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THRESHOLD TIME SERIES MODELING OF TWO
ICELANDIC RIVERFLOW SYSTEMS!

H. Tong, B. Thanoon, and G. Gudmundsson®

| ABSTRACT: This paper reports our experience in building time series

models which connect the flows in two Icelandic rivers with the
meteorological variables of precipitation and temperature. Two rivers
with different hydrological characteristics were studied. In areas where

¢ pecipitation may be either in the form of rain or snow linear models
. ue inadequate to describe the relationship between the river and the

meteorological variables. The methodology of threshold models re-

. cently developed seems to be well suited for taking into account the
; sharp difference in the relationship according to whether it is freezing
; ornot. The possibility of identifying an alternative threshold variable
- Isalso explored.

" (KEY TERMS: threshold models; nonlinear autoregression; riverflow;
 precipitation; temperature; Icelandic rivers; glacier; snow melting.)

INTRODUCTION

The observable riverflow, at a point in a river and at a par-
ficlar time instant, may be thought of as the observable
output of a system the input of which is the past effective
principitation. The dynamics and the memory length of the
ystem are dictated by the geography, geology and topography
of the river region. Commonly mentioned factors are catch-
ment retention, losses through evaporation, transpiration from
plants, infiltration into the ground, underground sources,
atchment storage and melting snow. Deterministic models
describing the relationship between riverflow and meteorologi-
ul variables must, therefore, inevitably be elaborate and re-
quirc extensive measurements. The possibility of constructing
simpler stochastic models, based on a few meteorological
uriables, may therefore be worth exploring. Such models can
be useful for simulation and prediction and may provide some
quantitative information about the relationship between the
ierflow and some of the more important meteorological
nrigbles. A substantial literature is available on the stochastic
modeling of the riverflow alone without incorporating any
meteorological variables. An excellent review in this respect
isgiven by Lawrance and Kottegoda (1977). An extension of
the transfer function-noise model approach of Box and Jen-
kins (1976) to analyze the relationship between riverflow and
three input series was described by Snorrason, et al. (1984).

The statistical analysis of time series data is greatly facili-
tated if the mean and covariances do not change with time.
However, this is not a realistic assumption in hydrology.
Seasonal variations and nonlinear relationships between
meteorological variables and the river imply that riverflow is
neither Gaussian nor stationary. Seasonal variations in second
order properties of riverflow data were described by Gud-
mundsson (1975), and Kavvas and Delleur (1984). Gudmund-
sson (1970) examined seasonal variations in the relationship
between riverflow and meteorological variables.

For many rivers, the associated precipitation may alternate
between rainfall and snowfall. In addition, there may be
glaciers on the drainage area. In such cases, the meteorological
variable of temperature plays a naturally important role. The
threshold at the freezing point has here a readily identified
hydrological-meteorological meaning and it seems reasonable
to expect that it will explain some of the nonlinearity (see
Figure 1). A class of time series models which gives a special
role to the notion of a threshold was developed by Tong in a
series of papers. (See Tong, 1983, for an up-to-date detailed
account or Tong and Lim, 1980, for a shorter introduction,
including hydrological application.)

A THRESHOLD SYSTEM

Suppose that {Y(} and {Z;} denote the inputs and {X;}
the output of a composite system. The composite system is
supposed to be made up of two subsystems denoted by L)
and L(2), each of which is linear. The selection of a subsystem
is indicated by a command signal, say J t» Which takes the value
1 or 2. That is, L) is selected if and only if J; =1i,(i=1,2).
Typically, the random variable J; is defined by reference to
the crossing of a certain threshold (e.g., freezing point) of an
appropriate observable random variable (e.g., temperature). As
usual, we may allow past outputs Xt 1> X¢_2, . ..,to be in-
corporated in the linear subsystems. They may, in theory, be
eliminated if we wish although, in practice, this is not a trivial
matter. Mathematically, we may express the set-up as follows:

1Paper No. 85091 of the Water Resources Bulletin. Discussions are open until April 1, 1986.

