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WALD-TYPE TESTS FOR DETECTING 

BREAKS IN THE TREND FUNCTION 


OF A DYNAMIC TIME SERIES 


TIMOTHYJ. VOGELSANG 
Cornell University 

In this paper, test statistics for detecting a break at an unknown date in the trend 
function of a dynamic univariate time series are proposed. The tests are based on the 
mean and exponential statistics of Andrews and Ploberger (1994, Econornetrica 62, 
1383-1414) and the supremum statistic of Andrews (1993, Econornetrica 61,821-
856). Their results are extended to allow trending and unit root regressors. Asymp- 
totic results are derived for both I(0) and I(1) errors. When the errors are highly 
persistent and it is not known which asymptotic theory (I(0) or I(1))provides a 
better approximation, a conservative approach based on nearly integrated asymp- 
totics is provided. Power of the mean statistic is shown to be nonmonotonic with 
respect to the break magnitude and is dominated by the exponential and supremum 
statistics. Versions of the tests applicable to first differences of the data are also 
proposed. The tests are applied to some macroeconomic time series, and the null 
hypothesis of a stable trend function is rejected in many cases. 

1. INTRODUCTION 

Inherent in statistically modeling economic time series is the problem of speci- 
fying the deterministic trend function. Incorrect specification of the trend func- 
tion can be problematic because estimates of the parameters governing the dynamic 
behavior of the model may be inconsistent. For example, Nelson and Kang (198 1) 
demonstrated that inappropriate detrending of a random walk process can lead to 
spurious estimates of dynamic parameters. In addition, inference is often ad- 
versely affected when the trend function is misspecified. In the context of testing 
for a unit root, Perron (1988, 1989, 1990) showed that failure to include a time 
trend (when the series is trending) or failure to account for possible breaks in the 
trend function can result in highly misleading inference. 

In practice, it is often assumed that parameters in the deterministic trend func- 
tion do not vary over time. However, for many economic time series, even casual 

I thank Pierre Perron for many helpful suggestions and guidance and Gregory Chow, Rene Garcia, and Robin 
Lumsdaine for helpful comments on an earlier draft. I thank Peter Phillips and two referees for constructive com- 
ments that helped to substantially improve the paper. Any remaining errors are of course my own. This paper is based 
on Chapter 4 of my dissertation and was supported in part by the International Finance Section at Princeton Uni- 
versity and the Center for Analytic Economics at Cornell Universiry. Robin Lumsdaine kindly provided some of the 
data used. Address correspondence to: Timothy J. Vogelsang, Department of Economics, Uris Hall, Cornell Uni- 
versity, Ithaca, NY 14850-7601, USA; e-mail: tjv2@cornell.edu. 

818 0 1997 Cambridge Uni\.erslt); Press 0266-4666/97 $9.00 + . I0  

http:tjv2@cornell.edu


TESTING FOR A BREAK IN TREND 819 

observation of the data can suggest the possibility of an unstable trend function 
over time. The longer the time span being investigated, the greater the chance that 
some form of structural change has occurred in the trend parameters. It is impor- 
tant to detect potential structural change in the trend function to arrive at a rea- 
sonably specified model. 

In the time series econometrics literature, a great deal of attention has recently 
been given to the subject of detecting structural change. Earlier work on structural 
change has confined its focus to detecting parameter breaks in a univariate context 
under restrictive assumptions such as independent and identically distributed (i.i.d.) 
data, nontrending data, and/or stationary data, that is, no unit roots. More recent 
work has successfully relaxed many of these restrictions. Andrews (1993) relaxed 
the i.i.d. assumption by developing Wald, Lagrange multiplier (LM), and likeli- 
hood ratio (LR) tests in a general regression framework that allows dependent and 
heterogeneously distributed data, although trends are not permitted. Hansen (1 990) 
developed an LM test in a similar framework. Kramer, Ploberger, and Alt (1988) 
developed a CUSUM test valid in the presence of serial correlation. The case of 
trending data with stationary errors was considered by Kim and Siegmund (1989) 
and by Chu (1989) and Chu and White (1992), with the latter two studies allowing 
for serial correlation in the errors. For the case of trending data with a unit root, 
Banerjee, Lumsdaine, and Stock (1992) (hereafter BLS, 1992) proposed a test for 
detecting breaks in the slope of the trend function in the presence of a unit root. 
Perron (1991) proposed tests of structural change in the polynomial trend of a uni- 
variate dynamic time series. He derived results for both stationary and unit root er- 
rors and suggested a conservative test when the order of integration is unknown. 
Results within a Bayesian framework were provided by Zivot and Phillips (1 994). 
Tests for multiple structural changes were proposed by Bai and Perron (1 997). Fi- 
nally, recent tests valid within a multivariate framework, including cointegration, 
have been explored by Hansen (1992a) and Bai, Lumsdaine, and Stock (1997). 

The purpose of this paper is to add to the literature and provide a procedure that 
can be used to test for structural change in the trend function of a univariate time 
series that allows serial correlation in the errors. The trend function is modeled as 
a polynomial in time. Asymptotic results are obtained for both I(0) and I(1) er- 
rors. The alternative hypothesis is a single break in the trend function at an un- 
known date. Because the date of the break is only identified under the alternative, 
test statistics are constructed using the methodology of Andrews (1993) and An- 
drews and Ploberger (1994). The tests involve computing Wald statistics for a 
break in trend over a range of possible break dates and taking the supremum and 
exponential averages of the statistics. Because the results of Andrews (1993) and 
Andrews and Ploberger (1994) do not permit trending regressors or unit root 
errors, their results are extended to apply in the present case. When the errors are 
highly persistent and it is not known a priori whether the errors are better char- 
acterized as being I(0) or 1(1), a conservative approach is suggested. 

To justify the conservative approach, asymptotic results are provided model- 
ing the errors as local to unity following Phillips (1987), Chan and Wei (1987), 
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and others. Simulating the asymptotic distributions, it is shown that the distribu- 
tion functions of the statistics are monotonically decreasing with respect to the 
local to unity parameter. Therefore, a conservative test can be constructed using 
the unit root critical values. The size and power of the conservative tests are 
explored using local asymptotic analysis and finite sample simulations. One par- 
ticularly interesting result obtained is that in certain empirically relevant cases 
power can be nonmonotonic with respect to the magnitude of the break. This 
result compares to those of Perron (1991), where nonmonotonic power was found 
for dynamic extensions of the statistics of Gardner (1969) and MacNeill(1978). 

