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Testing and Modeling Multivariate Threshold Models 

Ruey S. TSAY 

Threshold autoregressive models in which the process is piecewise linear in the threshold space have received much attention in 
recent years. In this article I use predictive residuals to construct a test statistic for detecting threshold nonlinearity in a vector time 
series and propose a procedure for building a multivariate threshold model. The thresholds and the model are selected jointly based 
on the Akaike information criterion. The finite-sample performance of the proposed test is studied by simulation. The modeling 
procedure is then used to study arbitrage in security markets and results in a threshold cointegration between logarithms of future 
contracts and spot prices of a security after adjusting for the cost of carrying the contracts. In this particular application, thresholds 
are determined in part by the transaction costs. I also apply the proposed procedure to U.S. monthly interest rates and two river 
flow series of Iceland. 

KEY WORDS: 	Akaike information criterion; Arranged autoregression; Model change; Nonlinearity test; Predictive residuals; 
Recursive least squares; Threshold cointegration. 

1. INTRODUCTION 

To motivate the study of multivariate threshold models, 
I consider an application in finance in which an asset is 
traded simultaneously in two markets. Based on the theory 
of law of one price, the asset should have the same price at 
the same time in both markets; otherwise, one can buy the 
asset in the cheapest market and simultaneously sell it in the 
dearest market to make a profit. But some minor deviation 
in prices of the asset may exist, because other factors, such 
as transaction cost, capital constraint, interest rate, and exe- 
cution risk, may discourage traders or market makers from 
trading if the potential profit is small. In other words, arbi- 
trage opportunities occur only when the deviation in prices 
is substantial, so that the potential profit exceeds the cost 
of trading. An arbitrage opportunity cannot last long, how- 
ever, because advances in computer trading can easily take 
advantages of such an opportunity when it appears. 

Let pit be the log price of the asset in market i at time 
t and let zt = pit - pzt be the price differential in log- 
arithms. Log-transformation is commonly used in finan- 
cial data analysis. Then zt cannot continuously assume 
large values in modulus, because there exist no long-lasting 
arbitrage opportunities. From a statistical viewpoint, zt+l 
should have a high probability of returning to its mean when 
lzt 1 is large. In finance, zt is said to be highly mean-reverting 
when lztl is large. This behavior has profound impacts on 
the dynamics of pit, and an approximate model for pit can 
be formulated as 

where pt = (pit,pzt)', f i ( . )  are well-defined functions such 
that f i ( . )  # f j  (.) for i # j, Oi are finite-dimensional param- 
eters, &it denote noise terms, d is a positive integer denoting 
the average time taken to execute an arbitrage trade, and 
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rl < 0 < 7-2 are real numbers. This model says that the 
dynamic behavior of pit depends on the magnitude of zt-d. 
When zt-d < r1 < 0,there exists an arbitrage opportunity 
of buying the asset at market 1 and selling simultaneously 
at market 2. When zt-d > r2 > 0,an arbitrage opportu- 
nity occurs in the opposite direction. When zt-d is between 
rl and r2 ,  the price differential induces no arbitrage. The 
two prices should move closer to each other following any 
arbitrage trading. 

Model (1) has three regimes and belongs to the class of 
general multivariate threshold models in which zt is re- 
ferred to as the threshold variable, d is the threshold lag or 
delay, and ri's are the thresholds (see Tong 1990 and the ref- 
erences therein). In our particular example, the thresholds 
ri are functions of transaction cost, interest rate, economic 
risk, and financial purpose of a trade. If pit are unit-root 
nonstationary, then model (1) represents a co-integrated sys- 
tem in which zt represents a stationary combination of the 
system. (See Balke and Fomby 1997 for further discussions 
on threshold cointegration.) 

In this article I focus on linear models that may 
also depend on some exogenous variables. Consider a 
k-dimensional time series yt = ( y l t , .. . , ykt)' and v-
dimensional exogenous variables xt = ( x l t ,. . . ,xUt)'.Let 
-GQ = ro < rl < . . . < r S p l< r ,  = GQ. Then yt follows a 
multivariate threshold model with threshold variable zt and 
delay d if it satisfies 

where j = 1, .. . , s,  c j  are constant vectors and p and q are 
nonnegative integers. The innovations satisfy E!') = ~ : ' ~ a , ,  

where B:" are symmetric positive definite matrices and 
{ a t )  is a sequence of serially uncorrelated random vectors 
with mean 0 and covariance matrix I, the identity matrix. 
The threshold variable zt is assumed to be stationary and 
have a continuous distribution. Model (2) has s regimes and 
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is a piecewise linear model in the threshold space zt-d, but 
it is nonlinear in time when s > 1. 

For model (2), I assume that the threshold variable zt 
is known, but the delay d, the number of regimes s,and 
the thresholds ri are unknown. My goal is twofold. First, 
I propose a test statistic to detect the need of using such 
a model against the alternative of a linear model; that is, 
s = 1 versus s > 1. The proposed test is a generalization 
of that of Tsay (1989) for the univariate case and has an 
asymptotic chi-squared distribution. The test is simple and 
performs well in finite samples, yet it does not depend on 
the alternative model, nor does it encounter the problem of 
undefined parameters under the null hypothesis. The gen- 
eralization also allows for exogenous variables and condi- 
tional heteroscedasticity. Second, I consider a procedure for 
building such a multivariate threshold model that includes 
estimation of d and the thresholds. I use the conditional 
least squares method in estimation and Akaike information 
criterion (AIC) in model selection. The procedure is easier 
to apply than that of Tsay (1989), who uses scatterplots that 
often require subjective interpretations. 

The article is organized as follows. In Section 2, I con-
sider an arranged regression analysis that transforms the 
threshold model in (2) into a changepoint problem. I then 
use recursive least squares to obtain predictive residuals in 
the arranged regression and use the standardized predictive 
residual to construct the proposed test statistic. The asymp- 
totic distribution of the proposed test is derived. I also use 
simulation to study the finite-sample performance of the 
proposed test. Some related literature is also reviewed. In 
Section 3, I briefly address conditional least squares esti- 
mation of the model. In Section 4, I propose a procedure 
for model building. AIC is used to select the thresholds as 
well as other parameters. The proposed test and modeling 
procedure are applied in Section 5 to two real examples of 
high-frequency data in finance. I compare the results with 
those available in the literature using other methods. My 
model appears to be in closer agreement with common ex- 
pectations. Finally, I apply the modeling procedure to U.S. 
monthly interest rates and two daily river flow series of 
Iceland. 