2

Respectively, Professor, Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Lecturer, Department of Mathe-

matics and Statistics, University of Masul, Iraq; and Statistician, The Central Bank of Iceland, Reykjavik, Iceland.
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Figure 1. Nonparametric Regression, E[XI|Z = z], of riverflow (X) on temperature (Z) for the river Jokulsd eystri, Iceland. where k
The method does not assume an a priori functional form but is based on a (kernel) smoothing on the data historgrams. ' eters for
Specifically, let {5N(z)]- denote a sequence of symmetric and nonnegatwe functlons of z, of area 1, with the property that by the t
-./\ .
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the arguments of each linear function L() are arranged into X (2) 1§ that as f
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= 369) with
) B B oo vious manner to one with multi-input, multi-output and ‘
L @.112.1,-321-26,1.2134)if Ji=2 multiple subsystems L(l) L(2 g )say, all of which are | ; in Tong (|

is to mean that
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linear. However, we restrict our dlscussxon to the case of 2
input, 1-output and k < 4 in this paper. |
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Given a realization (Xy, ..., X Yq, ..., Y Zq, ..., Zp;
B+, Jp), parameters defining L(i), (i = 1, 2), may be esti-
mted by the least-squares method in an obvious way. The
it few observations are reserved as initial values and the esti-
mtion is applied to the remaining observations which start
th the suffix m + 1, say. The observations (Jy,41,...,Jp)
ullsort the data (X1, - . . , Xp) into two groups, one fol-
lwing L(1) and the other L(2). The parameters of each linear
ubsystem may be obtained by ordinary least squares estima-
wn. Let RSS; and RSS; denote the residual sum of squared
arors corresponding to L(D) and L(2), respectively. Suppose
dat the sorting assigns ny and nj observations to L(1) and
L{.z), respectively, where nq + np = n — m. We may then cal-
wlate

fny 4n(RSS, /“1) + 2k1} + -[ann(Rssz/nz) + 2k2} , (3)

sere k1 and ko denote the number of independent param-

sersfor L(1) and L(z), respectively. This quantity normalized
iy the total number of effective observations, i.e., n — m, may
keinterpreted as a measure per observation of the divergence
il the fitted system from an underlying ‘optimal’ system. Let
tisnormalized quantity be denoted by NAIC(k;, ko) (“Nor-
nlized Akaike Information Criterion™). After comparing the
WAIC values for various combinations of (ky, ko), we may
iopt that fitted system which has the minimum NAIC. Of
aurse, other decision rules for system identification are avail-
fle; it is certainly not our intention here to advocate the
SAIC approach to the exclusion of others. Suffice it to say
fat as far as the Icelandic riverflow systems are concerned,
fe results seem to be encouraging, as we shall see. For the
mst recent development of AIC, reference may be made to
Yatke (1983).

The basic idea of using different linear dynamics over dif-
ient range of inputs is, of course, not new. References may
¥ made, e.g., to Andronov, et al. (1959), within the general
atext, and to Whittle (1954) and Box and Jenkins (1976, p.
) within the time series context. More examples are given
1Tong (1983).
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Figure 2. A Composite System.

HYDROLOGICAL AND METEOROLOGICAL
CONDITIONS

In order to examine empirically the possibilities of thres-
hold models in dealing with the nonlinear effects associated
with the melting of snow and ice we obtained observations of
two rivers in Northwest Iceland, Vatnsdalsa and Jokulsd
eystri. Geographical and meteorological conditions are, in
many aspects, rather similar on the drainage areas of both
rivers. The bedrock consists mainly of basalts of low per-
meability. These are partly covered by sediments. There are
no woods and vegetation is negligible. No direct observations
of evaporation are available, but it might be of the order of
20 percent with a substantial seasonal variation. A detailed
description of the hydrological conditions in this area was
given by Richter and Schunke (1981).

