the TAR (or the 
TARMA) models, as well as all other known classes of non-linear time series models, must be 
regarded at present as ad hoc (Akaike, private communication). We would argue that the 
formulation of this fundamental notion will be a most challenging and urgent problem for the 
next stage of development in non-linear time series modelling. Towards this end, it seems that a 
topological approach might offer some insight. Now, let E denote a separable metric space 
generated by X,, g 2 ,  ..., the metric being the mean square norm. Here 

gi= EIXiIX,,X-, ,...I ,  i =0 ,1 ,2 ,.... 
We call X the general predictor space. (If the gi 's  are linear in X,,X- ,,..., then this general 
predictor space reduces to the predictor space of Akaike.) We now follow the rigorous definition 
of the dimension of a separable metric space given by Menger and Urysohn. (See, for example, 
Hurewicz and Wallman, 1941, p. 24.) Now, a fundamental theorem in dimension theory (op. cit. p. 
52) shows that if E has dimension n(< co)then among the totality of continuous real-valued 
functions defined over E ,  there is a set of 2n +1(but not any fewer) functions 5,, 5,, ...,5,,,+,(the 
co-ordinate functions), which form a basis, in the sense that every continuous real-valued 
function f defined on X is expressible in the form 

f = g(51,... ,52n+ I), 
where g is a continuous function of 2n +1 variables. We may identify 5 = ( 5 , , 5,, ...,5,,+ ,) as a 
state vector, which seems to offer possibilities of further developments towards a fuller 
understanding of the structural aspects of non-linear time series models. 
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DISCUSSION BY DR TONG AND MS LIM OF THE PAPER 

Dr C. CHATFIELD 
(Bath University): I would like to congratulate the authors on making a 
substantial contribution to non-linear time-series modelling. I particularly welcome the fact 
that the paper combines new theoretical work with a number of practical examples using real 
data. 
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The authors are certainly right in suggesting that the time is ripe to look at alternatives to 
linear time-series models. The newcomer to non-linear models would do well to start by reading 
Granger and Andersen (1978) and Priestley (1978). These references and Subba Rao (1979) 
introduce an alternative class of models called bilinear models. The TAR models have the useful 
properties that they are locally linear and that they admit limit cycles, but in some other respects 
I find bilinear models more appealing. I hope that it will not be too long before bilinear and TAR 
models can be compared on real data. In particular I hope the authors can tell us how their 
model for the sunspot series compares with the bilinear models fitted by Granger and Andersen 
and by Subba Rao. 

The first general question that might be asked in respect of non-linear modelling is: "How 
can we tell if a given time series is non-linear?'or "How can we decide if it is worth trying to fit a 
non-linear model?" The answer does not appear to be easy. In particular it is no use fitting a 
linear model, carrying out the usual diagnostic checks (such as looking at the autocorrelation 
function of the residuals), and hoping that these will indicate non-linearity because they won't. 
The tests, which are based on second-order properties, are designed to see if the "best" linear 
model has been fitted and not to indicate non-linearity. Indeed Granger and Andersen (1978) 
have shown that one can find a linear model and a bilinear model with the same second-order 
properties, and so they suggest looking at the second-order properties of {X:)as well as {X,)in 
order to distinguish between a linear and a bilinear model. More generally one might look at 
moments of {X,)which are higher than second-order, and the bispectrum is one possibility. In 
their examples, the authors have tried a TAR model because, for one reason or another, the "best" 
linear model was felt to be inadequate. For example, in the lynx data, the time "going up" 
systematically exceeds the time "coming down". What other features should we be looking for? 
Can the authors suggest a more general tactic for detecting non-linearity? 

Let me now turn to the requirements listed by the authors in the introduction. Firstly they 
say that statistical identification should not entail excessive computation. Reading Section 8, I 
formed the impression that the computational problems are very much harder than those in 
both the linear and bilinear cases, so that it is not clear if the first requirement is satisfied. I would 
like to ask the authors how much more computing time is typically required to fit a TAR model. 

Another sensible requirement proposed by the authors is that the overall prediction 
performance should be an improvement upon the linear model. Here I must confess to being a 
little disappointed. The reduction in RMSE is only 10 per cent for the lynx data, though 18 per cent 
for the riverflow data. Would the authors give us similar comparisons for the other two 
examples? Would the improvement be more substantial if predictions were compared for more 
than one step ahead? The extra complexity of fitting TAR models can, ofcourse, only be justified 
by a substantial reduction in RMSE and/or by additional insight into the process mechanism. 

Despite my queries and suggestions for future research, which are inevitable in any good 
read paper, I would like to conclude by saying how much I have enjoyed today's paper, and I 
have great pleasure in proposing the vote of thanks. 

Dr G. TUNNICLIFFE (University of Lancaster): This paper strikes a welcome balance WILSON 
between theory and applications, but I confess to being more impressed by the latter. Following 
a tradition of empirical modelling, the authors have recognized features in the data which are 
not explained by linear models and have sought model extensions that are successful in 
representing these features. 

Fundamentally, they use different linear models for different parts of the data, and I admire 
their ingenuity in demonstrating by simulation examples that TARS have sufficient potential for 
their task. The success so far demonstrated in practical applications suggests strongly that these 
models "approximate to the truth". Perhaps this success needs explaining as much from a data- 
analytic viewpoint as by investigating the theoretical properties of the models. For example in 
linear modelling a stable autoregression is ensured by almost all fitting processes. Is there a 
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similar law to ensure the stability and cyclical properties of fitted TARS? I would like to know 
more about the failures which the authors have decently buried. 

My main concern upon reading the theoretical part of the paper, was that according to their 
own arguments the authors should have used thresholds in all the predicting variables of their 
autoregressions. How, therefore, have they managed to achieve success using a threshold in one 
variable only? Most of the applications are to series with strong cycles so the predicting 
variables do not wander over the whole of their possible range, but are effectively confined to a 
closed orbit in this space. The choice of a single threshold in one lagged variable is effectively a 
means of defining the two parts of this orbit, or equivalently of the cycle, over which different 
linear predictors may most profitably be constructed. I would suggest that if more thresholds 
were used. then the choice of threshold variable would not be so critical. but the direction in 
which a threshold was crossed would become important. 

I would expect worthwhile improvements to follow from attempts to better define the state 
of the system producing the cycle. A second order system is likely, so that a "level" and "slope" 
measurement should adequately represent the state. I believe that classical time series 
operations such as smoothing to remove noise, and filtering to correct for trends and low 
frequency modulating effects could be useful in extracting these measurements. This approach 
recognises that stochastic effects may enter in many different ways, and whilst in linear models 
all the components may be gathered into one ARIMA model with no loss of information, for non 
linear models it may be best to decompose the series so as to extract the basic cycle. This cycle 
should be predictable using a non-linear function of the two state variables only-possibly 
linearized at different points of the cycle. Forecasts of the original series could then be 
resynthesized from the components. 

With their emphasis on producing a simple prediction formula, TARS may be failing to 
exploit the evident structure of many cyclical series. 

The models which have been presented to us this evening may have to be refined in many 
ways, but a good start to empirical non-linear modelling has been made and the authors should 
be congratulated for their perseverance with TARS. I have much pleasure in seconding the vote of 
thanks. 

The vote of thanks was passed by acclamation. 

Dr R. J. BHANSALI (Department of Computational and Statistical Science, University of 
Liverpool): I would like to extend my congratulations to the authors on an interesting paper. 
Although considerable work on the development of the sampling properties of the identification 
methods proposed in Section 8 still needs to be done, the threshold autoregressive models 
appear to offer novel possibilities for the modelling of practical time series. 