The remainder of the paper is organized as follows. In Section 2, the model and 
statistics are presented. In Section 3, the limiting distributions under the null 
hypothesis are derived and critical values are tabulated. Local asymptotic size is 
also examined in this section. In Section 4, local asymptotic power is explored for 
the special case of a model with a simple linear trend. Finite sample results using 
simulation experiments are provided in Section 5. Striking power results are ob- 
tained for the case of two breaks in the trend function. In Section 6,versions of the 
tests applicable to first differences of the data are discussed. The size and power 
of the first-difference tests are compared and contrasted with the original statis- 
tics. An empirical application is presented in Section 7 using the international 
postwar GNP/GDP data used by BLS (1992), the international historic real GDP/ 
GNP series considered by Kormendi and Meguire (1990), and the data used by 
Nelson and Plosser (1982). The results indicate that many macroeconomic time 
series have trend functions with parameters that are not constant over time. Sec- 
tion 8 has concluding comments, and proofs of the theorems in the text are given 
in the Appendix. 

2. DETECTING TREND BREAKS: THE MODEL AND TEST STATISTICS 

Consider the following data-generating process (DGP) for a univariate time se- 
ries process, {yt)T, with a break in trend at unknown time T,', 

where f ( t )  = ( l , t , t2 , ...,tp), g(t,T,') = l ( t  > T,'){l,t - Tbc,(t - T , ' ) ~,..., 
( t  - Ti)P), 0 = (Oo,Ol,...,O,)', y = (yo,yl,...,y,)',A(L) = 1 - a l L  - ... -
ak+  Lk+', and 1 (.) is the indicator function. The autoregressive polynomial A(z) is 
assumed to have at most one real valuedroot on the unit circle and all others strictly 
outside the unit circle, and the error process {e,) is assumed to be i.i.d. (0, a:) with 
finite fourth moment. Under (1) and (2), {y,) is an autoregressive, stationary orunit 
root, process around apth-order deterministic time trend with a break at date T,". 
The null hypothesis of a stable trend function is given by 

H,: y = 0. (3) 

Under the alternative, at least one of the trend polynomials has a break, 

H I  : yi f 0 for at least one i = O,l,. .. ,p.  (4) 
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For example, i fp  = 1, then for t 5 TbCthe intercept and the growth rate of {y,) are 
O0 and 01, respectively, whereas for t > T,' the intercept and growth rate are (Bo + 
yo) and (6, + y,) .  For the asymptotic analysis, it is assumed that the ratio of the 
true break date, Ti ,  to the sample size, T, remains a fixed proportion, A,, as T 
increases, that is, T: = ACT. 

It is convenient to factor the polynomial A(L) according to the augmented 
Dickey-Fuller (ADF) procedure as A(L) = (1 - aL) - C(L)(l - L), where 
C(L) = Xf= c,Li, ci = -Xjk=+A aj,  and a = C.r2: aj.  Applying this factorization 
to v, and defining n- = a - 1 gives 

k 

A v , = ~ v , - ~+ ~ c , A v , - i+ e,. 

If a is modeled local to unity as a = 1 - C/T where E is the local to unity 
parameter, then by standard results T -1/2v[,fl j uw,(r), where a *  = u:/(l -
C(l))*, w,(r) = SOrexp(-C(r - s))dw(s), where w(r) is a standard Wiener 
process, [rT] is the integer part of rT, and * denotes weak convergence. Note 
that 1 - C(l)  # 0 because {v,) has at most one unit root. When {v,) is I(O), then 
T - I i 2  C:L:'U, azA (1) - '~ ( r ) .  

Using A(L) and the ADF factorization, (1) can be rewritten as 

where d(t,T:) = {l ( t  = Tf + I), l ( t  = T,' + 2),...,l ( t  = T," + k)), 17 = 

(v,, v2,. . . ,vk) ' ,  and p, S, and v are implicitly defined by f ( t )P = A(L)f (t)O and 
g( t ,T;)S + d(t,T;)r] = A(L)g(t,T,') y. Because the one-time dummy variables 
d(t,Tl) are asymptotically negligible, it is convenient to drop them from the 
model and consider 

Under the null hypothesis of no structural change, y = 0, and it directly follows 
that S = 0. Therefore, test statistics can be constructed by estimating (6) and 
testing the hypothesis that S = 0. Writing the model in the form given by (6) is 
useful because serial correlation in the errors is handled by including enough lags 
of Ay,. Because (6) is routinely estimated in unit root testing, tests based on (6) 
can be routinely computed in practice. 

Because A, is a parameter that is present only under the alternative hypothesis, 
this testing problem falls within the class of tests proposed by Andrews and 
Ploberger (1994). Andrews and Ploberger (1994) derived optimal test statistics 
under quite general conditions that apply to models in which some parameters are 
present only under the alternative. These tests are of average exponential form 
over all possible values of the parameters that are present only under the alternative. 

Suppose that (6) is estimated by ordinary least squares (OLS) using the break 
date T, = [AT], where A E [A", 1 - Ax] C (0,l). Note that the break date used in 
the estimation, Tb,may differ from the true break date, Tg. Let W:(A) denote the 
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Wald statistic for testing S = 0. Define the discrete set of possible break dates to 
be A = (T,* ,Tc + 1,.. . ,T - Tc), where T,* = [A*T] .The parameter A* is often 
called the amount of trimming. Trimming, or the requirement that the set of break 
dates maps into a closed subset of (0,1), is necessary for the asymptotic results to 
be nondegenerate. Two statistics from the class of statistics proposed by Andrews 
and Ploberger (1994) are 

Mean W; = T -' W;(T,/T), 
TbEA 

T-' T ~ E A  W;(Tb/T))).exp(t 
These statistics will be in the class of optimal statistics provided the regression 
has stationary and nontrending regressors. Therefore, whenp = 0 and {v,)  is I(O), 
the mean and exponential tests are optimal, but whenp r 1 andlor {v,)  is I ( l ) ,  the 
optimality results do not apply. It is of interest to note that the Exp W; statistic is 
designed to have power in detecting alternatives distant from the null, large breaks, 
whereas the Mean W; statistic is designed to have power in detecting alternatives 
close to the null, small breaks. 