2. TESTING 

Consider the null hypothesis that yt is linear versus the 
alternative hypothesis that it follows the multivariate thresh- 
old model in (2). This problem has attracted much atten- 
tion in recent years, partly because of the difficulty that 
the thresholds ri are undefined under the null hypothesis 
when the likelihood ratio test is used (see Chan and Tong 
1990, Hansen 1996a, and the references therein). Most of 
the likelihood-based tests consider the univariate case with 
two regimes (i.e., a single threshold) and use simulation 
to obtain critical values. On the other hand, Petruccelli 
and Davies (1986) and Tsay (1989) transformed the test- 
ing problem into detecting changepoints using the concept 
of arranged autoregression and used predictive residuals to 
construct test statistics that do not involve undefined pa- 
rameters. More specifically, these tests use the threshold 

variable to construct an arranged regression, but do not de- 
pend on other features of the alternative model. They are 
simple and have familiar limiting distributions. For exam- 
ple, the test statistic of Tsay (1989) has an asymptotic F 
distribution. Limited experience shows that this latter ap- 
proach has decent power when the sample size is moderate 
or large (see Balke and Fomby 1997 for some power com- 
parisons). 

In this section I generalize the test statistic of Tsay (1989) 
to the multivariate model in (2) and use simulation to study 
the finite-sample performance of the test statistic. Several 
reasons justify such an extension. First, the test is extremely 
simple and has an asymptotic chi-squared distribution. This 
is an important feature when the sample size is large, such 
as in the analysis of high-frequency data in finance, where 
sample size can easily exceed 5,000. Second, the test is 
widely applicable, including co-integrated systems. Its lim- 
iting distribution holds under weak regularity conditions. 
Third, the test has good power in detecting threshold non- 
linearity. 

2.1 Arranged Regression 

Given observations { y t ,  x t ,  z t ) ,  where t = 1 , . . . , n, the 
goal is to detect the threshold nonlinearity of y t ,  assuming 
that p, q, and d are known. To this end, I use the least squares 
method and place the model in a regression framework, 

where h = max(p, q, d), Xt = (1, yi-l , . . . ,y iPp,  x iP1 ,  
. . . ,xi-,)' is a (pk + qv + 1)-dimensional regressor, @ de-
notes the parameter matrix, and the notation u' denotes the 
transpose of u .  If the null hypothesis holds, then the least 
squares estimates of (3) are useful. On the other hand, the 
estimates are biased under the alternative hypothesis. 

Equation (3) remains informative under the alternative 
hypothesis provided that I rearrange the ordering of the 
setup. For (3), the threshold variable zt-d assumes values 
in S = . . . , z,,-d}. Consider the order statistics of { z h + ~ - ~ ,  
S and denote the ith smallest element of S by qipFurther-
more, let t ( i )  be the time index of ~ ( ~ 1 .Then the arranged 
regression based on the increasing order of the threshold 
variable zt-d is 

It is important to see that in (4) the dynamic of the yt series 
is not changed; that is, the independent variable of yt is X t  
for all t .What has changed is the ordering by which data en- 
ter the regression setup; that is, the row order if one places 
the regression in a matrix framework. An important feature 
of the arranged regression is that it effectively transforms 
a threshold model into a changepoint problem, because the 
regression is arranged according to the increasing order of 
the threshold variable zt-d. 

2.2 A Test Statistic 

There are many ways to detect model change in (4). Here 
I use predictive residuals and the recursive least squares 
method. My idea is simple. If yt is linear, then the recur- 
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sive least squares estimator of the arranged regression (4)is 
consistent, so that the predictive residuals approach white 
noise. Consequently, predictive residuals are uncorrelated 
with the regressor Xt( i )+d On the other hand, if yt fol-
lows a threshold model, then the predictive residuals are no 
longer white noise, because the least squares estimator is 
biased. In this case, the predictive residuals are correlated 
with the regressor Xt( i )+d.  

Let &, be the least squares estimate of cP of equation 
(4) with i = 1 , . . . ,m; that is, the estimate of arranged re- 
gression using data points associated with the m smallest 
values of zt-d Let 

and 

where Vm = 
m Xt ( i )+dXi ( i )+d] - l ,be the predictive 

residual and the standardized predictive residual of regres- 
sion (4). These quantities can be efficiently obtained by the 
recursive least squares algorithm. Next, consider the regres- 
sion 

q:(l)+d = X:(l)+dXP+ ~ ; ( l ) + d >  

I = mo + 1 , .  . . , n  - h ,  (7) 

where mo denotes the starting point of the recursive least 
squares estimation. The problem of interest is then to test 
the hypothesis Ho: X P  = 0 versus the alternative Ha: X P  
# 0 in regression (7). Here I use the test statistic 

C ( d )= [n- h -mo- ( k p+ vq + l ) ]  

x { ln[det(so) l- l n [ d e t ( s l ) ] > ,(8) 

where the delay d signifies that the test depends on the 
threshold variable zt-d, det (A)denotes the determinant of 
the matrix A, and 

n-h 


and 

where \;tt is the least squares residual of regression (7).Un-
der the null hypothesis that yt is linear and some regular- 
ity conditions, C ( d )is asymptotically a chi-squared random 
variable with k(pk + qv + 1) df. 

Remark I .  The null hypothesis of X P  = 0 includes 
a zero intercept for all predictive residuals. In theory, a 
nonzero intercept signifies a systematic bias in the estimates 
of arranged regression, indicating possible model changes. 
However, due to the possibility of finite-sample bias, in 
some applications one may wish to exclude the intercept 
terms from nonlinearity test in (8). In this case, S o  should 
be mean corrected, and the resulting test has an asymptot- 
ical chi-squared distribution with k(pk + qv) df. 

For simplicity, when yt is linear, I write the model as 

( E ~ ~ ,  I assume that c 
terminant I - B - . . . - &BPI has a zero on the unit 
circle. Let V, be the usual X'X matrix of model (9) with 
t = 1, . . . , n and denote the minimum and maximum eigen- 
values of V,, by X,i,(n) and X,,,(n). Then the following 
theorem of Lai and Wei (1982, thm. 1) establishes the strong 
consistency of the least squares estimates. 

with ct = . . . , = 0 if the de- 

Theorem 1. Consider model (9) where c = 0 if yt con-
tains any unit root. Suppose that { c t )  is a martingale dif- 
ference sequence with respect to an increasing sequence of 
a-fields { F t )  such that 

supE(l&it laFt-1)< KI a.s. for some a > 2.  (10)
i , t  

Furthermore, assume that ( y t P l ,. . . ,y t P p ,x ~ - ~ ,. . . ,x t P q )  
is Ft-1 measurable such that 

and 

Then the least squares estimates of (9) converge to c , +i 

and pi a.s. 