Apart from the applications to biological and other physical time series discussed in the 
paper, I might mention commodity price series as a possible class of Economic time series where 
applications of these models may be useful, in particular for describing the Cob-web 
phenomena-that is, cycles arising because of the interaction between price and production of 
agricultural commodities. The inadequacy of the Random Walk hypothesis (Labys and 
Granger, 1970) for the modelling of monthly Cocoa price series, 1949-73, is discussed by 
Beenstock and Bhansali (l980), who have suggested that within the class of linear autoregressive 
models, a second-order model provides a better fit to the changes of Cocoa prices. However, 
over the forecasting period of July 1974-July 1977, the second-order model provides only a 
modest improvement in the predictions of the future cocoa prices. The need for fitting a non- 
linear model is indicated by an examination of the residuals obtained after fitting the second 
order model. These are found not to be approximated by the Normal distribution, though the 
Laplace distribution provides a better fit. 

I was also interested to note the authors' rather pragmatic attitude towards the usefulness of 
Akaike's information criterion for the identification of time series models. This pragmatic 
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attitude appears to be in marked contrast to the almost religious attitude adopted earlier by Dr 
Tong in his analysis of the lynx data. 

Dr M. G. BULMER(Oxford University): I should like to comment on the biological 
interpretation of the lynx and mink-muskrat data discussed in Section 9. The authors suggest 
that the lynx cycle is driven by a predator-prey interaction between the lynx and the snowshoe 
hare. There is good biological evidence that this is not the case. The hare cycle almost certainly 
drives the lynx cycle, but direct assessment of the impact of lynx predation on hare populations 
shows that it is too weak to be capable of causing the hare cycle. It has been suggested that the 
hare cycle is due to a plant-herbivore interaction (the hare being the predator and its plant food 
the prey). This situation might have been inferred from the periodogram of the lynx, which 
should be symmetrical about its peak value (which it is not) if the lynx-hare interaction drives 
the cycle, whereas it will exhibit a red shift (as observed) if the hare drives the lynx (Bulmer, 1978). 

For the mink-muskrat data the authors fit a model which has a limit cycle of period 5 years. 
All previous authors have agreed that both mink and muskrat have a periodicity of about 9f 
years, the same as the lynx. A possible (though rather speculative) explanation is based on the 
facts that horned owls eat both hares and mink, and that mink eat muskrat. Thus the hare cycle 
drives an owl cycle, which drives a mink cycle, which drives a muskrat cycle. The observed phase 
lags are consistent with this explanation, mink being in phase with hares and muskrat two years 
earlier. 

In conclusion, I must admit that I am rather doubtful of the gain in understanding which is 
likely to result from fitting the type of model developed in this paper. I would give higher priority 
to the fourth of the five requirements proposed in the Introduction. 

Dr E. KHABIE-ZEITOUNE(NO~~~ East London Polytechnic): It is my pleasure to congratulate 
the authors for a most stimulating paper. The non-stationary threshold models raise some 
challenging problems. 

I would like to put forward the thesis that the juggling with the AIC criterion in this paper 
might one day be thought of as a preliminary identification/estimation method, only paving the 
way towards a fully fledged maximum likelihood estimation, applicable to a class of, say, non- 
linear SETARMA models. 

The authors mention that the Levinson-Durbin procedure is not available for non-
Toeplitzian block covariance matrices. Perhaps I should state here that this procedure has been 
generalized to deal with the inversion of "Toeplitzian" and "non-Toeplitzian" block covariance 
matrix r under mild conditions, with the computation of "generalized partial autocorrelations" 
(unpublished paper). This generalization leads to some very interesting results: If {X,,,...,X,"}is a 
set of random p-vectors with covariance matrix r = (y,, j), y,, being the covariance matrix of 
(X,, X,,), then one can compute p2-matrixcoefficients a,, ,= a,, ,({y,, j } ) ,  dependent on yi,j's, such 
that the set of random vectors Y ,, ...,Y,, defined by 

is uncorrelated, and such that 

with 

A computationally feasible methodology for exact maximum constrained likelihood 
estimation of model parameters can now be put forward for a number ~f models of stochastic 
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processes, both stationary or otherwise, in a unified approach. This methodology, which can be 
embedded into a computer program, requires small memory storage. It isolates correlational 
properties from model properties: given a model with parameters to be estimated, compute 
autocovariances of, and their first- and second-order derivatives with respect to, model 
parameters; then compute "partial autocovariances", then aLj's and hence Yj's from (1); further, 
under some probability density assumption f(y) for Yj's (an additional assumption of 
independence might be made here, not needed in the Gaussian case) compute the "exact" 
likelihood of, and derivatives with respect to, model parameters; finally maximize locally using 
constrained non-linear optimization or Newton-Raphson routines (the necessary 
Kuhn-Tucker conditions may be written down). 

The above method may be successfully applied to the following models: 
(i) Stationary time series 

ARMA (no problem for starting values of autocovariances recursions); 
Random phase (nonlinear: X, = Acos (ot  +8) )  

DARMA of Jacobs and Lewis; 
RARMA (unpublished; oARMA with random orders and coefficients, all coefficients 

independent apart from AR ones which can be dependent, similarly MA coefficients). 
(ii) Non-stationary processes 

ARMA/RARMA (problems there: more unknown parameters than data values); 
Processes with independent increments; 
SETARMA ? ? ? 

The method will be illustrated by reference to a SETAR(~) model, the problem being that of 
the computation of the autocovariances from the model parameters. 

Consider the following threshold model: X, = U, Xt-I  +E,, E(X,) = 0, E, being white 
noise, with the random variable 

I{.} being the indicator function of the event {.}. This model can be written 

If Prob (Xt-, E R,) is independent of t ,  then the difficulty I am going to mention will not arise. 
However, when it cannot be assumed that Prob (X,-, E R,) is constant with respect to t, then 
after some algebraic manipulation, one can show that 

where 
( 1 )  model 4,Y ~ , , + ~ - ~= ~ ~ ~ C ( X , , X ~ + ~ - ~ ) l u n d e r  

and 

nil) = Prob (1 {X, -,E R,) = 1) = Prob (l{X;id1 a, -,, ,Y ,E R,) = 1). 

If one assumes further that Yl, ..., Y, are independent, then 

xi" = J..If (Y1) ...f(Y.1 dY1 ...dyn 

{c;Zdl at-,,, Y,E Rl} 

This results in a high order non-linear system of equations (3) to be solved in order to obtain I'. 



19801 Discussion of the Paper by Dr Tong and Ms Lim 273 

If each of the 1A R ( ~ )models, 1 = 1,..., L is stationary, then yjf',+,-, =yl ' i ,  can be computed 
without difficulty. Further, under the Gaussian assumption, X, is then strictly stationary and 
hence nil) = n,, independent oft. System (3) then shows that the y,,,,, =yk does not depend on t, 
and hence the SETAR(~)  process is stationary. Moreover, the exact likelihood can be computed 
without difficulty. Now the likelihood maximisation will assign the same values to the 
parameters n(l), even if one considers another partition R; u ... u Ri, such that 
Prob (X,-, ER)= Prob (X,-, E R;). 1 = 1,...,L Hence no information on the choice of the 
partition is provided there by likelihood. The AIC criterion is irrelevant as both partitions have 
the same number of parameters. In this respect, the authors' split of the data into subsets, though 
heuristic, is invaluable for identifying the preferred partition. The generalization of these ideas 
will be presented elsewhere. 