A third related statistic proposed originally by Quandt (1960) and generalized 
by Andrews (1993) is the supremum statistic defined as 

Sup W; = SUP W: (Tb/T). 
TbE.i 

The Sup W: statistic is not a member of the class of optimal statistics proposed by 
Andrews and Ploberger (1994) but is useful because it provides an estimate of the 
true break date ratio A,. See Bai (1993) for details on setting confidence intervals 
for estimates of A, using the supremum statistic in regression models. 

The Mean W;, Exp W:, and Sup Wf statistics have received some attention 
in recent studies. Bai et al. (1997) considered all three statistics in testing for a 
mean break in multivariate models. Hansen (1992a) examined the Mean W; 
and Sup W: statistics in testing for structural change in cointegration models, 
whereas BLS (1992) used the Sup W: statistic to test for trend breaks in mod- 
els with unit root errors. 

3. THE LIMITING DISTRIBUTIONS UNDER THE NULL HYPOTHESIS 

In this section, the limiting behavior of the statistics under the null hypothesis 
of no break in the trend function is investigated. The asymptotic results depend 
on whether {v , }  is I(0) or 1(1), and separate theorems are given for the two 
cases. To facilitate the presentation of the results, some additional notation is 
needed. Define F(r)  = (1 , r , r2,...,rP) and G(r,A) = l ( r  > A)(l,r  - A,(r -
Al2,...,( r - A)P) = 1( r  > A)F(r - A), where r E [0,1]. Note that F(r)  and 
G(r, A) are ( p  + 1) row vectors of functions defined on the unit interval and that 
T~f ( t ) = F(t/T) and r lg(t,  Tb) = G(t/T, A), where T ,  is a ( p  + 1) X ( p  + 1) 
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diagonal matrix with diagonal elements 1,T -',T 2 , .  ..,T -P. Let G( r ,  A) and 
ii;,(r) denote, respectively, the residuals from the projections o f  G( r ,  A) and 
w,(r) onto the space spanned by F(r ) ,  for example, G(r ,A)  = G(r ,  A) -
F(r)(S, 'F(r) 'F(r) dr)-' SJ F(r) 'G(r ,  A) dr. Using this notation, the limiting re- 
sults are compactly summarized in the following theorems. 

THEOREM 1. Let {y,)  be the stochastic process described by (1)-(3). Zfthe 
process {u,) is I(O), that is, la]< 1 ,  as T +co: 

= W:(A) 

uniformly in A, 

Mean W; - -'* W y  (A) dA - Mean W:, 

Exp W; + log {k:-AAexp(iw ( A ) )  dA} = Exp W:', 

Sup W; =$ Sup W:(A) dA = Sup W,P. 
AE[AX.1-A*] 

THEOREM 2. Let {y,)  be the stochastic process described by (1)-(3). Ifthe 
process {v,) is nearly I ( l ) ,  that is, a = 1 - G/T,  as T -+ m: 

W;(T,IT) a H;(A)'H,P(A)- ~ H ; ( A )- w:(A) 

uniformly in A, 

Mean W; =. k:-** W," (A) dA = Mean W,:, 

SUP W; * SUP W/(A)  dA = Sup e,
/ \ € [ A - , I - A " ]  

where 

(11 1 1 

- i?(r7A)'%B(r)dr ~(r ,A)%.(r)  d r ) / l  %%(rI2dr. 
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Note from the theorems that the limiting distributions of the statistics are non- 
standard. When p = 0,  Theorem 1 is a special case of Andrews and Ploberger 
(1994),Andrews (1993),and Bai et al. (1997).Critical values from those studies 
are available for a range of values for A*. For the other cases, the limiting results 
are new, and critical values were obtained using simulation methods. When the 
errors are I(0) and purely I ( 1 ) (8  = O ) ,  the distributions are free of nuisance 
parameters and depend only onp  and A*. Asymptotic critical values forp = 0,1,2 
and A* = 0.01,0.15 are tabulated in Table 1 for the I(0)case and Table 2 for the 
I ( l ) ( 6  = 0 )  case. The critical values were calculated by simulation methods 
using N(0, l )i.i.d. random deviates to approximate the Wiener processes implicit 
in W,"(A)and %:(A). The integrals were approximated by the normalized sums 
of 1,000 steps using 10,000 replications. 

Several observations can be made based on the tabulated critical values. First, 
as p increases, the distributions become skewed farther to the right. Second, as 
the trimming is increased, the critical values become larger; however, the critical 
values of the supremum statistic do not depend heavily on the amount of trim- 

TABLE1. Asymptotic distributions of Mean W:, Exp W;, and Sup WTP 

Mean W," Exp W: Sup W: 

% p = o  p = l  p = 2  p = o  p = l  p = 2  p = o  p = l  p = 2  

Stationary Case, A* = 0.01 
1.01 0.08 0.34 0.67 
1.14 0.11 0.40 0.78 
1.30 0.14 0.47 0.91 
1.49 0.17 0.57 1.06 
2.56 0.49 1.20 1.92 
4.74 1.59 2.76 3.70 
5.65 2.20 3.52 4.41 
6.69 2.80 4.18 5.22 
8.14 3.63 5.24 6.24 

Stationary Case, A* = 0.15 
0.56 -0.30 -0.12 0.13 
0.67 -0.28 -0.06 0.24 
0.77 -0.26 0.01 0.34 
0.92 -0.23 0.09 0.50 
1.76 0.06 0.70 1.35 
3.58 1.23 2.33 3.18 
4.41 1.89 3.13 3.98 
5.25 2.53 3.88 4.68 
6.47 3.46 5.05 5.78 

Note: The critical values were calculated via simulation methods using N ( 0 ,1) i.i.d, random deviates to approximate 
the Wiener processes defined in the distributio~~s given by Theorem 1. The integrals were approximated by the 
~~ormalizedsums of 1,000 steps using 10,000replications. 
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TABLE2. Asymptotic distributions of Mean W:, Exp W:, and Sup W: 

Mean W: Exp W: SUPc' 
% p = o  p = l  p = 2  p = o  p = l  p = 2  p = o  p = l  p = 2  