The main characteristic of Vatnsdalsa is direct runoff.
There are, however, some highly permeable post-glacial lavas
on the southern part of the drainage area which contribute a
component of groundwater that is not sensitive to short-term
variations in the weather. The drainage area is 450 km?2. The
recording station is at a height of 70 m but most of the drain-
age area is at an altitude of 400-800 m.

The most important difference of the drainage area of
Jokulsa eystri as compared with Vatnsdalsa is that it includes
a glacier covering 155 km? out of a total area of 1200 km2.
The presence of the glacier has the effect that temperatures
above zero at its altitude, 1000-1800 m, always produce melt-
water, whereas from July and into the autumn there is negli-
gible snow on other parts of the drainage areas.

The meteorological station at Hveravellir lies between the
two drainage areas on a level with their southern borders at an
altitude of 641 m. The average temperature is about —1°C and
the amplitude of the annual variation 6-7°C. The temperature
measurements should provide a fairly good indicator of the
temperatures on the drainage areas, but it must be kept in
mind that, as a result of different altitudes and different dis-
tance from the sea, the temperature (at any time) will differ
within each area. A difference in altitude of 100 m may cor-
respond to a difference in temperature of 0.5-1.0°C. The
diurnal variation implies that on a day when the average tem-
perature is at the freezing point the actual temperature is
somewhat higher for a couple of hours.

WATER RESOURCES BULLETIN
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The precipitation is less well represented by the observa-
tions at Hveravellir. It is difficult to measure accurately, es-
pecially when wind is high as is common in these areas. Pre-
cipitation is subject to much more local variation than tem-
perature, so that no single station will provide an accurate in-
dicator of precipitation within a large area.

THRESHOLD MODELING OF VATNSDALSA
RIVER, ICELAND (1972-1974)

The data consist of the daily flow of the river Vatnsdalsa
(X;) in m3/sec., the daily precipitation (Y t) in mm, and the
mean daily temperature (X;) in OC at the meteorological sta-
tion at Hveravellir. The data span the period of 1972, 1973
and 1974. The precipitation record is actually several hours
late as the recorded value is the accumulated rain at 9 a.m.
from the same time the day before. (We have adjusted for this
in our modeling by a forward translation by one day.) Some
of the data are illustrated in Figures 3 and 4.

Before examining threshold models, it is informative to look
at ordinary linear models with precipitation and temperature
as inputs and the riverflow as output. For the data in 1972
alone, the model is

X, = 9.40 —0.07Y, +0.17Z, + 0.11Z,_; +¢, 4)

where var €; = 215.64 and NAIC = 3.09. The inadequacy of
these models is indicated by the negative coefficient of precipi-
tation and the magnitude of var €, which is larger than the
squared average value of X;. An explanation of this lies in the
model’s inability to cope with the obviously highly nonlinear
relationship between the riverflow and meteorological vari-
ables; an increase in temperature from —15°C to —5°C has
very different effects from an increase from 0°C to 10°C.

Within the linear framework, the fit is greatly improved by
including past values of X:

X, = 073 +1.12X,_; —023X,_,+0.12X,_3

— 0.09X,_4+001Y, +0.07Y,_;
—0.06Y,_5 +0.02Y, 3+0.09Z,

~0.03Z,_; —0.04Z,_, +¢, )

where var €; = 2.85 and NAIC = 1.11. A great deal of water
that is teleased on the drainage area by rain or melting snow
reaches the point of observation on the same day, but part of
it arrives later because of long distances, low slopes and delays
through the groundwater system. Past and present flow is
therefore a useful indicator of tomorrow’s flow. In fact, the
magnitudes of the parameters show that the role of the
meteorological variables in (5) is limited to modifying the dy-
namics described by the autoregressive part rather than pro-
viding a description of the actual relationship between X and
Y, Z).
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The nonlinear effects of Z on X, described earlier, suggest
that the ‘autoregressive’ dynamics may well be state-dependent;
e.g., (1) it may depend on whether there has been a prolonged
period of frost or a prolonged period of warm weather; and
(2) it may depend on the unobserved state of the ground:
water.