I have difficulty in interpreting the event {the observation xt - ,  ER,). If it means that 
X, -,E Rl conditional upon information I,-,available prior to (t -d), and also information from 
( t -d + 1) to (t - I), then nil) depends on t and the difficulty remains. 

Professor M. B. PRIESTLEY(University of Manchester Institute of Science and Technology): 
Tonight's paper is one of a group which have appeared recently on non-linear time series 
models, and which I feel represent a significant advance in the methology of time series. We now 
have several classes of "tractable" non-linear models (e.g. bilinear, threshold autoregressive and 
exponential autoregressive) which have been shown to be capable of providing good fits to a 
wide variety of data, and which possess more interesting structural properties than the 
conventional linear models. The basic idea underlying the TAR models is that, when we abandon 
linear models, we should look first at models which are "locally" linear. However, in this context 
the term "local" does not refer to a neighbourhood of a particular time point-rather, it refers to a 
particular region of the "state space" of the process. (The former notion is related to "non- 
stationarity", rather than "non-linearity", and there is an interesting form of duality between 
these two concepts') For the AR (k) process, 

X,+al  X,-, +...+akX,-, = Et' 
the evolution of the process is determined by (X, -,,X, -,...,X, -,) (together with the future E,'s), 
these k quantities acting as "initial conditions" in determining the solution of the above 
difference equation from time t onwards. Consequently, the "state" of the process at time t is 
represented by the k-dimensional vector, x,T = (X,, X,- ,,...,X,-,+ ,), and the most general form 
of locally linear A R ( ~ )  model would be one in which the coefficients were all functions of x,- ,,i.e. 
would take the form 

We may refer to this as a general "state-dependent model''. Although this type of model can be 
put into the form of the authors' equation (5.4), their "piecewise linearization" approach would 
involve the partition of the k-dimensional space, Rk, into a multitude of "small" regions in each 
of which the coefficients (a,, ..., 4)were assumed to take constant values. Such an approach 
would be quite horrendous from a computational point of view, and the authors' way round this 
difficulty is to assume that the coefficients depend on only one component of x,- ,,namely X,-, (d 
being some specified integer, 1 6d 6k). 

There is, however, an alternative way of dealing with general state-dependent models, which 
I will now indicate very briefly. The simplest form of functional dependence of the coefficients on 
the state-vector is that in which each ai is a linear function of x,- ,,i.e. 

ai(x,- ,) = ajO)+xT- ,pi, say. 

This assumption is quite restrictive, but we may relax it by allowing the "gradients", pi, to be 
themselves state-dependent, so that the (a,) are then only locally linear functions of x,- ,. If we do 
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this we are then faced with the problem of specifying the functional form of the (fl,), but we can 
obviate this difficulty by simply letting the Pi "wander" over time, i.e. we allow fl, = fly)to depend 
purely on the time parameter. The basic idea now is to let the (fly)) wander in the form of a 
random walk, i.e. to set fly) = fly-')+v, where the (v,) are independent zero mean random 
variables with variance matrix, &, say. The estimation procedure then determines, for each t, 
those values of (fly)) which, roughly speaking, minimise the discrepancy between Xt+ ,and its 
predictor, Wt+,, computed from the model. The estimation procedure is thus based on a 
sequential type of algorithm, similar in nature to the Kalmanjlter algorithm, and it leads to 
coefficients (a,) which are "locally optimal" in the sense that they provide the best "local 
predictor" for the next observation. (The "smoothness" of the (a,) as functions of xt-, is 
controlled by the ratio of 1 1  l& 1 1  to a:.) Once we have determined suitable values of the (a,) over a 
range of time points we can plot these as functions of the corresponding state vectors, and then, 
using some form of multidimensional smoothing (e.g. via "splines" or the "kernel" method), we 
can build up a graphical picture of the functional fofm of the (ai). Thus, for a TAR model the (a,) 
should appear as "ridges" of step-functions, depending only on one component of x,- ,. 

The general state-dependent model (*) includes, as special cases, the TAR and exponential 
autoregressive models, and, by adding moving average terms, it can also accommodate bilinear 
models (see Priestley, 1979). 

As far as threshold models are concerned, the authors have given a convincing demon- 
stration of their applicability to a wide range of data, and their modelling fitting expertise is 
certainly most impressive. As the authors show, these models can give rise to some fascinating 
features (such as limit cycles and jump phenomena), and they will, I am sure, stimulate much 
interest in this new and rapidly growing area of time series analysis. 

Dr B. W. SILVERMAN(University of Bath): It would be interesting to know whether any 
connections can be made between the threshold models discussed tonight and the ideas of 
catastrophe theory, which might well give rise to models with piecewise behaviour of the kind 
described. Certainly the electric relay can be viewed in these terms. Models based on 
catastrophe theory would be attractive from the point of view of the authors' criteria (iv) and (v), 
while any relations with the authors' methodology would help with the fitting of catastrophe- 
theoretic ideas to real data. 

Mr E. J. GODOLPHIN(Royal Holloway College): I would like to join the other discussants in 
congratulating the authors on an interesting and thought-provoking paper. 

I have two questions to ask the authors, the first of which is about the Rjs defined in Section 
4, which seem to be best regarded either as random variables or possibly as deterministic but 
unknown quantities to be derived from the available data. Am I right in thinking that these 
quantities are likely to be considerably more important to the specification of the model than 
even the various sets of autoregressive parameters themselves? If this is so, I wonder if the 
authors could say a little more about the properties of their threshold estimates beyond the 
comments made in Section 8? For example, in one of the authors' examples the number 4.6 
appears in equation (9.5); but how useful an estimate is that? 

Secondly, in Section 8 the authors also refer to the eventual forecast function which they 
adopt for specification purposes. Have the authors considered obtaining a functional form for 
the eventual forecast function for variable lead times? I am thinking, for example, about results 
which would parallel a paper of my own (Godolphin, 1975) which deals with the non-stationary 
linear case, including seasonal models. If it were possible to compare the different kinds of 
functional forms for these eventual forecast functions with those for the linear models, this might 
provide an interesting way of exploring the manner in which the authors have succeeded in 
generalizing the linear case. 
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Dr. D. A. JONES (Institute of Hydrology, Crowmarsh Gifford, Wallingford, Oxon 
OX10 8BB): Recently a number of wide classes of non-linear time-series models have been 
proposed: autoregressive models, a class of which are discussed by the authors, and bilinear 
models (Granger and Andersen, 1978; Granger, 1978; Priestley, 1978). An example of the use of a 
smooth non-linear autoregressive structure, as opposed to one which is sectionally linear, 
appears in O'Connell and Jones (1979). These developments make it appropriate to question 
whether time-series models are necessary. 

A "model" here means a complete probabilistic description of a series (apart from certain 
parameters). The answer will be different depending on the purpose of the data analysis. I am 
mainly thinking of problems where forecasts are to be constructed. Follow-up questions 
concern whether the model properties that are used in practice can be replaced by methods 
which are not model-dependent, and whether checks of the complete structure of models are 
actually available. A question which possibly encompasses these is whether linear models are 
actually used at present. It can be argued that relatively little use is made of linear models, as 
opposed to linear forecasts, on the basis that standard techniques involving ARMA structures are 
concerned essentially with forecasts rather than models. A question of a different character is 
whether discrete-time models are realistic. Should not all real processes be thought of as 
evolving continuously in time, even if at a rather basic level? 