Theorem 2. Suppose that yt follows the linear model 
in (9) and satisfies the conditions of Theorem 1. Moreover, 
assume that 

and mo + co,nplmO+0as n +KI. Then, the test statistic 
C ( d )  of (8) follows asymptotically a chi-squared distribu- 
tion with k ( k p + vq + 1) df for a fixed positive integer d, 
where k and v are the dimensional of yt and x t .  

Pro08 By Theorem 1 and the condition of mo, the stan- 
dardized residuals 7 j t  converge a.s. to a martingale differ- 
ence sequence, which under the assumption (11) is homo- 
geneous. By the functional central limit theorem (Helland 
1982, thm. 3.3), (n- h -m o ) S oand ( n- h -m o ) S 1of (8) 
follow asymptotically Wishart distributions. The result then 
follows the same argument as that in the multivariate mul- 
tiple regression analysis (e.g., Johnson and Wichern 1988, 
p. 308). 

Remark 2. The homogeneity of E~ can be relaxed by 
modifying the standardization of the predictive residuals in 
the recursive least squares estimation. In particular, if ct 
has conditional heteroscedasticity, then (6) no longer holds, 
but the jth element of ijt(m+l)+dcan be obtained by the 
standardization 
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Figure 1. Time Plots of Minute Returns of S&P 500 lndex Futures and Prices and the Associated Threshold Variable, May 1993. (a) First 
differenced In(future); (b) first differenced In(price); (c) z(t) series. 

three models: 

.7 . 2  1.0 .3 
y t  = [ -,2 ,7 ] yt-1 + ~t , B = [ ,3 .0] , (12) 

(13) 

and 

where st are independent multivariate normal random vari- 
ates with mean 0 and covariance matrix C ,I denotes the 
identity matrix, and 

and 

.3 -.09 .3 -.06
"= I 15 1 5  0 1 51 ' 
-.3 .09 -.3 .06 


avoid small-sample bias of the least squares estimator for 
unit-root processes, I exclude the constant term from the 
nonlinearity test in (8) for model (14) and use a larger mo 
to start the recursive estimation; see Remark 1. 

The sample sizes used are n = 150 and 300,and the num- 
ber of replications is 10,000. Table 1 shows the empirical 
percentiles of the test statistic C(d)and those of the corre- 
sponding chi-squared distributions. In the test I assume that 
y ~ , ~ - dis the threshold variable, d E {1,2,3,4).The choice 
of mo is also given in the table. As anticipated, the empir- 
ical distributions of the test statistic C(d)are close to their 
asymptotic chi-squared distributions and do not depend on 
the choice of the delay d .  Limited experience shows that 
for a unit-root nonstationary series, a small mo may intro- 
duce bias in the empirical distributions of C(d) ,resulting in 
larger empirical percentiles. I use mo = 5fi for the unit- 
root series and mo % 3fi for the stationary case, where 
n is the sample size. These choices satisfy the condition of 
Theorem 2 and work well in the study. In an application, 
the choice of mo is a compromise between stable starting 
estimation and good power in testing (i.e., keeping a rea- 

Table 3. Results of the Threshold Nonlinearity Test, With Sample Size 
7,060 and Starting Point of Recursive Least Squares 200 

Bivariate, p = 8, q = 1 Univariate, zt, p = 7 
Models (12) and (13) are stationary, but Model (14) repre- 1 2 3 4 1 2 3 4 
sents a co-integrated system with two unit roots (see Engle 
and Yoo 1987). I use the latter to illustrate that Theorems 2:?.2 147.5 71,28 70,04 3058 I 3 l 8  

36 8 8 8 8
1 and 2 apply to unit-root nonstationary processes. But to 

3::4 
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sonable sample size for testing). Further, different values and 
of mo can be used to investigate the sensitivity of the test 
result with respect to the selection. 

To study the power of the test, I use two two-dimensional 
threshold autoregressive models 

( 1 )( 4, yt-I  + gt 

~t = { +y)yt - l  + gt 

if Y ~ , ~ - ~< -3.3 

if - 3.3 < y l , t - l  < 3.3 (16) 

and 

Again, the innovations are independent multivariate normal 
with mean 0 and variance Ej. Table 2 gives the empirical 
probabilities of rejecting linearity using the critical value 

Table 4. Least Squares Estimates and Their t Ratio for the May 1993 Data 

Regime 1 Regime 2 Regime 3 

ft St ft St ft St 

*(I) .00002 .00005 0 0 -.00001 -.000050 
t (1.47) (7.64) (-.07) (.53) (-.74) (-6.37) 

ft-I -.08468 ,07098 -.03861 ,04037 -.04102 ,02305 
t (-3.83) (6.1 5) (-1.53) (3.98) (-1.72) (1.96) 

ft-2 -.00450 15899 ,04478 ,08621 -.02069 ,09898 
t (-.20) (1 3.36) (1.85) (8.88) (-.87) (8.45) 
ft-3 ,02274 ,11911 ,07251 ,09752 ,00365 ,08455 
t (.95) (9.53) (3.08) (1 0.32) (.I51 (7.02) 
ft-4 ,02429 ,08141 ,01418 ,06827 -.02759 ,07699 
t (.99) (6.35) (.60) (7.24) (-1.13) (6.37) 

ft-5 ,00340 ,08936 ,01185 ,04831 -.00638 ,05004 
t (.I41 (7.1 0) (.51) (5.1 3) (-.26) (4.07) 

ft-6 ,00098 ,07291 ,01251 ,03580 -.03941 ,0261 5 
t (.04) (5.64) (.54) (3.84) (- 1.62) (2.18) 

ft-7 -.00372 ,05201 ,02989 ,04837 -.02031 ,02293 
t (-.15) (4.01) (1.34) (5.42) (-.85) (1.95) 

ft-8 ,00043 ,00954 ,0181 2 ,021 96 -.04422 ,00462 
t (.02) (.76) (.85) (2.57) (- 1.90) (.40) 

St-I -.08419 ,00264 -.07618 -.05633 ,06664 . I  1143 
t (-2.01) (.I 2) (- 1.70) (-3.14) (1.49) (5.05) 

St-2 -.05103 ,00256 - . I  0920 -.01521 ,04099 -.Oil79 
t (-1.18) ( . I l l  (-2.59) (-.go) (.92) (-.53) 

St-3 ,07275 -.03631 -.00504 ,01174 -.01948 -.01829 
t (1.65) (- 1.58) (-.I21 (.71) (-.44) (-.84) 

St-4 ,04706 ,01438 ,02751 .01490 ,01646 ,00367 
t (1.03) (.SO) (.71) (.96) (.37) (.I 7) 
St-5 ,081 18 ,021 1 1 ,03943 ,02330 -.03430 -.00462 
t (1.77) (.88) (.97) (1.43) (-.83) (-.23) 