Now, there are three obvious methods of selecting Jy:

1if X 4 Sty o
(D Jt= (62)
2 lf Xt—1>1‘x,
1if Y <r
t—1 "y’
@ = { (6b)
2 if Yt—l>ry’
1 if Zt<rz,
3 L= (6c)
2 ith>rZ.

Note that Y;_1 consists of 15-hour accumulation of rain on
day (t—1) and a nine-hour accumulation of rain on day t.
Thus, it is not realistic to use Yy for J;.

Experimentations with the identification package docu-
mented in Tong (1983) suggest that method (2) is the least
efficient and that X;_j is a parsimonious choice for J; (see
Table 1). A hydrological explanation of this is that X;_1 gives
an indiciation of whether and how much water is being re-
leased on the drainage area.

TABLE 1. Choice of Indicator Variables (for 1972 data set).

Method Threshold Estimate Minimum Normalized AIC
83) ?X =12 0.2482
2) ?y =9 0.8336
3) T =0 0.5405

A

We now use method (1) and the pooled data from 1972,
1973 and 1974. The pooling is essential because the spring
floods which account for a large proportion of the variation
only last for a few days. The following threshold model is
identified:

WATER RESOURCES BULLETIN
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Figure 3. Vatnsdalsa River Data (1972).
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Figure 4. Vatnsdalsa River Data (1973).
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Ty = 13 and NAIC = 0.3528. Estimated standard deviations
are presented in parentheses below respective parameter.
These estimates are based on the assumption of independent
Gaussian residuals. The actual residual distribution is some-
what skewed and long-tailed so that the parameter estimates
are less accurate than suggested by these values.

The equation for yesterday’s flow below 13 m3/sec. applies
to 982 days out of 1085. The coefficients of the meteorologi-
cal variables are on the whole negligible, so that either their
effect is small or the model is inadequate to describe it. In
the equation for yesterday’s flow above the threshold, which
applies to only 103 days, meteorological variables have a sub-
stantial influence. The coefficient of yesterday’s flow is 0.98
and the sum of the coefficients of past flowsis 0.73. Asare-
sult of the large autoregressive effects, the coefficients of
the meteorological variables, say, Y;_s, Zt—j’ cannot be inter-
preted directly as a measure of the effects of these variables j
days ago on the present flow. Nor is it appropriate to eliminate
the past values of the flow and describe the flow as a function
of past values of the meteorological variables alone; the
model thus obtained differs substantially from what is ob-
tained by a direct estimation of this form. The past flow con-
tains information which cannot be expressed by the meteoro-
logical variables within the present model.

In interpreting the above model, it is useful to keep in mind
the fact that the equation for yesterday’s flow above 13 m3/
sec. will not be applicable unless yesterday’s temperature is
about or above the freezing point as otherwise yesterday’s
flow will be below the threshold value. In this connection,
therefore, it is interesting to reanalyze the data using a
temperature threshold. The following model is identified:

L (1.79 10.76, -0.05) with var ¢,(1) = 0.69,

X=1 N
L® (0.87 1130, —0.71, 0.34) with var e, ) = 7.18,

(pooled var = 4.50)

f, = —1, and NAIC = 1.01. We have essentially two different
autoregressive models, one for frost and the other for thaw.
In the lower temperature range, the model mainly describes a

656

(11 .14 1 1.31, —057, 022 1002, 0.09, —0.02 | 0.03, —0.04, 0.01)
(0.13) (0.05) (0.06)(0.04) (0.00)(0.01) (0.01) (0.01) (0.02)(0.01)

with var et(l) =1.03

L) (7.49 | 098, —0.24, —0.05, 0.24, —0.13, —0.13, 0.17, —0.11 || 0.47, —0.19, —0.02, —0.06, —0.07,
(1.49) (0.08) (0.13) (0.13)(0.13) (0.13) (0.13)(0.12) (0.07) (0.20) (0.11) (0.06) (0.05) (0.06)