Much of time-series analysis is directed towards constructing forecasts. In this situation a 
forecasting rule can be fitted directly, rather than fitting a model. A class of possible rules for 
estimating y, from y,- ,,y,-,, ... is first defined in terms of a number of parameters 8: let jt(8) be 
the value of the forecast of y, and let t(8) be used when y,- ,,y,-, are treated as random 
variables. Given observations (y,, ...,y,) on a random process, the rule is fitted as follows: 

(a) choose a loss function: squared-error loss is used here for convenience, 
(b) for any 8 define 

(c) find 8, such that sA6,),<ske) for all 8, 
(d) use j,(pT) to forecast y,, and s@,) as the estimated mean square error of the forecast. 

Under weak conditions on the forecast rule and the process { x ) ,  
lim sA0) = a(8) = E[{ - t(8))2]
T-) m 

and 8, +0°, where 4%') ,<a(%) for all 8. Thus the best rule out of the chosen class is found. Note 
that the forecast need not be a one-step-ahead forecast, and that no explicit model needs to be 
assumed. The above is just a fit via minimization of the sum of squares of forecast errors, as used 
in the authors' paper. 

The authors of this paper have shown that, for various data sets, certain non-linear forecasts 
are better than linear forecasts. It is a very large step to go from these forecasts to writing down a 
model in terms of impulses which are both independent and Gaussian, as seems to be implied in 
the paper. It is only too easy to interpret a fitted forecast it= ax: ,,say, as meaning that a 
model x, = EX:-, +E,  (E,-i.i.d. N(0,a2)) is being used, but this should always be avoided. A 
quadratic forecasting rule, as used by Cox (1977), is a perfectly valid choice, whereas the 
supposedly corresponding model would usually be rejected out of hand. 

Dr H. A K A I K E ( T ~ ~  Institute of Statistical Mathematics, Tokyo): Strictly speaking, every real 
system is non-linear and non-stationary. Thus, when Dr Tong and Ms Lim try to generalize 
their TAR model it inevitably leads to the blurring of the nature of their model. 

The authors note that the era of practical non-linear time series modelling is long overdue. 
Actually the modelling of each particular non-linearity was the key to our success in 
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implementing computer controls of cement rotary kilns and supercritical thermal power plants 
(Otomo, Nakagawa and Akaike, 1972; Nakamura and Akaike, 1979). Our experience with these 
systems suggest the importance of identifying a variable which characterizes the dynamics of a 
system. In Sugawara's tank model this variable is generated with the aid of an imaginary system 
of underground reservoirs. In these examples it was the analysis of the physical characteristic of 
each system that led to the choice of a particular "conditioning variable". 

The variable J ,  of TAR is an example of such a "conditioning variable", but since we are not 
told how practically to identify the variable we must resort to the examples. The examples of 
Canadian lynx and sunspot data show that the conditioning variables characterize the 
beginnings of the downward and upward paths of one cycle of oscillation. This observation 
clarifies why the model does not work well with the Mink-muskrat data, where the periodicity is 
not so clear. In the case of the Kanna riverflow data, again the input series is used to identify the 
upward and downward paths of the riverflow. 

If these simple observations can capture the essence of these examples, what is the use of the 
elaborate generalization of TAR? 

Professor D. R. COX (imperial College, London): The authors' account of non-linear models, 
and in particular threshold autoregressive models, is very valuable. It is interesting and 
important to see the kinds of qualitative behaviour that simple systems of this kind can produce. 
I am, however, extremely uneasy at the analysis of the data in Section 9. For instance, I can see 
that it is interesting to show that (9.1) has limit cycles, but are the authors claiming that fitting 14 
(or really more) parameters in this way to 114 observations tells us anything about what is 
"really happening"? Is the mechanical use of AIC, or any other criterion, a good idea: perhaps 
there are much simpler models that give nearly as good a value of AIC? Once the need for an 
irreversible process is clear, the possibilities are so rich that in the absence of strong guidance 
from theory, graphical or other preliminary analysis to establish the approximate form of 
dependencies present seems very desirable. Finally, in terms of prediction, how does the authors' 
modelcompare with the much simpler, although explosive, model I reported in the discussion of 
Campbell and Walker (1977)? 

Professor K. W. HIPEL (University of Waterloo) and Professor A. I. MCLEOD (University of 
Western Ontario): We fully concur with Dr Tong and Ms Lim when they state that "The new era 
of practical non-linear time series modelling is, without doubt, long overdue." The authors 
should be commended for not only describing the theory for a new class of non-linear time series 
models but also for presenting procedures for model identification and efficient estimation of the 
model parameters. 

When modelling hydrologic time series that are measured at short periods of time such as 
hourly or daily time intervals, the fitted stochastic models must take into account unique non- 
linear properties of the data that are caused by complex physical processes. For example, when 
precipitation falls on a river basin this causes the flows at a given location in a river to increase 
while after the precipitation has ceased the flows return to their former levels. This 
ascension-recession behaviour of the hydrograph of flow versus time makes the modelling of 
daily and hourly flows an arduous task. Comprehensive appraisals regarding research in 
stochastic hydrology have stressed the need for flexibility in modelling this type of phenomenon 
(see, for example, Lawrance and Kottegoda (1977), Kibler and Hipel (1979) and Hipel and 
McLeod (1980)) and recently some new non-linear models have been examined. Some of these 
models include the non-linear autoregressive model of O'Connell and Jones (1979) which is 
based upon the theoretical work of Jones (1978), the model of Yakowitz (1973) which is similar 
to the model examined by O'Connell and Jones (1979), and also the non-parametric Markov 
model of Yakowitz (1979). In addition, the bilinear model described by Granger and Andersen 
(1978) and also Priestley (1978) may be useful in hydrology. It may be instructive to compare the 
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models in today's paper to some of the aforementioned models in order to judge which models 
would be most appropriate to use in practice. 

Some hydrologists are also concerned with the types of stochastic models that are employed 
to model data that are available at longer time periods such as weekly, monthly or yearly 
intervals. This is because the correlation structure for river flows that are relatively high may be 
different from the correlation pattern for low flows. Possible physical reasons for this behaviour 
include the manner in which the carrying capacity of the river channel varies, depending upon 
the level of the river, and the way in which different water table levels can affect the base flow of a 
river. The non-linear models of today's paper may prove to be effective for modelling 
phenomena of this type. Although short memory ARMA models have been shown to provide a 
statistical explanation for the Hurst phenomenon when modelling yearly geophysical time 
series (Hipel and McLeod, 1978), perhaps it may be worthwhile to determine if non-linear 
models provide a significant improvement over linear models when modelling annual data. 

When modelling annual sunspot numbers from 1700 to 1960, McLeod et al. (1977) found 
that after taking a square root transformation of the data, the most appropriate ARMA model to 
fit to the transformed series is a constrained A R ( ~ )  model with the autoregressive parameters 
from lags three to eight left out of the model. In (9.2) and (9.3), Dr Tong and Ms Lim present 
their piecewise linear autoregressive models for modelling specified portions of the sun- 
spot number series. Would a data transformation and perhaps omitting some of the less 
significant parameters from their models, help to lessen the values of the AIC? 

Professor MITUAKI HUZII (Tokyo Institute of Technology, Dept. of Information Sciences): 
This paper gives us new ideas and methods for modelling non-linear systems. I think it will be an 
interesting problem to investigate the statistical properties of the process defined by (4.1) or (4.2). 
The reason is as follows: 

(i) The likelihood function of the observations depends on the condition 
{XnTd€
Rj;j = 1,2,...,1). So, if we intend to examine the statistical properties of the 
maximum likelihood estimates of the unknown parameters, we have to know the 
properties of the process. 