Unit root case, A" = 0.01 
.O1 0.54 1.50 2.55 0.33 1.15 2.12 3.35 7.39 10.54 
.025 0.65 1.72 2.89 0.42 1.37 2.44 4.01 8.18 11.54 
.05 0.77 1.95 3.24 0.53 1.60 2.74 4.66 8.99 12.44 
.10 0.95 2.24 3.68 0.69 1.91 3.17 5.57 10.09 13.65 
.50 1.91 3.96 6.00 1.82 3.69 5.50 9.74 15.00 19.21 
.90 3.32 7.14 10.18 4.02 6.98 9.58 16.14 22.60 28.11 
.95 3.91 8.22 11.74 4.84 8.18 11.09 18.20 25.27 31.35 
.975 4.53 9.29 13.17 5.68 9.27 12.50 20.23 27.76 34.45 
.99 5.35 10.54 14.80 6.69 10.56 14.42 22.64 30.44 38.43 

Unit root case, h* = 0.15 
.01 0.28 1.02 1.78 -0.12 0.70 1.69 
.025 0.35 1.17 2.10 -0.05 0.94 2.08 
.05 0.44 1.38 2.40 0.05 1.19 2.39 
.10 0.59 1.63 2.79 0.23 1.53 2.86 
.50 1.51 3.17 4.86 1.52 3.49 5.34 
.90 2.87 6.12 8.65 3.87 6.90 9.54 
.95 3.43 7.19 10.00 4.71 8.12 11.07 
.975 3.99 8.07 11.32 5.57 9.24 12.47 
.99 4.65 9.17 13.02 6.60 10.54 14.34 

iV(~t(,:The critical values were calculated ria simulation ~ilethods using M(0 , l )  i.i.d. random deviates to approximate 
the W~encr processes defined in the distributions given by Theorem 2. The integers were approximated by the 
normalized sums of 1,000 steps using 10,000 replications. 

ming. Third, the limiting distributions are different in the I(0) case as compared 
with the I(1) case. If it is known a priori that the errors are I(O), then the critical 
values from Table 1 should be used. If it is known a priori that the errors are 
purely [(I), then the critical values from Table 2 should be used. 

In practice, it is often the case that the errors are highly persistent ( a  between 
0.8 and I), in which case it may not be obvious which distribution theory (I(0) or 
I(1)) provides a better finite sample approximation. In this situation, the local to 
unity asymptotic results of Theorem 2 can provide an approximation. Given a 
value of a in a finite sample, the corresponding value of E can be obtained by ii = 
T(l - a )  and asymptotic critical values obtained from Theorem 2. The practical 
limitation of this approach is that when a is not known, E cannot be consistently 
estimated from the data. One way around this problem is to use a conservative 
approach. Given a nominal significance level, a simple conservative test can be 
constructed by using the largest critical value across values of Z. This test will 
have asymptotic size equal to the nominal level by construction. This approach is 
further simplified because, given a nominal level, the critical values of the sta- 
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tistics are monotonically decreasing in 5. Therefore, a conservative test can be 
constructed by using the E = 0 critical values that are given in Table 2. 

To demonstrate that the critical values are monotonically decreasing in 5 ,  lim- 
iting distributions for E = 0,4,8,. ..,16,20 were simulated using the same tech- 
niques as those used for Tables 1and 2. Plots of the distribution functions for the 
mean statistic withp = 1are given in Figure 1. Plots for other values ofp and the 
other two statistics are qualitatively similar and are not reported. For all nominal 
levels, the critical values are the largest for E = 0. 

An attractive feature of this conservative approach is that the size of the test 
will be asymptotically correct. A drawback of this conservative approach is that 
power will be penalized when E > 0 (when the errors are not exactly I(1)). One 
way to investigate the potential power loss is to examine the rejection probabil- 
ities under the null hypothesis for particular values of E > 0. Conditional on 5 ,  
these rejection probabilities can be interpreted as asymptotic size. Using the sim- 
ulated asymptotic distributions, asymptotic size of the statistics for d = 
0,2,4,. ..,18,20 was computed and is plotted in Figure 2. Results are only re- 
ported for p = 1 and are qualitatively similar for other values of p. The nominal 
size was 0.05. From the figure, asymptotic size is 0.05 when E = 0, which is true 
by construction. As 6 increases, asymptotic size steadily decreases as expected. 
Thus, power of the conservative tests will be less than power of the tests had d 
been known, and this loss in power increases as E grows. A detailed examination 
of the power properties of the tests is given in the next section. 

X 

FIGURE 1. Cumulative distribution function of Mean W;, nearly I(1) errors, p = 1 .  
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FIGURE2. Conservative test using h = 0 critical values. Asymptotic size, 5% nominal 
level, p = 1. 

4. LOCAL ASYMPTOTIC POWER: p = 1 

This section explores the local asymptotic power properties of the statistics for 
the case of p = 1 .  Attention is focused onp  = 1 to keep the exposition as simple 
as possible. Results are only reported for the case where the errors are nearly I(1) 
and the alternative is a shift in slope (yo= 0).This parameterization is appropri- 
ate for many macroeconomic time series. A local asymptotic analysis for I (0 )  
errors can be found in the working paper version of this paper (Vogelsang, 1994). 

Consider the local alternative y ,  = T- ' /*Y, ,  which leads to the model 

yt = 80 + 81t + ~ - " * 7 ~ 1 ( t  (10)> Tg)( t- T i )  + u,. 
Note that the change in slope converges to the null value of zero at the usual rate 
of T Transforming (10)using A ( L ) yields the following model: 

Ayt = Po + Pit + T-"*Sol(t  > T i )  + T - ~ / ' S ~  T i )1(t> T;)(t -
k 


wherePo = (1- a)O0+(a  - C(1) )8 , ,p1= ( 1  - a)B,, So = ( a- C ( l ) ) y l ,S1= 

( 1  - a ) y 1 ,and et = er + T -1/2ylC ~ Z ;  = I cj. Using the 1 ( t  T$ + i + 1 )zJk=z+ 
notation from the previous section, G ( r ,A) = 1 ( r  > A)( l ,r - A) and let 
G,(r,A) = 1 ( r  > A)(r - A). 
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The following theorem provides the limiting distributions of the statistics un- 
der model (10) with nearly integrated errors. 