St-6 ,04390 ,04569 ,01690 ,01919 ,06084 -.00392 
t (.96) (1.92) (.44) (1.25) (1.45) (-,191 

St-7 -.03033 ,02051 -.08647 ,00270 -.00491 ,03597 
t (-.70) (.91) (-2.09) (.I 6) (-.I31 (1.90) 

st-8 -.02920 ,0301 8 ,01887 -.00213 .00030 ,021 71 
t (-.68) (1.34) (.49) (-.I 4) (.01) (1.14) 
Zt-I ,00024 ,00097 -.00010 .00012 ,00025 ,00086 
t (1.34) (10.47) (-.30) (.86) (1.41) (9.75) 

NOTE The model is selected by minimum AIC and the two thresholds are p.022574 and ,037673.The numbers of data points for the three regimes are 2,234, 2,410, and 2,408 
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Table 5. A Self-Exciting Threshold Autoregressive Model for the Threshold Variable zt 

Regime 4;)  Zt- I 21-2 Zt-3 

1 -.0036 ,8109 -.0071 -.0185 
t ratio -3.03 34.1 -.27 -.68 

2 -0 ,9336 -.0002 ,0067 

t ratio . 0 3  25.56 -.01 .26 


3 ,0068 ,8752 -.0409 , 0 1 0 7  

t ratio 3.86 34.84 1 . 4 0  . 3 6  


NOTE: The delay is I .  and the thresholds are -.017093 and ,044086 

12.59, which is the 5% significallce level of a chi-squared 
distribution with 6 df. The results are based on 10,000 repli- 
cations of sample sizes 150 and 300. Furthermore, to see 
the stability of the results, the simulation is repeated three 
times. The starting point rno of the recursive least squares is 
50 for the first simulation, which is approximately 3 d 3 0 ,  
and 40 for the second and third simulations. The table also 
shows power of the test when the delay d is misspecified. 
It is seen that the test has good power when the delay d 
is correctly specified and the results are stable among the 
three simulations. The power of the test deteriorates when 
the specified delay moves away from the true d. 

3. ESTIMATION 

In this section I consider conditional least squares esti- 
mation of the threshold model in (2), assuming that p. q, and 
s are known and the threshold variable zt is given. But the 
delay d and the thresholds are part of the parameters. Our 
goal is to generalize the results of Chan (1993) and Hansen 
(1996b) for the univariate case to model (2). For ease in 
presentation, we focus on the case of s = 2 and write the 
model as 

where at = ( a l t , .. . . arct)'.We assume that (a) zt-d is sta- 
tionary and continuous with a positive density function f ( r )  
on a bounded subset of the real line, say R o  c R ,  and (b) 
d E { I . . . . . d o ) , where do is a fixed positive integer. The 
parameters of model (17) are (GI,G 2 .  X I ,  C2.T I .  d ) ,  and 
their conditional least squares estimates can be obtained in 
two steps. First, for given d and 7-1, model (17) reduces to 
two separated multivariate linear regressions from which 
the least squares estimates of +, and C, ( 1  = 1 .2 )  are 

Table 6. Analysis for Return Series Using a Multivariate Threshold 

Model With Symmetric Thresholds, p = 8, q = 1, 


r2 E [.02, ,0851, and 700 Grid Points 


d P I  	 A IC 

Zt-4 21-5 Zt-6 21-7 i2 Size 

,0402 -.0291 ,0274 ,0538 ,0009 2455 
1.44 -1.05 .98 2.49 

-.0160 -.0104 -.0033 ,0227 ,0007 2367 
-.64 -.41 - . I3  1.22 

-.0345 ,0787 , 0 2 9 6  ,0397 ,0010 2231 
1 . 1 6  2.63 1 .OO 1.85 

readily available. The estimates are 

and 

where xi" denotes summing over observations in regime 
2 ,  &,*= & , ( r l .  d ) ,  n, is the number of data points in regime 
2,  and k is the dimension of X t  satisfying X < n,, for a = 

1.2. Denote the sum of squares of residuals by 

where S i ( r l ;  d )  denotes the trace of (ni- k ) 9 , ( r l ,  d ) .  In 
step 2 the conditional least squares estimates of rl and d 
are obtained by 

( f l  ,2) = argmin S ( r l . d ), 
rl ,cl 

where 1 < d _< do and !rl E Ro.  The resulting least squares 
estimates for the parameters in (18) are 

and 

2, = 2, ( f l52). 

Let vec(A) be the column stacking vector of the matrix A 
and define 

D ( r )  = E(XtX:lz t -d  = r ) .  

D 2 ( r )  = E [ ( X ; X ~ ) 'zt-,l = I . ,  (1 9) 

and 

a. 	( X t .  zt-d. a t )  is strictly stationary with ,3-mixing co- 
efficient OJ = 0(j-7,for some 6 > 4. 

b. 	E(atlFt-1) = 0, where FtP1 is the 5 field generated 
by (X ,+l , zJL l -d ,a , )  for j 5 t - 1. 
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Then, following the same approaches as Chan (1993) and 
Hansen (1996b), asymptotic properties of the conditional 
least squares estimates can be established for model (17). 

Theorem 3. Consider model (17) and suppose that As- 
sumption 1 holds. Then the conditional least squares esti- 
mators are strongly consistent as the sample size increases. 
That is, &, i a , ,  f l  i 7-1. d i d ,  and 2, i C, almost 
surely as the sample size n goes to infinity. Furthermore, 
&vec(&, - a,) are asymptotically normal with mean 
0 and covariance matrix I?, 8 C,, where I?, = lim,,,(c!Xt Xi) / 7 1 ,  and QI denotes the Kronecker product. 