(ii) When {Rj) or {yo, yI, ...,y,) are unknown, we have to give a method for estimating these 
values. For this, the statistical properties of the process will be needed. 

Dr I. T. JOLLIFFE (University of Kent at Canterbury): I have four questions on this 
interesting and useful paper. 

The first concerns forecasts for more than one step ahead. It is stressed in Section 8 that the 
eventual forecast function ( eq  is a plot of one-step-ahead predictions. However, with cyclical 
data it will often be required to forecast several time periods (at least one full cycle) into the 
future. How can such forecasts best be made? 

A related point is that in practice different cycles in the same series will often have very 
different amplitudes and different cycle lengths; the sunspot data supply a good exampre, since 
amplitudes vary widely and the average cycle length was shorter in the first half of this century 
than in earlier periods. Can such variability be captured or, even better, forecast using the 
authors' models? 

Thirdly, the authors' real data series are assumed to be stationary for all or part (sunspot 
data) of their length. Do the authors have any suggestions for dealing with non-stationary 
series? 

My final question concerns the impressive range of behaviour exhibited by the examples of 
the threshold models given in Tables 3-7. How difficult was it to construct these examples, and 
are there other types of behaviour for which the authors failed to find models within their class? 
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Mr T. OZAKI (The Institute of Statistical Mathematics, Tokyo): This paper is of particular 
interest to me as it is closely related with some of my own work. I have the following three 
comments: 

First, the set of threshold AR models is not general enough to include linear AR models, if (iii) 
of Definition 5.1 is assumed. If the proposed set of non-linear models and their identification 
method were appropriately defined we would expect to get a linear model for a linear process 
and a stable non-linear model for a stable non-linear process. My experience suggests that the 
linear threshold AR model often fails to satisfy this requirement (see Ozaki (1979a)). 

Secondly, although the authors stress the importance of limit cycles in non-linear time series 
modelling, they did not give clear explanation of its mechanism for the threshold AR models. 
Extensive discussions of the limit cycle of non-linear time series models are given in Ozaki 
(1980), Haggan and Ozaki (1979) and Ozaki (1979c), based on the van der Pol equation, where 
the "shift back to center" property, which makes the process stationary ergodic in the sense of 
Tweedie (1975), was realized by making the instantaneous characteristic roots of the model 
state-dependent. 

Thirdly, I would like to mention that the jump resonance and amplitude-frequency 
dependency, which are well known in relation to the DufJing equation, are also discussed 
extensively in Ozaki and Oda (1977), Haggan and Ozaki (1979) and Ozaki (1979b). If the 
authors would try to develop an analysis of the mechanism of the phenomena, these papers 
would be useful references. In these papers the "amplitude-dependent restoring property" of the 
Duffing equation is realized by the amplitude-dependence of the arguments of the instantaneous 
characteristic roots of the non-linear time series model. 

Professor P. M. ROBINSON (University of Surrey): The threshold models are an interesting 
and important class, particularly in view of the connections that Tong and Lim have established 
with the theory of non-linear vibrations. Once the decision is made to forgo the great simplicity 
of the linear model, however, one is confronted with an embarrassingly wide choice of non- 
linear ones, even though many have yet to come under close scrutiny. This has recently led me to 
investigate a nonparametric approach to non-linear time series analysis. Let the conditional 
distribution of X, given X,- ,,X,-,, ..., have expectation f (X,- ,), so that one has the general 
NLAR(~)(equation (5.1)). Instead of assuming a specific form for f (x) we could estimate f (x), for 
any given x, by 

The non-negative weight functions w,&) can depend on XI, ...,XN, and will generally give 
greatest weight to n-values for which X,-I is close to x; one possibility is w,&) = 1,
I x -X,- I d c; = 0, I x -X,- I >c. The estimator (1) can be shown to minimize a certain loss 
function; alternative loss functions will produce, for example, better robustness properties. Non- 
parametric regression estimators such as (1) have been considered previously, but in the case of 
independent, non-time series, observations; a recent reference is Stone (1977). Note that we 
could use the same type of approach to estimate other features of the distribution of X, 
conditional on X,- ,.Extension is also possible to the general N L A R ~ ) ,  forp > 1. Examination of 
the estimated f (x) could provide a test of linearity or suggest a class of non-linear model for 
subsequent parametric analysis. If Tong and Lim's threshold model is selected, the non- 
parametric estimate may be of some use in its identification and estimation. 

Dr T. SUBBA RAO (University of Manchester Institute of Science and Technology): he class 
of threshold autoregressive models proposed by the authors is definitely very useful, but 
sometimes other types ofnon-linear models fitted to the real time series may lead to models with 
fewer parameters. One class of such models-bilinear time series models-has recently been 
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extensively studied by Granger and Andersen (1978) and Subba Rao (1979). The advantage of 
this model is that it is possible to obtain theoretical expressions for the moments, spectra, etc., 
whereas such things are not always possible in quite a number of non-linear models. Using the 
estimation methods described by Subba Rao (1979), bilinear models are fitted by Mr M. M. 
Gabr and myself to sunspot data and the Canadian lynx data (the details of which will be 
reported elsewhere). 

Sunspot duta 
The first 246 observations are used for fitting, and the fitted model is 

The mean sum of squares of residuals is 141.18 and the AIC value is 11862. 
The one-step-ahead predicted values from the bilinear model together with the true values 

are given in Table Dl .  

True values 92.6 151.6 136.3 134.7 83.9 69.4 31.5 13.9 4.4 38.0 

Predicted values 77.9 130.0 149.8 119.8 86.2 51.4 38.9 18.8 3.3 25.7 


Since the authors have not actually tabulated their predicted values, it is not possible to 
compare the performance. 

Cunadian lynx duta 
We now consider the Canadian lynx data, discussed by the authors in Section 9. The data is 

logarithmically transformed. The bilinear model is fitted to the first hundred observations, and 
the fitted model is 

Xi-0.8845X,- +0.1699X,-2 +0.1271X,-4-05514X,- ,, +0.5280X,-11 
= 1~117-0~1653X,~8e,~lo-00970X,~5e,~8+0~0922X,~le,~l+e,. 

This model has nine parameters and the mean sum of squares ofresiduals is 0.0329 and the AIC is 
-283.577 which are considerably less than the values obtained by the authors. The one-step- 
ahead predictors for the next fourteen observations together with the true values are given in 
Table D2. 

True values 2.360 2.601 3.054 3.386 3.553 2.468 3.187 

Predicted values 2.442 2.756 2.897 3.135 3.411 3.512 2.922 


True values 2.723 2.686 2.821 3.000 3.201 3.424 3.531 

Predicted values 2.706 2.583 2.844 2.966 3.159 3.299 3.415 


Since the models we are fitting are non-linear models, it is interesting to fit the models to the 
original data rather than the transformed data. It is known that the predictors obtained for the 
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original data from the transformed data are highly biased. Now the question is why the authors 
did not consider fitting the threshold model to the original Canadian lynx data. The bilinear 
model fitted to the first 100 observations for the original Canadian lynx data is 

x,-0.941Xt- +0.455X,-2 +o~lo2X,-5 -o.238Xt-9 
= 612.68 -0.00256Xt-8 e,- ,,-0.000375Xt-, e,-, 

+0.000164X,-2et-5+0~000142X,-7e,-2
+0.000049Xt- e,-,+e,. 