THEOREM 3. Let {y , )  be the stochastic process described by ( I ) ,  ( 2 ) ,and 
(10).Ifthe process {u,} is nearly 1(1), that is, cu = 1 - ZIT, as T +co: 

w,'(T&") 3 [vlLz(A,A,)' + Ll (A)']Lz(A, A)-' [LZ(A,A,)v + LI (A)] 

= L(A) 

Mean W: 9 
A* 


EXP W+* log { l:-AAexp (iL(A))  dA} ,  

Sup W: 3 Sup L(A)dh,  
A t [ A U , l - A % ]  

where 

l1G ( ~ , A ~ ) [ K G ~ ( ~ , A , )+ iZz(r)1 dr 

[KG,( r ,A,) + iZ, ( r ) ]  dr 

K = Y 1 / u ,  v = 6/u,,  and 8 = y l ( l  - C(l ) ,E) ' .  

The local asymptotic distributions depend on y l , E, C(1) ,  g2 ,and a:. There-
fore, local asymptotic power depends on these parameters. It is difficult to deter- 
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mine analytically how power depends on 7, and E because the distributions are 
complicated functions of these parameters. Therefore, local power functions were 
simulated using the same techniques as those used to generate the asymptotic 
critical values in Section 3. To control the effects of C(1) and a: on power, 
C(l)  = 0 and a: = 1 (a2= 1)for all simulations. This parameterization corre- 
sponds to { v , )  being a nearly integrated random walk with unit variance innova- 
tions. Results are reported for Mean W; and Exp W: only. Results for Sup W$ are 
very similar to those of Exp W; and are available upon request. Local power is 
reported for 7, = 0,2,. . . ,18,20 and E = 0,4,. ..,16,20. The nominal level was 
0.05 and /\* = 0.01 in all cases. Results for Exp W,' are given in Figure 3, and 
results for Mean W: are given in Figure 4. 

First, consider power of the Exp W: statistic. As E increases, power is higher 
provided 7, is not too close to the null. If 7, is close to the null, power is decreas- 
ing in E, and this occurs because of the conservative nature of the test. However, 
power is quite poor in general for 7, 5 2. Therefore, power increases as the errors 
become less persistent unless the break is very small in which case power is low 
in general. 

The results for the Mean W: statistic are much more striking. As seen in Fig- 
ure 4, the power of Mean W,' is nonmonotonic in Y1 except when E = 0. The 
nonmonotonicities become more pronounced as 5 increases. For small breaks, 
power is increasing in 8and for medium breaks power is decreasing in Z, whereas 

0 

r-

?. 
0 

F.  
0 


a , .  

3 -
0 .  


-
Y1 


FIGURE3. Asymptotic power Exp W;, nearly I(1) errors, p = 1. 



830 TIMOTHY J. VOGELSANG 

FIGURE4. Asymptotic power Mean W:, nearly I(1)errors,p = 1. 

for large breaks power is again increasing in a. This suggests that Mean W,' will 
have problems detecting medium-sized shifts, and the problems become more 
pronounced the less persistent the errors. 

Finally, by comparing Figures 3 and 4, it is quite apparent that Exp W,' dom-
inates Mean W,' in terms of power except when the shift is small in magnitude. 
This is consistent with the justification for the statistics given by Andrews and 
Ploberger (1 994). 

5. POWER IN FINITE SAMPLES 

In this section, simulation results are presented which explore the finite sample 
power of the statistics. Select results are reported for p = 0 and p = 1. Size 
simulations were also performed, and the results correspond very closely to the 
local size results of Section 3 and are omitted. The remainder of this section 
reports finite sample power for two cases: (1)a single break in trend and (2) two 
breaks in trend. Results for the Sup WT statistic are not reported because they are 
very similar to the results for Exp Wr. 

5.1 Finite Sample Power for a One-Time Break 

To investigate the finite sample power of the tests against a one-time break in the 
trend function, series of size T = 100were generated using the following DGP: 
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yt = yo l ( t  > ACT)+ y l l ( t  > A,T)(t - ACT)+ v,, ( p = 1) (13) 

ur = a ~ , - ~  (14)+ e,, 

with {e,) i.i.d. N(0,l) and uo = 0. The parameters 80 and dl  were set to zero 
because the statistics are exactly invariant to their values. Models (12,14) and 
(13,14) generate series having a break in the trend function at date T," = ACT with 
AR(1) errors. All power experiments had 2,000 replications with the test statis- 
tics calculated using regression (6) with k = 0. For model (12,14), regression (6) 
was estimated usingp = 0; for model (13,14), regression (6) was estimated using 
p = 1. The values of 0.0,O. 1,. . . ,1.0 were used for a. The simulations were con- 
ducted for three values of A,, 0.25, 0.5, and 0.75. Results are only reported for 
A, = 0.5. Results for A, = 0.25,0.75 can be found in Vogelsang (1994). The 5% 
conservative asymptotic critical values were used in all simulations. The power 
simulations were not size adjusted because the interest is in examining the power 
of the conservative procedure by using asymptotic critical values. Trimming in 
all cases was 1 %. 

Consider first the case of p = 0. This case was not covered by the local as- 
ymptotic analysis. Power was calculated for yo = 0,1,. . . , lo .  Because the errors 
have standard deviation of one, yo measures intercept shifts in units of standard 
deviations of the errors. Thus, yo = 1.0 is a moderate break, whereas yo = 10 is 
a very large break. The resulting power functions are plotted in Figure 5. Several 
observations can be made. As a decreases, power increases. Thus, as the errors 
become less persistent, power increases. If a is held fixed, power is increasing in 
yo for Exp W: but is nonmonotonic in yo for Mean w;. Surprisingly, large breaks 
cannot be detected using Mean W: even if the errors are not highly persistent. The 

FIGURE5. Power against a change in mean, p = 0, T = 100, 5% nominal size. Left: 
Mean w:, Ac = 0.5, 1% trimming. Right: Exp w:, A, = 0.5, 1%trimming. 
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main conclusion to draw from these results is that Exp W; (and Sup w;) domi-
nate Mean W; in terms of power. 

Now consider the case of trending data, p = 1. Power in detecting a shift in 
intercept, yo, is not reported because it is similar to the results for p = 0. Power 
for detecting a shift in slope is reported in Figure 6. Power is plotted for y l  = 
0.0,0.3,. ..,3.0, and yo = 0 in all cases. The results are very similar to the results 
of the local asymptotic analysis from Section 4, and a detailed discussion is not 
required. Again, the main implication is that the Mean W$ statistic has nonmono- 
tonic power in y,  whereas the other statistics have monotonic power. 