In practice, I?, is estimated by (xi"XtXi)/n, and C, 
7 I by 2 , .  
$ 010 	 0 02 0.04 0.06 0.08 0.10 

Theorem 3 provides asymptotic results for multivariate threshold 
threshold models in (2) for which the hyperplane of the 

Figure 2. AIC Versus the Symmetric Threshold 
conditional expectation E (yt Ft-1) has a discontinuity at 

c. 	~ ( j y i ~ ~ )  < moo, and E(laitl" < oo for the threshold zt-d = T I ,  where FtPldenotes the informa- < oo:~ ( 1 ~ ~ ~ 3  
tion available at time t - l. Because of Assumption la, it all i and j .  
excludes the case in which the hyperplane is continuous but 

d. The density function 	f (r)  of zt-d is positive on a not differentiable at the threshold. This latter case is much 
bounded subset Ro c R, and r l  is an interior point more involved. Chan and Tsay (1998) obtained the asymp- 
of Ro. totic result for the univariate continuous threshold autore- 

e. 	f ( T ) ;  D(r), D2 (T)  .Vi (r),and V2.i(T)  are continuous at gressive (TAR) model, but the result for the multivariate 
r = T I .  model is yet to be rigorously investigated. For processes 

f. 	A - a1- a2# 0; satisfying Assumption la,  refer to the work of Pham and 
g. 	AiD(rl)A, > 0, A$Vi(r l )Aj> 0 for j = 1... . , k ,  Tran (1985). Assumption Id ensures that the sample size of 

where A j  is the jth column of A. each regime; that is, n,, goes to infinity when the sample 

9 I I 
1960 1970 1980 1990 

year 

(a) 

1970 1980 
year 

(b) 

year 


(4 

Figure 3. Time Plots of Growth Series of U.S. Monthly Interest Rates From February 1959 to February 1993. (a) 3-month treasury bills; (b) 
3-year treasury notes; (c) 3-month moving average of spread in logged interest rates. 
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Table 7. Results of the Threshold Test for Bivariate Growth Series of 
U.S. Monthly Interest Rates, Where p = 7 and the Asymptotic 

Chi-Squared Distribution has 30 df 

d 1 2 3 4 5 6 7 

mo = 50 

C(d )  
p value x lo4 

73.52 
. I6  

72.94 
.I9 

71.70 
.29 

74.03 
.I4 

68.73 
.72 

67.76 
.96 

67.26 
1.11 

ino = 100 

C ( d )  
p value x lo4 

79.28 
.03 

63.98 
2.96 

68.40 
.79 

72.34 
.23 

65.21 
2.06 

61.34 
6.32 

59.01 
12.11 

size n increases. Finally, for a limiting distribution of ? I ,  
see the recent work of Hansen (1996b). 

4. MODELING 

Identifying an adequate multivariate threshold model for 
a given dataset involves selecting many parameters. Except 
for the identification of the threshold variable zt, the most 
difficult problem may be the specification of the number of 
regimes; that is, identification of s. In some applications, 
past experience and substantive information may provide 
useful information on the choice of s. In others, the com- 
putational complexity and the data may restrict s to a small 
number, such as 2 or 3. In this section, I assume that zt and 
s are given. When s is unknown, I assume that it is either 
2 or 3 and use some criterion statistics to make a selection. 
In an informal way, one may divide the data into subgroups 
according to the empirical percentiles of zt-d and use the 
test statistic (8) to detect any model change within each 
subgroup. This analysis can provide a preliminary estimate 
of s and some possible locations for the thresholds. 

When zt and s are given, I use the AIC to select a model, 
assuming that 0 5 p < po; 0 5 q 5 qo;1 5 d 5 do. In some 
cases, one may use the test results of (8) for different d to 
select the delay parameter, resulting in further simplifica- 
tion. This is based on the idea that the test is most powerful 
when d is correctly specified. Given p, q, d, and s, the AIC 
of a multivariate threshold model in (2) is 

where L j ( p ,  q, d, s )  is the likelihood function of regime j 
evaluated at the maximum likelihood estimates of c j ,4,(3), 
and ,B,('). If the innovations are multivariate normal, then 
AIC reduces to 

with 
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where n, is the number of data points in regime j, the 
summation C,*is summing over observations in regime j, 
and 2;) are the residuals. 

The AIC has been used in the literature to select threshold 
autoregressive models (see Tong 1990). When p, q, and s 
are fixed, AIC is asymptotically equivalent to selecting the 
model that has the smallest generalized residual variance 
using the conditional least squares method. 

5. AN APPLICATION 

As an illustration, I apply the multivariate threshold 
model to study index futures arbitrage in finance. Forbes, 
Kalb, and Kofman (1997), referred to as FKK hereafter, 
have considered a Bayesian analysis of this problem. I also 
discuss the differences between their model and the model 
I obtain. 

An arbitrage trading consists of simultaneously buying 
(short-selling) a security index and selling (buying) index 
futures of the same security whenever the prices diverge 
by more than the cost of carrying the security index over 
time until maturity of the futures contract. Here the cost 
involves transaction cost, dividend yields of the security, 
interest rate, and many other factors. Some of the costs are 
known, but others are not. In the finance literature, Brenner 
and Kroner (1995) gave the expression 

where St is the logarithm of a security index price at time 
t ,  F t , ~  is the logarithm of the index futures price at time 
t with maturity T ,T ~ , T is the risk-free interest rate, q t , ~  
is the dividend yield on the security index, and ( T  - t )  
is the time to maturity of the futures contract. For model 
(22), z," should be weakly stationary and, for arbitrage to 
be profitable, z," must exceed a certain value in modulus, 
determined by transaction costs and other economic and 
risk factors. 

The data are the intraday transaction data for the S&P 
500 stock index in May 1993 and its June futures contract 
traded at the Chicago Mercantile Exchange. FKK used the 
data to construct a 1-minute bivariate price series with 7,060 
observations. I use the same series, but to avoid unduly in- 
fluence of big outliers, I replaced 10 extreme values (5  on 
each side) by the simple average of their two nearest neigh- 
bors. This step does not affect the qualitative conclusion of 
my analysis. 

The two series Ft,T and St contain a unit root. But equa- 
tion (22) indicates that they are co-integrated after adjust- 
ing the effect of interest rate and dividend yield. Conse- 
quently, the first differenced series with an error-correction 
term are used in the analysis. Let f t  = F ~ , T- Ft-I,T 
and st = St - StPl  be the return series and zt = 100z,*. 
Figure 1 shows the time plot of f , ,  s t ,  and zt.  All three 
series fluctuate around a fixed mean and within a fixed 
range. 

Let yt = ( f t ,st) ' .  The arbitrage theory and error-
correction representation suggest a three-regime bivariate 
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Table 8. Selection of Thresholds, Delay, and the Number of Regimes 
for the Growth Series of U.S. Monthly lnterest Rates 

?j 2 s* r^l p2 AIC 

7 1 2 -.I 6977 -463.98 
7 4 2 -.I 8372 -469.33 
7 1 3 -.24930 -.I3039 -798.79 
7 4 3 -.22817 -.I 0392 -800.97 

threshold , 

( 1 )  ( 1 )Icl + C:=,4i yt-i + P l z t - 1  + E~ 

if z t - d  5 r 1  

( 2 )  ( 2 )
c 2  + Cf=l4i yt-i + P 2 z t - 1  + ~t 

if rl < z t - d  < r 2  

6i(3)
Yt-2 + P 3 ~ t - 1f E t

( 3 )
C 3  + Cf=)=lI = /
I if 1-2 < z t - d ,  

(23) 


where rl < 0 < 7-2. The error-correction term can be z t - l  

for 1< 1 < p. I use z t - l ,  as it is common in the literature. 
In the notation of model (2), I have xt = zt-l with q = 1 
and v = 1. 