The mean sum of squares of residuals is 439075.2 and AIC = 1189.3. 
The one-step-ahead predictors, together with their true values, are given in Table D3. Except 

for two values, the predictors are reasonably good. 

t 101 102 103 104 105 106 107 

True values 229.0 399.0 1132.0 2432.0 3574.0 2945.0 1537.0 
Predicted values 127.0 953.9 1147.2 2295.1 2931.4 2775.2 1653.3 

True values 529.0 485.0 662.0 1000.0 1590.0 2657.0 3396.0 
Predicted values 561.8 391.6 620.3 775.4 14749 2187.2 3252.5 

It may be pointed out here that the test proposed by Subba Rao and Gabr (1981) has shown 
that the log (Canadian lynx data) is linear although it is not Gaussian. 

An alternative non-linear model which may be useful for representing "cyclical data" is 

where u, 8 and p are constants, 4 is a uniform random variable and {X(t)) is a strictly stationary 
process. (4 and {X(t)) are independent.) This model is used for representing frequency 
modulated signals. If {X(t)) is Gaussian with correlation coefficient y(t), then it can be shown 
(Hannan, 1970, p. 85) that the auto-covariance function of Y(t) is 

E{ Y(t) Y(t +s)) = +a2 e-82{1 -y(s)l cos(0s) 

which shows that the covariance function is a harmonic function with decreasing amplitude as 
the lag s increases. The sample autocovariance functions of both the sunspot data and the 
Canadian lynx data are harmonic functions with decreasing amplitudes suggesting that the 
above model may also be very appropriate. The statistical analysis of this model is under 
investigation. 

The AUTHORS replied later, in writing, as follows. 
Dr Silverman's suggestion is most exciting, although we did speculate upon some 

"catastrophic" connection in the original version of the paper! A fuller exploration of the TAR-
modelling/catastrophe relation is now available in Tong (1980b) and here we give only a brief 
indication as follows. The most famous catastrophe is the so-called cusp-catastrophe, which is 
characterized by the five qualitative features of bimodality, inaccessibility, hysteresis (limit cycle), 
sudden jumps and divergence. (See, for example, Zeeman, 1977.) It seems that the lynx data 
exhibit these features (Tong, 1980b) and that our SETAR model is really an execution of the 
cusp-catastrophic paradigm. (See Fig. Dl.) Table D5 shows that the fitted SETAR(~; 8, 3) model 
of (9.1) has captured some of the probabilistic structure of the lynx data (cf. Table D4). The 
bimodality of some of the fitted conditional distributions is particularly interesting. The "crater" 
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FIG.Dl. Catastrophe paradigm for S E T A R ( ~ ;1, 1). 

shape of the fitted bivariate distribution is certainly related to the concept of perturbed limit 
cycles. We have found simulation exercises with decreasing noise variance quite instructive. Not 
only would the connection with catastraphe theory elevate TAR modelling above the ad hoc 
status, it could also suggest ways of refining our models. In fact, for the lynx data, different 
threshold values may be used depending on whether the data are going up or down. This idea is 
also related to Dr Tunnicliffe-Wilson's suggestion of incorporating a "slope" in TAR modelling. 
As a result of some preliminary investigation, the following more refined S E T A ~is fitted to the 
first 100 lynx observations (logarithmically transformed): 

' 0.5382 +1.0602Xn- -0.2547Xn-2 +O.1598Xn- -0.3626X,-4 
+0~2100X,- -0~2201X,-6 +0.2753Xn-, -0.O264Xn-, +EL') 

if {Xn-, -X,-,>O and X,-,63.4} 
or {X,-,-X,-,GO and X,-,<3.3), ('41) 

0.6354+ 1.6359Xn- ,-1.1985Xn-, +0.3032Xn-, +EL') 
if {Xn-, -X,-,>O and X,-,>3.4) 

\ 0 r { X , ~ , - X , ~ , 6 O a n d X , ~ , > 3 ~ 3 } ,  

where var EL" = 0.0322, var EL') = 0.0537. (The pooled mean sum of squares of re-
siduals = 0.0383.) This new model seems to give encouraging results when compared with the 
SETAR model reported in Tong (1980a). More details about this refined SETAR class will be 
reported by Lim and Tong elsewhere. The catastrophe paradigm has highlighted the 
significance of the piecewise aspect of our approach and relegated the actual choice of the class of 
submodels to a secondary position. Thus, as we have indicated in Tong (1980a), threshold 
polynomial AR models, threshold bilinear models and threshold exponential AR models, etc. are 
all ripe for exploitation. A connection between TAR modelling and catastrophe theory implies 
a connection between TAR models and non-linear vibrations, because the latter are often 
most elegantly explained in the language of catastrophe theory. Viewed in this light, our 
demonstrations in Section 6 are really quite trivial and natural, although we are indeed most 
delighted with the generally favourable reception of them. Mr Ozaki's approach to random 
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vibrations is different from ours. Firstly, in his references the notion of a limit cycle in discrete 
time has never been defined, all his discussion being confined to the classical (deterministic) 
continuous time case, typified by references to the Van der Pol equation. We must confess that 
our earlier discussion of limit cycles in terms of a predator-prey system (e.g. Tong, 1978) suffered 
from a similar defect. In Tong and Pemberton (1980), we have drawn attention to the possible 
pitfalls of this approach. We are also not clear in what way the so-called "instantaneous 
characteristic roots" of a non-linear AR model are relevant to the development of TAR models. 
Specifically, the following exponential AR (k) EX PAR(^)) model has been proposed: 

k 

Xn = Xaj(Xn-l)Xn-j+~n, ('42)
j= 1 

where E ,  is the usual white noise with variance a2 and 

aj(x) = +j +nj e-yX2 . ( y 20). (A3) 

Now, the so-called "instantaneous characteristic roots" of (A2) are just another way of looking 
at the "frequencies" of the spectral peaks of the "instantaneous spectraldensity function" for X, 

f,(w) = a2/[2n(1 -Caj(Xn-l)e-iiW(2]. (A4)
j 

nese  "jirequencies" are functions of the "amplitude" Xi-, (a random variable). Whilst we 
sympathize with the use of this kind ofphysical consideration to deliver a new class of non-linear 
time series models, we prefer not to treat these "frequencies" as the most dominant physical 
notion. For, if (A2) defines a stationary ergodic stochastic process, it has a unique spectrum and 
therefore unique peak frequencies (or a unique proper frequency when k = 2) for all n. Then, what 
are the amplitude-dependent frequencies? Incidentally, Atkinson and Caughey (1968a, b) have 
discussed continuous time first-order SETAR with emphasis on the spectrum. We would also 
prefer retaining our original terminology of SETAR to Mr Ozaki's own preference of "linear 
threshold AR". 