What is the reason behind the nonmonotonic power of the Mean WT statis-
tic? All three statistics can be viewed as weighted averages of Wald statistics 
across a set of possible break dates. It is the weights that determine whether or 
not power is monotonic. The Mean WT statistic places equal weights across 
break dates. The Exp WT statistic places higher weights on large values of the 
Wald statistics and smaller weights on small values of the Wald statistics be- 
cause the exponential function is an increasing function. The Sup WT statistic 
places a weight of one on the largest Wald statistic and a weight of zero on the 
other Wald statistics. Perron (1991) proposed dynamic versions of the statistics 
of Gardner (1969) and MacNeill (1978) and found that these statistics exhibit 
nonmonotonic power similar to that of Mean WT. It is easy to show that the 
Perron statistic is simply a weighted average of LM statistics across all break 
dates based on regression (6) for testing yo = 0 with weights proportional 
to h ( l  - A). Thus, for p = 0, the Perron and Mean W; statistics are very 
similar. 

Nonmonotonic power can be explained in the following way. To keep ideas 
concrete, suppose p = 0 and that there is a shift in intercept, y o  f 0. If the Wald 

FIGURE6. Power against a change in trend, p = 1, T = 100, 5% nominal size. Left: 
Mean WI!,A, = 0.5, 1% trimming. Right: Exp W:, A, = 0.5, 1% trimming. 
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or LM statistic is computed using the true break date, Tg ,the Wald or LM statistic 
will be large. Conversely, if the Wald or LM statistic is computed using a break 
date distant from the true break date, the regression will be misspecified. From 
the results of Perron (1990) it is well known that if a shift in mean is misspecified 
in a regression like (6) the estimate of 71- will be biased toward zero and the fitted 
model cannot be distinguished from a model with a unit root and no shift in trend. 
Therefore, the Wald or LM statistic will be relatively small. As the shift in mean 
increases, the Wald or LM statistics increase at the true break date but decrease at 
break dates far from the true break date. The average and, hence, power may fall 
as the magnitude of the break increases. The reason the Exp W; and Sup W: 
statistics exhibit monotonic power is that they place most or all of the weight on 
the Wald statistics near the correct break date. For a detailed explanation of why 
the Mean W: statistic has nonmonotonic power, see the simulation study of Vo- 
gelsang (1996). 

5.2 Power with Two Breaks 

It is interesting to examine the power of the tests in the presence of two breaks in 
the trend function at dates A, and h2.For simplicity, assume that the magnitudes 
of the breaks are equal. Results are only reported for p = 1 and slope changes. 
Results for p = 0 and p = 1 with intercept shifts can be found in Vogelsang 
(1994). The following DGP was used: 

with v ,  still defined by (14). The values of 0.25 and 0.75 were used for h1 and h2, 
respectively. The number of replications was 2,000, and the sample size was kept 
at 100.Again, y ,  = 0.0,0.3,...,3.0anda = 0.0,0.1, ...,1.0. 

The results are shown in Figure 7. Strikingly, it can be seen that both statistics 
now show nonmonotonic power functions. The Sup W; statistic also exhibits 
nonmonotonic power. Interestingly, power is now much lower as compared with 
the single break case, as a comparison to Figure 6 indicates. Therefore, if two 
breaks in the same direction have occurred, none of the statistics will be able to 
detect the shifts unless the shifts are relatively small and the errors are not too 
persistent. If two large breaks in the same direction have occurred, the statistics 
cannot detect them even though the breaks would be obvious in the data. 

6. THE STATISTICS IN FIRST DIFFERENCES 

In this section, versions of the tests that are applicable to first differences of the 
data are developed. It is useful to consider taking first differences because this 
will result in efficiency gains when 8 = 0. Results are only provided forp = 1 and 
are easily generalized. Details are kept to a minimum to simplify the exposition. 
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FIGURE7. Power against two changes in trend, p = 1, T = 100, 5% nominal size. Left: 
Mean W i ,A ,  = 0.25, A2 = 0.75, 1% trimming. Right: Exp W.,', A ,  = 0.25, A2  = 0.75, 1% 
trimming. 

The DGP under the null hypothesis of no break in the trend function is still 
governed by equations (1)-(3).First differencing and transforming ( 1 )  withp = 
1 ,  the regression of interest can be written as 

k +  1 

Ay, = PI + Sl l ( t  > q;) + a,Ay,-, + Ae,. (16) 
1= 1 

Note that Po and So vanish upon first differencing, and so the first-difference 
procedure cannot be used to detect breaks in the intercept of a series. Suppose that 
(16)is estimated by OLS. Let WDT(A)denote the Wald test for testing S1 = 0 in 
(16).Define the first-differenced statistics as 

Mean WD: = T p l  x WDT(7',/T),
ThE.1 

Sup WD; = sup WD,(T,,/T). 
TbE 1 

Let Go(r,A)  = 1 ( r  > A) - ( 1  - A). Note that ~ , ( r ,A) is the residual from a 
projection of 1 ( r  > A) onto the space spanned by the identity function on [0,1]. 
The next two theorems give the asymptotic null distributions of (17)-(19). 

THEOREM 4. Let {y , )  be the stochastic process described by (1)-(3). Zf the 
process {v , )  is Z ( O ) ,  that is, la < 1, as T +co: 



TESTING FOR A BREAK IN TREND 835 

uniformly in A, 

Mean WD: 3 0, Exp wD; 3 0, and Sup WD; 0. 

THEOREM 5. Let {y,) be the stochastic process described by (1)-(3). Zfthe 
process {v,) is nearly {(I), that is, a = 1 - G/T, as T -+ m: 

WD:(T~/T) 3 ([ Go(r,h) dw(r) - Ecm;' I,'GO(r ,~)wb(r )  

= WD,' (A) 

uniformly in A, 

Mean WD: 3 WD,: (A) dA - Mean WD: , 

~ x pWD: exp (iWD: (A)) d*} 3 log {i:-P -Exp WD:, 

Sup WD: =1 Sup WD: (A) dA = Sup WD,' . 
A E I A e , l - A * ]  

In the stationary case, the statistics converge to zero. However, when the errors 
are nearly integrated, the statistics have nondegenerate distributions. When E = 

0, the limiting distributions reduce to the expressions given by Theorem 1with 
p = 0. If the data are highly persistent, then a conservative test can be cotlstructed 
by using the value of E that results in the largest critical values based on the 
limiting distributions given by Theorem 5. As is true for the level statistics, using 
G = 0 critical values gives a conservative test. 