FKK entertained model (23) with p = 8. They used a 
Bayesian procedure with noninformative prior to estimate 
the model and obtained d = 1with P1 = -.I0381 and 1'2 = 

,12763. They suggested that in this particular application, a 

trading order was typically executed within 4 minutes, so I 
used (1, 2, 3, 4) as possible values of d. 

In my analysis, I begin with the multivariate threshold 
test of Section 2. Table 3 gives the test results of the statistic 
(8) for d = {1,2,3,4)  and p = 8. The recursive estimation 
starts with mo = 200, which is about 2 . 5 a .  The null 
hypothesis is that the series are linear, so that model (23) 
reduces to a bivariate linear model. The p values of the test 
statistics, based on the asymptotic chi-squared distribution 
with 36 df, are all close to 0. Therefore, as expected, the 
test strongly suggests threshold nonlinearity. The test also 
indicates that d = 1, because it corresponds to the maximum 
of the test statistic. The test results continue to hold for all 
p between 1 and 10. 

Turn to modeling. It is reasonable to assume that the 
prices are log-normal, so I use normal likelihood to eval- 
uate the AIC. For comparison purposes, I fixed p = 8 so 
that the selection is only on the thresholds. Based on the 
empirical range of z t P l , I assume that rl E [-.115, -.02] 
and r 2  E [.025, ,1451. Using a grid search method with 300 

points on each of the two intervals, the minimum AIC se- 
l e c t ~d = 1 with 1'1 = P.022574 and 1'2 = ,037673. The 
minimum AIC is -1.3099 x lo5. The empirical thresholds 
obtained are very different from those of FKK. It is inter- 
esting to compare the two models. 

Table 9. Least Squares Estimates and Their t Ratios for U.S. lnterest Rate Data 

Regime 1 Regime 2 Regime 3 

Ylt Y2t Ylt Y2t Ylt Y2t 

NOTE: The model 1s selected by mlnlmum AIC, and the two thresholds are -0 228169 and -.I03922 The numbers of data polnts for the three regimes are 137, 139, and 126 
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In practice, arbitrage is only one of many possible rea- 
sons for trading the security indexes. But it is impossible 
to identify a trade that is purely for arbitrage purposes. 
Consequently, the empirical thresholds i;, of model (23) 
are not determined solely by transaction cost. For the S&P 
500 index, it seems that market makers are more likely 
than individual investors to take advantage of an arbitrage 
opportunity. For market makers, the transaction cost may 
be low. 

5.1 Comparison 

Table 4 gives the parameter estimates and their t ratios of 
the model selected by the AIC. Several interesting features 
are shown. First, as anticipated, the return series f t  and st 
do not depend on the co-integrated series ztPl in the middle 
regime. This is in agreement with common sense discussed 
in Section 1. When the price difference is small, there is 
no arbitrage opportunity, so the two price series are not co- 
integrated. On the other hand, for the two outer regimes, 
the return series depend on the co-integrated series z t P l ;  
the t ratios for the coefficients of zt-1 are highly significant 
for returns of the S&P 500 stock index. On the contrary, 
the model of FKK fails to show this property. The t ra-
tios for the coefficients of ztPl for their middle regime are 

approximately .25 and 5.66, indicating some dependence 
on zt-1. Second, the past returns of the futures series ap- 
pear to be more informative in explaining the variations in 
both returns series; that is, more t ratios of f t - ,  are sta- 
tistically significant. This is in agreement with the finding 
of FKK and the common knowledge that futures series are 
more liquid. Third, similar to that of FKK, our model also 
shows the negative first-order (partial) coefficient in futures 
price changes; that is, for the futures return f t ,  the coeffi- 
cients of f t P l  are significantly negative in the lower regime 
and marginally negative in regimes 2 and 3. In finance, this 
phenomenon is referred to as the bid-ask spread-induced 
bounce. Finally, the significance of the constant term in 
the outer regimes is understandable. For threshold models, 
these drift terms are needed to ensure that the return series 
have zero unconditional means. 

In summary, the model I obtained shows all of the prop- 
erties discussed in FKK that are in agreement with finance 
theory. In addition, my model also agrees with the common 
expectation of threshold co-integration discussed by Balke 
and Fomby (1997). 

5.2 Further Analysis 

To better understand the system, consider a univariate 
model for the co-integrated series zt .  Under the arbitrage 

0 200 4W 6W 8W l ax i  

days 
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Figure 4. Time Plots of Daily Flow of the Jokulsa Eystri River (a) and Vatnsdalsa River (b) of Iceland in 1972- 1974. The exogenous variables 

are daily precipitation (c) and temperature (d), measured at the Hveravellir meteorological station. 
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argument, zt should follow a univariate self-exciting thresh- 
old autoregressive model with three regimes. The thresholds 
of this model should in theory be the same as those of the 
model for yt .  Furthermore, the models in the outer regimes 
should have higher tendency in mean reversion, because no 
prolonged arbitrage opportunity exists. Finally, the delay 
for zt should be the same as that of y,. 

Table 3 also gives the results of applying the threshold 
test (8) to zt with p = 7 and q = 0. The order 7 is obtained 
based on partial autocorrelation of zt and confirmed by the 
AIC. The results clearly reject linearity and, as expected, 
confirm that the delay for zt is d = 1. 

Next, I used AIC to search for the thresholds. The thresh- 
olds are assumed to be in the intervals [-.12, -.015] and 
[.02, ,1451. With a grid search method using 300 points 
on each interval and p = 7, the AIC selects thresholds 
i l  = -.017093 and i2= ,044086 with minimum AIC 
equal to 4,998.7. We further refine the search using in- 
tervals [-.04, -,011 and [.02, ,061 and 200 grid points for 
each interval. The refinement does not yield reduction in 
the AIC. Clearly, the selected thresholds for zt series are 
close to those for yt .  

The parameter estimates of the model for zt are shown 
in Table 5. For simplicity, by ignoring the marginally sig- 
nificant parameters in the outer regimes, the fitted model 
indeed confirms the expectation that zt has a stronger mean- 
reverting tendency in the outer regimes. The estimates of 
the coefficients of ztPl are .81, .93, and .88 for the three 
regimes. Although the differences in coefficients are not 
large, they do match with common belief. In sum, the empir- 
ical threshold model for zt is in agreement with that for y,. 