Dr Tunnicliffe-Wilson and Mr Ozaki have raised the important question of stability. In fact, 
there are at least two types of stability, one systematic with the innovation absent and the other 
stochastic with the innovation present. Let us consider the former case now. In the linear case, 
local stability implies global stability. More specifically, if a linear model is stable over the 
dynamical range, say S, of the observations, then its extrapolation beyond S would not cause 
any problem. However, in the non-linear case, this is not and indeed cannot be expected to be so. 
There is simply no information contained in the data about the (non-linear) behaviour beyond 
S. Engineers have long recognized this point and the famous saturation system is a fine example. 
Our Definition 5.1 and Theorem 5.1 is a modest attempt to formalize this recognition for our 
purpose of model building and is useful not only for TAR models but also for EXPAR, bilinear (BL) 

and polynomial AR (PAR) models, etc. Naturally, the final product is necessarily a threshold 
model and whether it is a good model or not is a different matter. Using this artifact, we can also 
avo<d what seems to us a rather unnatural distinction between a model based forecast and a 
non-model based forecast discussed by Dr Jones. For, the parameters involved in his forecast 
rule inevitably define a model (albeit not necessarily unique) whether we like it or not. Professor 
Cox's lynx model can be thus stabilized. Ofcourse, if a model is already globally stable then there 
is no need for invoking the stabilization. Thus, Mr Ozaki has really missed the point here. We 
are also puzzled by the second part of his first comment because the sole SETAR model quoted in 
Ozaki's research memo (1979a) is at variance with the original SETAR model fitted by us, which is 
now in print (Tong, 1980a). Incidentally, we would just mention that the EXPAR model for the 
lynx data reported in Haggan and Ozaki (1980b, p. 67) appears to be explosive in our simulation 
studies when the innovation is present. The fact that some of the "characteristic roots" of the 
purely &operator are virtually on the unit circle might account for this stochastic instability. 
(Coefficients are correct to two decimal places as reported in their paper). Yet, our stabilization 
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could still have come to its rescue. It might be wise to re-examine the appropriateness offitting a 
symmetric process, such as EXPAR (a fact which he has correctly recognized), to asymmetric data 
such as the lynx. 

Many discussants have commented on our identification and fitting of SETAR models. The 
general view seems to be favourable with the significant exception of Professor Cox. It is a little 
amusing to see that he finds our use of AIC mechanical while. at the other extreme. Dr Bhansali 

u 


has gone almost. as far as labelling one of us a heretic! perhaps Professor Cox's cbncern about 
the number of parameters might be alleviated if some of the intermediate terms are suppressed 
as in subset AR models. (See, for example, Tong, 1977a.) It is gratifying to note that all the three 
classes of non-linear time series models mentioned in Professor Priestley's contribution have 
relied on AIC for their practical identification. Of course, this does not imply that AIC is the only 
tool for this job. In fact, we would concur with Professor Cox and Dr Tunnicliffe-Wilson on the 
importance of graphical analysis and other classical time series operations. We do have some 
exierience in the  use of univariate and bivariate histograms. simulation studies. scatter w 

diagrams and sample regression functions etc. as aids for our model identification and detecting 
non-linearity, some of which have been indicated in Tong (1980b) and more details will be 
reported by Lim and Tong elsewhere. We would even argue that, since a non-linear time series 
model is a transformation of the probability distributions of the (unobservable) input white 
noise process to those of the (observable) output process, it is not so much the residual sum of 
squares (RSS) or the number of parameters (p),but rather the general shape of the distributions 
(univariate, bivariate, trivariate, etc.) which is of paramount importance. In practice, we would 
caution against attaching too much significance to RSS and p as means of comparing different 
classes of models because of the almost inevitably different optimization algorithms and the 
often different number of effective observations. After all, the most important purpose of fitting a 
non-linear model is to gain a better understanding of the probabilistic structure underlying the 
data. At this point, we should appreciate the greater insight gained from moving away from 
linear Gaussian models. We are also interested in Dr Khabie-Zeitoune's suggestion of the 
feasibility of performing exact maximum likelihood computation using small memory storage. 

Whilst Professor Priestley seems to be striving for greater flexibility, Dr Akaike seems to be 
urging us to go in quite a different direction. Rather than blurring the essential feature of our 
model, we feel that the introduction of the indicator variable J ,  is similar to the facility provided 
by a modern vari-focal lens in photography (from where?) which enables us to focus on the more 
interesting aspects of reality. We should have made it clearer that the definition of J ,  need not 
always be restricted to the few specific suggestions we have given. It can be much more general. 
Catastrophe consideration has suggested model (Al). The threshold model of neuron firing (see, 
for example, Brillinger and Segundo, 1979) suggests a J ,  dependent on C$'=I aj X n P jfor some p 
and some ais. In a private communication, Dr G. Gudmundsson has suggested a particularly 
interesting case for hydrological application in which the precipitation is alternately in the form 
of rain and snow. Professors Hipel and McLeod have also given us valuable suggestions for 
hydrological applications. The several engineering references quoted in our paper suggest a J ,  
which follows a Markov chain. In economic applications, Chien and Chan (1979) and Dr 
Bhansali's discussion might also lead to some useful suggestions. Professor Priestley's striving 
for greater flexibility is undoubtedly interesting and we look forward to seeing some real 
applications. We suspect that Professor Robinson's non-parametric regression is not unrelated 
to one aspect of Professor Priestley's approach. This type of exercise is more appealing to us 
than Dr Chatfield's suggestion of comparing the different forecasts, because we know only too 
well the kind of tangle the latter might lead to even in the linear case. However, to satisfy Dr 
Chatfield's expressed wish (and no doubt that of many others) we give Tables D6, D7 and D8, 
although we must caution against any general inference from them. For the purpose of 
discrimination, we think that it is also important to know more about the different types of 
distributions to which the different classes of non-linear models can give rise. Dr Jones' work 
(1978) would be very valuable here. A Ph.D. student at UMIST, Mr J. Pemberton, has obtained 
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some results in this respect. Partly as an answer to Dr Chatfield's first question we would suggest 
that qualitative analyses such as bimodality, skewness, etc., are vital for deciding whether a 
linear Gaussian model is adequate or not. Incidentally, Rosenblatt (1979) might be relevant for 
Professor Robinson's examination of the estimated non-parametric regression as a test of 
linearity. 

Dr Bhansali, Mr Godolphin and Professor Huzii are right in suggesting the need for a more 
thorough study of the sampling properties of the parameter estimates. We will report some 
results elsewhere. There can be no definite answer to Mr Godolphin's first question. For the lynx 
data the answer is affirmative and for the Kanna data the answer is negative. The number 4.6 in 
equation (9.5) merely indicates the state of very low rainfall. As for his second question, which is 
related to ones raised by Dr Chatfield and Dr Jolliffe, our answer is no, but we are currently 

(1) See Tong (1980a, p. 54). 
(2) See Tong (1977, p. 466). 
(3) See Tong (1977, p. 468) for reference of P. A. P. Moran's A R ( ~ )with fitting period 

1821-1934. 
(4) See Tong (1977, p. 454, under item Dr T. Subba Rao). Fitting period is 1821-1934. 
(5), (6) and (7). See M. J. Campbell and A. M. Walker (1977, especially equations (4.13) and 

(4.19) and p. 462). See also Tong (1980a). Fitting periods are all 1821-1934. 
(8) See Dr T. Subba Rao's contribution to the discussion of this paper. 
(9) See Tong (1977, p. 453, under item Professor D. R. Cox) with regression coefficients 

0.345173, 1.09941 1, 0.120404, 0.1 16176, -0.383841 obtained by us. 
(10) See unpublished M.Sc. dissertation by Mr M. C. Wong (1980), University of Manchester, 

who gave the following parameter estimates: 

fii 0.140 -0.601 0.293 0151 -0-0691 
exp {-2.45X,2-i) is associated with fi, i = 1,2,...,10. His fitting period is 1821-1924 and 
he has followed Haggan and Ozaki (1980b) for notation. 

(11) See above dissertation. He has followed Ozaki (1979a) for notation. T = 1.02. 

i I  I 2 3 4 5 

fii / -0.130 0.556 -0.301 -0.176 0.050 

(12) See equation (Al) of our reply. 
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working on his suggestion. Many-step-ahead predictions are non-trivial for the non-linear case. 
Whether a 10 per cent reduction in RMSE is considered substantial in the case of one-step-ahead 
predictions should presumably depend on the relative inadequacy of the linear models and the 
relative importance of the forecasts. 