~0.50, 0.16, 0.11 | 0.41, 1.20, —227, 0.59, —0.87, 0.29, 0.46, —0.69)
L (0.13)(0.07)(0.06) (0.26)(0.45) (0.51)(0.43) (0.46)(0.42)(0.45) (0.33)

with var et(z) = 15.47 (pooled var = 2.40)

convergence towards a constant flow of about 6 m3/sec.
reached in a few days after frost sets in. This agrees well with
the fact that stable flows in this range are often observed for
days or weeks. Thereis a great difference in residual variation
between the two models. A few large floods, caused by the
melting of a large proportion of the snow on the drainage area,
are responsible for much of the variation in the model abow
the threshold temperature. This applies also to L@ in Equa-
tion (7); the peaks of the floods are preceded and followed by
days of large flows. The temperature is < —1°C for 448 days.
Thus, in spite of its relatively inferior NAIC value, model (§)
may be used to complement model (7).

Prompted by model (8) and guided by Figure 5, the follow-
ing more elaborate model (9) may be entertained:

x,= L1 (075 1 106, ~0.26, 0.09, ~0.11, 0.08 |
(13) (05) (06) (00) (04) (02)

I —0.02, —0.01, —0.00, 0.01
(01) (01) (O01) (01)

I 0.02, —0.03, 001, —0.02)+ ¢,V

(01) (01) (01) (01)
if Z, < -2

X, = L@ (121 1 097, 029, 0.04, 0.1
(29 (05) (07) (07) (.05)

fl 0.03, 0.12, —0.04, —0.02
(.02) (.02) (02) (.01)

) 053, 0.02, —0.02) + ¢
(.14) (08) (05)
if -2 <2, <2
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Figure 5. Nonparametric Regression of Xion Z,.

X, = L&) (197 1 138, ~0.70, 0.47, 0.02, ~0.19, X, = L™ 059 1 122, —0.49, 0.30, -0.17,
(92) (08) (.15) (15) (14) (.14) (21) (06) (09) (08) (08)

—0.02, 0.34, —0.23 | 0.03, 0.03, 0.27, -0.26, 0.11 I 0.01, 0.01,
(12) (09) (07) (.04) (03) (.08) (07) (04) (.00) (.00)

~0.01, 0.04, —0.03, —0.04,
(03) (03) (.03) (.03)

~0.01, —0.01, 0.01, —0.02 |
(01) (08) (01) (01)

0.13, 0.01 I —0.59, 0.07,
(03) (02)  (25) (.14)

~0.11, —0.05, 0.07, 0.13,
(14) (15) (17) (16)

~025)+ 3
(12)

if2<2,<5
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—0.02, —0.02, 0.01, —0.01, 0.02,
(02) (02) (03) (02) (02)

—004) + ¢ ifz,> s,
(02)
©)
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where

var (e,(1)) = 0.3730, Var(e,?) = 57714
t t

Var (¢,3)) = 6.0659, Var (¢,4) = 0.1642

Pooled Variance = 2.8432, NAIC = 0.2466

nl = 387, ﬂ2 = 295, n3 = 199, n4 = 205.

Brief comments on model (9) will be made in the final
section.

THRESHOLD MODELING OF JOKULSA EYSTRI

Some of the data are illustrated in Figures 6 and 7. Note
the much bigger dynamic range of the data.