To demonstrate this fact, the distribution functions of the statistics were sim- 
ulated using the same techniques in Section 3 for 5 = 0,4,.. . ,16,20. The distri- 
butions are only reported for the Mean WD; statistic and are qualitatively similar 
for the other two statistics. Figure 8 depicts plots of the distribution functions for 
Mean WD;. As is clearly evident, the critical values are monotonically decreas- 
ing in 5,and so the 5 = 0 critical values provide a conservative test. 

To compare the power properties of the first-difference tests with the levels 
test, the local asymptotic distributions of the first-difference statistics were de- 
rived under the same local alternative, (10). The results are summarized in the 
following theorem. 
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X 

FIGURE8. c.d.f. of Mean WD;, nearly I ( 1 )  errors, p = 1. 

THEOREM 6 .  Let { y , )  be the stochastic process described by ( I ) ,  (2), and 
(10).  Ifthe process {v,} is nearly { ( I ) ,  that is, a = 1 - Z/T -+ co: 

~ ~ ( r , A ~ ) ~ ~ ( r , A ) d r  dw(r)+ I,'G ~ ( ~ , A )  

uniformly in A, 


Mean WD; i -r LD ( A )  M,
i: 

Sup WD: =$ Sup LD(A) dA. 
AE[A*,l-X] 



TESTING FOR A BREAK IN TREND 837 

Using the results of Theorem 6, asymptotic power curves were simulated for 
the first-difference statistics. Results are reported only for the Exp WD, statistic. 
The results for Mean WDTand Sup WDTare similar to Exp WD,. Figure 9 depicts 
asymptotic power of Exp WDTfor 7, = 0,2,4,. ..,12 and for Z = 0,4,8,. ..,16,20. 
For small breaks, power is decreasing in Z, but for large breaks power is increas- 
ing in 15. Note that power is monotonic in .til. If the plots in Figure 8 are compared 
with the plots in Figure 3, it can be determined under what conditions the first- 
difference tests will be preferred to the levels tests and vice versa. To facilitate 
such a comparison, differences of power in the two figures are plotted in Fig- 
ure 10. Points above the zero axis are where the levels test has higher power, and 
points below the zero axis are where the fist-difference test has higher power. If 
15 = 0, then the first-difference test delivers higher power. Therefore, the first- 
difference tests should perform better with highly persistent series. But as the 
errors become less persistent (Z increases), the levels tests are more powerful in 
detecting small breaks, whereas the first-difference tests remain more powerful 
in detecting large breaks. 

To see if the first-difference tests also exhibit nonmonotonic power when there 
are two breaks, simulations were run using DGP (15) and the statistics were 
computed using regression (16) with k = 1. As before, 2,000 replications were 
used and the 5% asymptotic critical value with Z = 0 was used. Power was 

-
Y1 


FIGURE9. Asymptotic power Exp WD;, nearly I(1)errors,p = 1. 
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FIGURE10. Difference in asymptotic power of Exp W; and Exp WD;, nearly I(1)errors, 
p =  1 .  

simulated for y ,  = 0.0,O. 1,. . . ,1 .O, and the results are plotted in Figure 11. Notice 
that the power curves are monotonic with respect to yl.  Except for small breaks, 
for instance, y ,  = 0.2, power of the first-difference tests dominates the levels 
tests when there are two breaks in the same direction. 

7. EMPIRICAL RESULTS 

To illustrate the usefulness of the statistics in thep = 1 case, they were applied to 
three sets of data that recently have been analyzed in the macroeconomics liter- 
ature. The first series is comprised of international postwar real GNP/GDP data 
that were used by BLS (1992). This set of data is very similar to the data analyzed 
by Perron (1991). The countries include Canada, France, Germany, Italy, Japan, 
the United Kingdom, and the United States. All series in this set were quarterly. 
The sources can be found in BLS (1992). The second set of data is taken from 
Kormendi and Meguire (1990). The historical real GNP/GDP series for 12 coun- 
tries including Australia, Canada, Denmark, Finland, France, Germany, Italy, the 
Netherlands, Norway, Sweden, the United Kingdom, and the United States are 
used. These series are annual and span more than 100 years (1870-1986). The 
sources can be found in Kormendi and Meguire (1990). In a recent study, Ben- 
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FIGURE11. Power against two changes in trend, p = 1, T = 100,5% nominal size. Left: 
Mean WDf, A l  = 0.25, A2  = 0.75, 1% trimming. Right: Exp WD:, A ,  = 0.25, A2  = 0.75, 
1% trimming. 

David and Papell (1995) applied the supremum statistics from this paper to a 
broader set of series from the data set in Kormendi and Meguire (1990). The third 
set of data is the data used by Nelson and Plosser (1982). The Nelson-Plosser 
data were also used by Perron (1989) in the context of unit root tests allowing for 
a break in the trend function and by Chu and White (1992) who implemented tests 
for structural change in the trend function. These data are annual, spanning from 
the late 1800's to 1970. The exact sources can be found in Nelson and Plosser 
(1982). Note that all three sets of data comprise series that are trending over time. 

For the tests based on the levels of the data, the statistics were calculated using 
estimates from (6) (withp = 1)and 1 % trimming. Critical values were taken from 
Table 2. In practice, one must choose a value for k, the order of the estimated 
autoregression. An approach recommended by Perron and Vogelsang (1992) was 
used. One first estimates regression (6) by using a maximal value of 10 fork. One 
then tests the significance of the coefficient on the last included lag by using a 5% 
two-tailed t-test. Asymptotic normality of the t-test is used to carry out inference. 
Asymptotic normality holds whether the errors are stationary or have a unit root. 
If this coefficient is significant, the procedure is stopped. Otherwise, k is reduced 
by 1and regression (6) is estimated by using k = 9. This continues until one either 
finds significance or until k = 0. When k = 10 and the coefficient on the 10th lag 
was significant, the maximal value of k was increased to 15. Asymptotically, this 
procedure yields the same distributions under the null hypothesis as when the 
order of the autoregressive is known. See Hall (1994) and Ng and Perron (1995) 
for theoretical details. The results are reported in Table 3 in columns 3-5 along 
with the break date chosen by the Sup W$ statistic in column 6. 