TABLE D7 

One-step-ahead predictions of sunspot numbers (jtting period 1770-1869) 


Predicted values 

(1) (2) (3)
Year Real data AR (2) BL SETAR 

1870 139.0 92,664 94,240 95.308 
1871 111.2 158.681 157.054 133.366 
1872 101.6 71.551 109.128 79.982 
1873 66.2 78.193 76.328 82.609 
1874 44.7 34.765 39.099 44.418 
1875 17.0 30.005 33.503 32.384 
1876 11.3 6.249 7.262 6.884 
1877 12.4 18.376 20.562 9.377 
1878 3.4 24.1 10 23.818 31.721 
1879 6.0 10.48 1 3.589 1.922 

1880 32.3 20.765 20.968 18.998 
1881 54.1 56.342 59.799 62.342 
1882 59.7 68.466 69462 61.432 
1883 64.7 60.079 57.866 46.870 
1884 63.5 61.832 63.699 53.870 
1885 52.2 58.623 58.976 52.468 
1886 25.4 42.667 41.630 39.907 
1887 13.1 12.737 6.936 13.756 
1888 6.8 14.800 17.236 8.754 
1889 6.3 14.814 13.282 23.483 

Var 1385.2 1541.5 2107.5 1275.4 
MSE for 20 poin predictions 3466 293.4 267.6 
MSE for 10 point redictions 622.6 507.5 422.1 

Kev to Table 0 7  
(1) .x, = 14.70+1.425Xn-, -0.731Xn-, +en, var E, = 228. See Granger and Andersen(1978, p. 

86). 
(2) X ,  = 14.70+ 1-425X,-, -0.731Xn-, +E,, where E, = -0~0222&,-, q,-, +0.20&,-, +qn, 

varq, = 197. See Granger and Andersen (1978, p. 86). 

(3) 5.2659+1.889YXn-,-1.5289Xn-, +o.3039xn-3 
+0.33Y7Xn-, +EL') if X, -,<36.6, 

0.3900+1.1366Xn- -O.3645Xn-, +O.0524Xn- +E(,Z) 

if X, -,>36.6, 


where var E',') = 154.88, var E',') = 94.00 (pooled variance = 121.73). 

As for computation time, we can snly blame ourselves for giving such a detailed description 
of our identification procedure in Section 8, which has undoubtedly given Dr Chatfield the 
wrong impression. In fact, it has taken our CDC 7600 computer twelve seconds for the complete 
SETAR identification, as described in Section 8, of the lynx data. In a private communication, Dr 
Tunnicliffe-Wilson has indicated the feasibility of using GENSTAT for fitting TAR models which 
should make TAR modelling more readily available. 
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TABLE D8 

One-step-ahead predictions of sunspot numbers ( j t t ing  period from 1700 to 1920for model (1)and 

from 1700 to 1945for all others) 

Predicted values 

Year Data 
(1) 

SETAR 
(2)

~ ~ ( 3 , 4 )  
(3) 
BL 

(4) 
EXPAR TPAR 

(5) 

of 3 fairly representative cycles of different 
amplitudes. 

MSE* 148.205 1173 744 164 75 506,640 515 334 

(1) See equation (9.2) of this paper. Var X, = 1340.3 (c.f. 1168.9 of the observed.) 
(2) See Subba Rao (1979). VarX, = 1 x (c.t 1155.1 of the observed.) 
(3) See Dr T. Subba Rao's discussion of this paper. Var X, = 1059.2 (c.t 1155.1 of the observed.) 
(4) See note (10) of Table A3. P = 0.000168. 

0.789 -0.170 -0.053 0.166 -0034 -0.078 0.113 

f i  0.802 -0.402 -0.252 -0.120 -0.182 0.273 
(5) See note (11) of Table A3. = 96.1. 

6 1.717 -0.655 -0.318 0,010 -0.246 0.240 0.109 

fii -0.008 0.004 0.002 0001 0.002 -0.003 

* A linear AR (10) fitted to 1700-1945 has MSE = 482.0. 
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Finally, we come to the analysis of the real data in Section 9. Dr Bulmer has clarified some of 
the doubts we did have regarding the lynx-hare hypothesis. However, he has not stated what 
model he would use for the lynx. Plainly he cannot retain his AR plus harmonic component 
model. Our current view is that empirical evidence seems to support a cusp-catastrophe model 
in which the amount of food in the present year is the one control parameter and the population 
density of recent years the other. Our SETAR model may then be regarded as a statistical 
expression of this cusp-catastrophe model. (See our discussion in the first paragraph and for 
more details see Tong, 1980b.) Dr Subba Rao has fitted bilinear models to the lynx data, for both 
the log transformed data and the original data. Our simulation studies suggest that BL models 
give skew, unimodal bivariate distributions. (Gaussian white noise is assumed throughout.) It 
seems clear that it is the linear AR part of the BL models which "explains" the cyclicity of the 
data; the bilinear terms probably account for the skewness of the probability distributions. We 
conjecture that the non-existence of limit cycles of BL models (see, for example, Brockett, 1977) 
implies that a BL process has, under general conditions, unimodal joint distributions. Despite 
these remarks, it is noteworthy that Dr Subba Rao has apparently succeeded in making BL 
modelling a practical proposition. His subset BL models represent an important step in this 
direction because a full BL model usually consists of too many parameters for efficient 
computation. Now, regarding his point about transformation, besides making the usual 
Gaussian assumption of the white noise more plausible, a logarithmic transformation might 
also have some stabilising effect. (See, for example, Rosenblatt, 1971, p. 164.) In fact, our 
simulation studies suggest that his BL model for the original lynx data tends to have a rather wide 
dynamical range, with a substantial proportion on the negative side extending beyond -20 000. 
Our simulated sample of 10 000 data has a mean 1450 and a variance 1.4 x 10" which may be 
compared with observed values of 1528 and 2.662 x lo7 respectively. 

Dr Bulmer seems to have overlooked the fact that our analysis of the mink-muskrat data is 
for the period of 1767-1849 and a j r s t  differencing operation is applied to both the log 
transformed mink data and the log transformed muskrat data. The observed limit cycle of 
period five years is probably due to the high-pass filtering property of a differencing operation. 
The following TARSC model is now fitted to the 1848-1909 data, which were used by Jenkins 
(1975) and Chan and Wallis (1978). (We had some difficulty in obtaining these data previously.) 
Let X, = In (number of mink in year 1847 +n), Y,= A In (number of muskrats in year 1848 +n). 

where var (qL1)) = 0.0369, var (rlL2)) = 0.0234 pooled variance = 0.0282), 

where var (&(,I)) = 00385, var (EL')) = 0.0841 (pooled variance = 00589). This fitted model has a 
10 year period limit cycle with six ascension years and four descension years for the mink, and 
four ascension years, three descension years and then two ascension years and one descension 
year for the muskrat. 
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Given the limited data length and noisiness of the data, our TARSC model seems reasonably 
successful. It also seems to be one of the very few real examples ofbivariate non-linear time series 
models. 

We must admit that we are a little disappointed with the results of all the non-linear time 
series models, including SETAR, BL, EXPAR and TPAR, which have been fitted to the sunspot 
numbers. The very large number of sunspot numbers near the minimum is the main source of 
difficulty. The other source of difficulty is the well-known inhomogeneity of the data. One 
feature has come to light during our simulation studies which concerns the full BL (3,4)model 
reported in Subba Rao (1979). The AR operator there has one pair of complex roots in the 
unstable region (2, should read -0.27). 
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