An important hydrological feature of the river Jokulsa
eystri is that there is a glacier on the drainage area. This ef-
fects a substantial difference in the response of the two rivers
to changes in temperature. In Vatnsdalsa, high temperature
only enhances the flow when there is snow to melt, whereas
the glacier is still there after all the winter snow has vanished
at Jokulsa. It turns out that for 1972 the minimum normalized
AIC using method (1) (i.e., with X;_; as the indicator), is
1.9106 and that using method (3) (i.e., with Z; as the indica-
tor), is 2.0401. For the other two years, the results are quite
similar with the minor difference that, for 1973, the result
based on method (1) has a slightly bigger minimum normalized
AIC value than that based on method (3). Method (2) gives
a consistently larger value. We may draw the conclusion that
for Tokulsa Z; is just as good an indicator of hydrological con-
ditions as X;_1.

The following threshold model has been fitted to the
Jokulsa data of 1972-1974:

(0.02) (0.02) (0.02) (0.02)(0.01)

X, =<

7

f, = —2°C. A nonparametric estimate of E[X;|Z;] suggests
that the latter is piecewise linear consisting of a horizontal line
cutting the vertical axis at 26 m2/sec. and a line of positive
slope, the knot being at Z; = —29C. Thus, the estimate f, =
—29C seems reasonable (see Figure 1).

In days of frost the model describes a gradual decreas,

very similar to the model for Vatnsdalsa, with negligible con-

tribution from the meteorological variables. According to the

model, the flow approaches 26 m3/sec. in prolonged periodsof 1}

frost, wl(u'c):h is in reasonable agreement with the observations.
In L2

, the sum of the coefficients of past flows is 093 |
and yesterday’s flow has the coefficient 1.18. Coefficients of

the meteorological coefficients are not negligible. Considering I}

the numerical values of the coefficients of the meteorological ! “

variables and the fact that the flow is usually greater than 30
m3/sec. with a standard deviation of 7 m3/sec. it is, however,
clear that the role of these variables is to modify the dynamics
described by the autoregressive part rather than to providea
description of the actual relationship between X and (Y, Z).
The coefficient of Y} is practically zero, which implies that
the effect of today’s precipitation on today’s flow is ade-
quately accounted for by multiplying yesterday’s flow by 1.18.
Yesterday’s precipitation is, on the other hand, underrepre-
sented by 1.18X;_; — 0.47X;_7 and this is compensated by
the term 0.37Y;_1, which is probably also related to the fact
that it takes the water about a half-day to travel from the
glacier to the point of observation. The coefficients of to-
day’s and yesterday’s temperature are positive, but those of
days t—2, t—3, . . ., t—7 are mainly negative. To some extent
this does take into account the effects of snow melting. A
present temperature of 8°C say in March-April, when there is
snow to be melted, will usually be preceded by days of lower
temperatures than a day of 8°C in August.

( 1 (6.15 1 0.70, 0.04, 0.03, —0.05, —0.01, 0.06 | —0.02, —0.01, —0.03, 0.02, 0.00, 0.01, I 0.04,
(0.48) (0.04)(0.05)(0.03) (0.02) (0.02)(0.01)

(0.01) (0.02) (0.01)(0.02)(0.01)(0.01) (0.01)

658

0.00, —0.01, —0.04, ~0.00, 0.01) with var ¢{1) = 0.67

12 (1.11 1 1.18, —0.47, 0.32, —0.20, 0.15, —0.11, 001, 0.05 I 0.01, 0.37, —0.21, —0.05, 0.05
(0.87) (0.04) (0.06)(0.06) (0.06)(0.06) (0.06)(0.06)(0.03) (0.04)(0.04) (0.05) (0.04)(0.05)

~0.01, 006, 0.11 || 0.72, 0.56, —0.10, —0.21, 0.01, —0.13, —~0.02, —0.21)
(0.05)(0.05)(0.04) (0.16)(0.18) (0.17) (0.18)(0.19) (0.18) (0.18) (0.14)

with var e, (2) = 48.99 (pooled variance = 31.77) (10
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The model obtained with yesterday’s flow as threshold
parameter is very similar to the model (10) when the flow is
larger than 30 m3/sec. and the temperatures larger than —2°C.
When yesterday’s flow is less than 30 m3/sec., the former
model gives “‘today’s flow is practically the same as yester-
day’s.”