5.3 Symmetric Thresholds 

In this particular application, it may be reasonable to as- 
sume that the two thresholds are symmetric with respect 
to 0; that is, rl = -7-2 in model (23). Imposing symmetry 
substantially reduces the computation of threshold selec- 
tion via the AIC. For illustration and comparison, I assume 

Table 10. Results of Threshold Nonlinearity Test for Iceland Daily 

River Flow Data, Using Three Possible Threshold Variables 


and Three Bivariate AR Models 


Threshold variable zt 

272.4 164.7 144.7 
340.5 235.8 193.4 
343.3 242.5 203.3 

Threshold variable yrt 

231.9 186.9 188.3 
273.7 209.2 231.2 
303.2 241 . I  267.2 

Threshold variable y21 

123.2 86.7 84.2 
179.6 143.0 149.8 
203.5 177.2 175.2 

NOTE: Sample sze  IS 1,095, the exogenous variables used are daily precptaton lagged 1, 2, 
and 3 days and dally temperature lagged 0 and 1 day, and the startng pont of recursive least 
squares is 150, where p is the autoregressive order, d is the delay, and df stands for degrees 
of freedom of the asymptotic ch-squared dstributon. 
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that 7-2 E [.02, ,0851 and use a grid search method with 700 
points to jointly select the thresholds and the delay parame- 
ter. Table 6 shows the minimum AIC and the corresponding 
thresholds for d E {1,2,3,4).  The overall AIC selects d = 1 
with thresholds 7-2 = -7-1 = ,03122, reasonably close to the 
choices of asymmetric model. Figure 2 shows the scatter- 
plot of AIC versus threshold ra. The AIC is well behaved, 
with a unique minimum. The fitted model with symmetric 
thresholds shows the same features as those given in Table 
4. For example, the dependence of return series ft and st 
on zt-1 remains insignificant in the middle regime. 

Finally, residual analysis of the threshold models built 
shows no significant serial correlations, but some minor 
conditional heteroscedasticity. The latter may be due to the 
occasional large values in the data; see Figure 1. Because 
the sample size is large, minor conditional heteroscedastic- 
ity should not alter the results obtained in our analysis. 

5.4 Another Dataset 

To double check the threshold estimation, I also apply the 
symmetric threshold model to a second dataset, compris- 
ing the same variables for November 1993 with contract 
expiration in December 1993. This new dataset has 7,693 
observations. Again, I replace the 10 most extreme values 
by the averages of their two nearest neighbors. The pro- 
posed test again confirms threshold nonlinearity with d = 1. 
Specifically, with p = 10 and q = 1, the C ( d )  statistics 
are 103.46,84.70,98.96, and 106.28 for d = 1, . . . , 4 .  The 
asymptotic distribution of these statistics is chi-squared, 
with 44 df. 

Using symmetric thresholds with ra E [.015, .15] and 700 
grid points, the AIC selects i2= .040613, close to the 
,03122 obtained for the May data. 

6. MORE APPLICATIONS 

6.1 Analysis of U.S. Interest Rates 

As a second example, we consider U.S. monthly interest 
rates from 1959.1 to 1993.2. The series used are the 3- 
month treasury bills and 3-year treasury notes, representing 
short-term and intermediate series in the term structure of 
interest rates. Denote the two interest-rate series by Yl t  and 
Yat. I use the growth series; that is, use y ,  = ( y l t ,  yat) ' ,  
where y,, = In(&) -ln(Y,,t-l) .  Figures, 3 (a) and (b), show 
the time plots of y t .  Each y,, series has 409 observations 
and fluctuates around a fixed level and within a fixed range, 
indicating weak stationarity. 

Let xt= ln(Yl t )- ln(Yat)be the "spread" in the logged 
interest rates. Under normal economic conditions, interest 
rates are positively correlated with maturities. The corre- 
lation between interest rates and maturities may become 
negative when the U.S. economy is in contraction (or re- 
cession). (In the economic literature the latter situation is 
termed an "inverted yield curve.") Consequently, xt as-
sumed negative values more often than positive ones. Thus 
the magnitude of xt may indicate the status of the U.S. 
economy, and it seems reasonable to use xt as a threshold 
variable in my analysis. However, to reduce random fluctu- 
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ations in U.S. monthly interest rates and to incorporate the 
common knowledge that interest rate changes were made 
carefully using perhaps quarterly economic information, I 
use a 3-month moving average of xt as the threshold vari- 
able. More specifically, the threshold variable zt is defined 
as 

which is the 3-month "average spread" in logged interest 
rates. Figure 3(c) shows the time plot of z t .  As expected, zt 
assumed positive values only in the middle 1970s and early 
1980s, when the U.S. economy was weak. 

My analysis starts with threshold nonlinearity test. Under 
the null hypothesis of linearity, both the AIC and the chi- 
squared test of Tiao and Box (1 98 1) select a bivariate AR(7) 
model for yt .  Using p = 7 and zt of (24) as the threshold 
variable, I perform the proposed test of Section 2 using 
different starting numbers of observations for the recursive 
least squares. The test results, given in Table 7, clearly reject 
the linear hypothesis. The test statistics also suggest using 
delay d = 4 or d = 1, corresponding to delay by a quarter 
or a month. I rerun the test with recursive least squares 
starting at mo = 60 and 75.The results confirm nonlinearity 
and possible values of d. Consequently, in further analysis 
I use d E {1 ,4} .  

With 409 observations, p = 7 ,  and d E { 1 , 4 ) ,  I enter- 
tain the possibilities of multivariate TAR models with two 
or three regimes. Therefore, there are four combinations 
of d and s, where s is the number of regimes. For each 
combination of d and s, we use a grid search method and 
AIC to select the thresholds. For two-regime models, we as- 
sume the threshold rl E [-.30, ,051 and use 300 grid points. 
For three-regime models, we assume rl E [- .30,-,201 and 
7-2 E [-.15, ,051. The numbers of grid points are 70 and 50, 
for rl and 7-2. The intervals are chosen based on the range 

I 

-10 -5 0 5 
threshold 

Figure 5. Scatterplot of AIC Versus Temperature for lceland River 
Flow Data Using a Two-Regime Bivariate TAR(15) Model. 
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of zt. We summarize the results in Table 8. From the ta- 
ble, it is clear that three-regime models are preferred over 
two-regime models. Between the two three-regime models, 
d = 4 has a smaller AIC, but the difference is very small. 
In sum, (6,d,8)= ( 7 , 4 , 3 )is selected by AIC for the data. 

Finally, there is no particular reason to assume that the 
autoregression order must be the same in all regimes. In- 
deed the estimation results with p = 7 show many in- 
significant parameters. We further refine the model by us- 
ing different AR orders for different regimes. Let pi be the 
AR order for the ith regime. The AIC selects the orders 
( p l ,  p2> p3) = (2>6 , 7 )  for the three regimes. Table 9 gives 
the conditional least squares estimates of the refined model. 
Residual analysis of the model indicates there are no sig- 
nificant serial correlations in the residuals or the squared 
residuals. From Table 9, I make the following observations. 
First, as anticipated, the growth series of interest rates are 
concurrently correlated. The concurrent sample correlations 
of the residuals are .74, .73, and .69 with asymptotic stan- 
dard errors .085, .085, and .089 for the three regimes. Sec- 
ond, the dynamic structure of the two growth series de- 
pends on the status of U.S. economy. In regime 1, which 
presents economic expansion periods with 3-month interest 
rate much lower than 3-year rate, the two growth series be- 
haved basically as uncoupled processes, even though each 
series shows some minor autocorrelations. Using observa- 
tions in this regime only, the likelihood ratio test for zero 
off-diagonal elements in the autoregression matrices is 7.63, 
which corresponds to a p value of . l l  under the asymptotic Xz distribution. In regime 2, which represents moderate or 
stable economy, there exists a unidirectional relation from 
the short-term rates to the longer-term rates. The conclu- 
sion is supported by a likelihood ratio test of 6.51, which 
gives a p value of .37 under the asymptotic Xi distribution. 
In regime 3, which represents economic slowdown or re- 
cession, feedback relation exists between the two growth 
series. 

6.2 Analysis of Iceland River Flow Data 

In this section I demonstrate that the proposed multivari- 
ate threshold models are also applicable outside the realm 
of economics by considering briefly two daily river flow 
series of Iceland. The data were provided by Tong (1990), 
who gave geographical and meteorological conditions of the 
rivers and analyzed the series individually. The dependent 
variables are the daily river flow, measured in m3sP1, of the 
Jokulsa Eystri River (denoted by y l t )  and Vatnsdalsa River 
( y z t )from 1972 to 1974. The exogenous variables are daily 
precipitation ( x t )in millimeters (mm) and temperature ( z t )  
in degrees Celsius ("C) collected at the meteorological sta- 
tion at Hveravellir. Following Tong (1990), the precipitation 
is shifted forward by 1, because the recorded value is the ac- 
cumulated rain at 9 A.M. from the same time the day before. 
There are 1,095 observations after the shift in precipitation. 
Figure 4 shows the time plots of the four variables. Some 
nonlinear features of the river flow series, such as sharp 
rises and slow declines, are evident from the plots. 

The strong nonlinearity of yt = ( y l t ,  gat)' is supported 
by the proposed threshold test in (8). Table 10 gives the 

7 
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test results for three bivariate autoregression models and 
three possible threshold variables. The exogenous vari-
ables used in the tests are lagged values of precipitation 
( x t P l ,  xt-z,  ~ ~ - 3 )and contemporaneous and lagged values 
of temperature ( z t ,  z t P l ) .  The threshold variables used are 
lagged values of the individual river flow and the contem- 
poraneous and lagged values of daily temperature. I do not 
use precipitation as a threshold variable, because the distri- 
bution of daily precipitation is not purely continuous. All of 
the tests are highly significant compared with their asymp- 
totic chi-squared distributions; most of the p values are close 
to 0. In fact, the significance of the tests is insensitive to 
the selection of autoregressive order, ranging from AR(4) to 
AR(22), that I have considered. Based on the highly signifi- 
cant test result and the fact that temperature influences snow 
melting that affects river flows, I select zt as the threshold 
variable. Furthermore, it seems logical to focus on two- 
regime TAR models in model selection, for there is only a 
single freezing point. 

Because temperatures in the drainage areas of the two 
rivers depend on the altitudes and distances from the sea, I 

Table 11. Conditional Least Squares Estimates and Their t 

use AIC and the conditional least squares method to refine 
the estimation of the threshold. Using 400 equally spaced 
grid points in the interval [-10°C, 6"C] and the AIC, I ob-
tain f l  = -.42394 for all three vector autoregressive models 
in Table 10. Figure 5 shows the scatterplot of AIC versus 
the possible threshold values for the AR(15) model. The se- 
lection is clear. The selected threshold is close to the freez- 
ing point and is in good agreement with the nonparametric 
estimation result showed in figure 7.47 of Tong (1990, p. 
439) for the univariate relation between ylt and zt. 

Finally, I focus on the bivariate TAR(15) model and use 
AIC to select the autoregressive order for each regime. The 
selected model is given in Table 11 with AIC = 16,943.7. 
The numbers of observations in each regime are 479 and 
601, and the residual covariance matrices are 

and 

Ratios for a Selected Bivariate Two-Regime TAR(15) Model 
for the Iceland River Flow Data 

Regime 1 Regime 2 

Yl t  Y2 t  Y l t  Y2t 

Coefficient t ratio Coefficient t ratio Coefficient t ratio Coefficient t ratio 

NOTE: The threshold value is -.42394'~, and the numbers of observatons in each regime are 479 and 601. The exogenous var~ables are dally preciptation xr and temperature zt 



1202 Journal of the American Statistical Association, September 1998 

Residual analysis indicates that the fitted model is adequate 
with no strong serial correlations in the residuals. But a 
few clusters of large residuals remain, suggesting the pos- 
sibility of minor periodic behavior in the river flow caused 
by seasonality. For comparison, the AIC for a bivariate lin- 
ear AR(15) model using the same exogenous variables is 
20,422.8. 

The model in Table 11 has some interesting features. 
First, the models in the second regime have larger in- 
novational variances. This is not surprising, because the 
second regime consists of days with temperature exceed- 
ing -.42394"C, which includes days with rain and snow 
melting in Iceland. Second, the model shows a feedback 
relation between the two rivers. I interpret this relation- 
ship as an indication of missing useful variables, such as 
observations of evaporation and ground moisture content. 
These missing variables can influence the effects of pre- 
cipitation on river flow. Third, as expected, the effects of 
precipitation on river flows are more pronounced in the 
second regime; see the larger t ratios of the coefficients 
of X & i .  

7. CONCLUDING REMARKS 

In this article I have proposed a test statistic for detect- 
ing threshold nonlinearity in a vector time series and a pro- 
cedure for building multivariate threshold models. I have 
illustrated the proposed test and procedure via analysis of 
high-frequency financial data, monthly U.S. interest rates 
and two daily river flow series of Iceland. The models ob- 
tained are in agreement with common expectation. 

Many problems remain open for the multivariate thresh- 
old models. For example, the sufficient and necessary con- 
ditions for stationarity of the model are largely unknown 
(see a special case in Chan et al. 1985) and the search for 
an appropriate threshold variable zt in an application needs 
a careful investigation. 

[Received J~rly 1997. Revised February 1998.1 
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