DISCUSSION

To a certain extent the results support the view that thres-
hold models may be suitable for analyzing these kinds of data.
These models are more accurate than linear models and the
temperature thresholds identified by the AIC are in accordance
with the main characteristics of the rivers. Further details
are available in the unpublished doctoral thesis of Thanoon
(1984, University of Manchester, U.K.).

Apart from long-term changes in the geography the flow is
completely determined by the weather; there is no feedback
detectable on the level of accuracy attainable by actual ob-
servations. The estimated models hardly accord with this,
however, for the autoregressive coefficients contribute much
more to the description of the variations of the rivers than the
meteorological variables.

It is not surprising, however, that past observations of river
flow contain a great deal of information about its present
level. The weather affects the river with “distributed lags.”
Thus some of the runoff after a burst of rain reaches the point
of observation within a few hours as direct runoff along steep
slopes over a short distance whereas the rain from other parts
of the area, falling at the same time, may have to pass through
layers of soil or travel longer distances over lower slopes. Ob-
servations of the river itself thus may be expected to contain
information about its future.

If the models provide a satisfactory description of the rela-
tionship between the respective variables (included), elimina-
tion of the autoregressive part should lead to expressions,

A1) dy
YWY Yy g ZpZe ) tm b

X, = L( (11)
where the coefficients of the meteorological variables provide
realistic estimates of the actual time lags. The model (9) of
Vatnsdalsa for temperatures between —2°C and 2°C might be
an example of this, and when temperatures are below —2°C
variations in temperature and precipitation have little effect
upon the river so that the low coefficients of these variables
are also realistic.
o I : (&)
The residual term 7 is a moving average of € . The
new residuals would possess high positive autocorrelations.
This is, however, not unrealistic. The river responds differently
to the weather depending upon the temperature and the thres-
hold models take account of this. However, the river also
responds differently to a given sequence of meteorological
variables depending upon the state of the drainage area. Here
the amount of snow is most important, but groundwater and
frost in the ground can also have large effects (Rist, 1983). The
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thresholds cannot fully cope with both the nonlinear character
of the relationship in given hydrological conditions and the
effect of the weather for altering the hydrological conditions.
They are better suited to deal with the first, but the residual
errors associated with variations in the state of the drainage
area are obviously positively correlated.

Some of the models with large and apparently well deter-
mined autoregressive parts do not lead to sensible expressions
when rewritten in the form of (11). Past values of the rivers
therefore contain useful information which cannot be ex-
pressed by the meteorological variables within the present
models.

The distributions of rainfall and meltwater production,
which may be regarded as the inputs to the hydrological sys-
tem, are very skewed. Therefore, residuals will not be Gaus-
sian unless a model presents a fairly accurate description of the
actual relationships. Presumably realistic and accurate hydro-
logical models can be produced with nonGaussian residuals.
Provided the residuals are approximately uncorrelated, the
nonGaussianness does not seem to have much effect on the
AIC or the large sample standard errors of the parameter esti
mates. However, available finite sample results are too scanty.
(Some preliminary investigations are reported in Tong (1983)
and Petruccelli and Woolford (1984).)

The threshold models described in this paper can only be
considered partially successful from the point of view of re-
ducing the data to “Gaussian white noise.” There are various
possibilities of improving upon the modeling. Among these are
the introduction of more meteorological variables, such as
wind and radiation or precipitation from more than one sta-
tion. Direct observations of the state of the hydrological sys-
tem, however, might be more to the point. With such infor-
mation appropriate modeling would obviously differ a great
deal from the models presented in this paper. However, sharp
changes in relationships according to temperature and the pre-
sence of snow would still be present. Thresholds in some
form could, therefore, also be convenient for dealing with the
nonlinearity in more elaborate models.
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