Using the Sup W$ statistic, the null hypothesis is rejected for two of the post- 
war GNP series ( ~ r a n c e '  and Japan), seven of the historical GNP series, and six 



TABLE3. Empirical results C 
< 
0 

Levels statistics First-difference statistics G)rn 
I-

Senes Sample Mean ExP SUP Tb Mean ExP Sup Tb 
V)$ 

International quarterly real GDP/CNP 
G) 

Canada 48:1-89:2 5.05 5.44 19.64 81:2 1.73 1.22 6.01 75:2 
France 63: 1-8912 4.46 14.18" 39.46" 68:2 5.09" 6.17" 14.17' 74: 1 
France* 63: 1-89:2 4.69 4.12 13.57 72:3 2.01 3 .Sh  12.87h 66:2 
Germany 50: 1-89:2 2.13 1.45 7.19 80: 1 4.08" 3.17" 9.16 60:3 
Italy 52: 1-82:4 5.36 4.8 1 17.74 69:4 5.25" 4.36" 15.18" 74:2 
Japan 52:l-89:2 13.64" 20.77" 49.10" 68:3 3.95h 6.49" 20.98' 73:2 
U.K. 60: 1-89:2 2.58 5.81 20.25 79:4 0.59 0.25 1.63 734 
U.S. 47: 1-89:2 3.62 2.78 16.36 64:4 0.54 0.27 10.19" 51:3 

Historical annual real GDP/GNP 
Australia 1870-1986 10.03 9.09' 23.39d 1927 0.62 0.3 1 6.66 1946 
Canada 1870-1986 4.74 13.18" 43.1 1" 1929 1.10 1.20 7.5 1 1933 
Denmark 1870-1 986 3.13 5.03 28.56b 1939 0.81 0.57 4.67 1943 
Finland 1900-1986 3.58 5.64 20.06 1918 0.66 0.5 1 11.73' 1918 
France 1870-1986 6.13 16.21" 56.40" 1942 0.87 1.25 12.66h 1947 
Germany 1870-1986 5.55 6.01 19.65 1946 0.40 0.29 7.57 1946 
Italy 1870-1986 5.11 8.04d 25.29' 1945 1.31 2.13d 16.76" 1945 



Netherlands 
Norway 
Sweden 
U.K. 
U.S. 

Nelson-Plosser data, annual 
CPI 1860--1970 5.32 4.88 13.48 1872 1.31 0.75 9.89" 1879 
Employment 1890-1 970 2.19 2.02 1 1.43 1929 0.21 -0.06 4.23 1906 
GNP deflator 1889-1 970 1.91 4.83 18.29 1920 0.46 0.13 5.39 1940 
Indust~~al 1860-1 970 1.93 3.15 26.98' 1929 0.62 0.14 1.86 1952Product~vity 
lntelcst rate 1900-1970 9.13' 7.77" 25.74' 1962 3.09' 6.53" 14.68" 1967 
Money stock 1889-1970 1.94 2.01 10.89 1928 0.16 -0.08 3.02 1920 
Nomlnal GNP 1909-1 970 3.24 6.09 31.60" 1929 0.26 -0.03 7.87 1932 
Per c'lpita GNP 1909- 1970 2.28 4.31 16.38 1938 0.26 -0.03 5.77 1921 , 
Real CNP 1909-1 970 2.95 4.27 21.34 1929 0.27 -0.03 5.76 1938 
Real wages 1900-1 970 3.03 5.38 23.37d 1940 0.51 0.16 8.48 1938 
Stock prices 187 1-1 970 7.07 8.72' 24.96" 1936 0.54 0.21 5.89 1947 n 
IJneinployment rate 1890 1970 2.90 4.33 23.45" 1929 0.11 -0.11 2.42 1933 $ 
Velocity 1869-1 970 4.58 3.41 1 1.66 1947 I .60 0.98 8.84 1949 3 

Wages 1900-1970 2.67 4.00 17.00 1929 0.28 -0.01 3.99 1920 2 
NOIP (1 h, r dnd d d ~ n o t c  \rgn~lrcdnct at (he 1 8 ,  2 5%, 5'8 and 10% l i \el \ ,  rcspt~tively, and * denote, ltle Frcnch G N p \ ~ r r e \  w ~ t h  the \trtkt of 1968 2 lrilerpolated out See R1 S (1  992) 
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of the Nelson-Plosser data series. The Exp W* statistic allows rejection in almost 
as many cases as the Sup W* statistic but never rejects when the latter fails to do 
so. However, the Mean W$ statistic rejects the null hypothesis in only three cases: 
the Japanese postwar real GDP series, the Australian historical GDP series, and 
the Nelson-Plosser interest rate. 

The first-difference statistics were also applied to the series. The same values 
of k used in the levels tests were used for the first-difference tests. This was done 
to avoid potential problems caused by first differencing a stationary process and 
inducing noninvertible moving average errors with a unit root. The results are 
reported in Table 3 in columns 7-9, and the value of Tbchosen by Sup wD; is 
reported in the last column. The critical values were taken from Table 1 (p = 0 
column). For the postwar GNP/GDP series, rejection of the null hypothesis is 
now possible for six of the eight series. The null hypothesis can be rejected for 
four of the series in which rejection was not possible by using the tests in levels. 
Interestingly, for France, Japan, and Italy, the Sup WD; statistic picked break 
dates near the time of the oil crisis (1973). For the other two sets of data, in only 
three instances could the null hypothesis be rejected when the tests in levels failed 
to do so. They were the historical GNP series for Finland and Norway and the 
Nelson-Plosser CPI series. The rejections for the Norway series were the strongest. 

The results of this section clearly indicate that the assumption of a stable linear 
trend will not result in well-specified univariate models for many of the series 
examined. This is true whether one views these series as being stationary or as 
having a unit root. It is important to keep in mind that a rejection has little to say 
beyond whether a stable trend leads to a well-specified model. Even though the 
tests are designed to detect a single break in the trend function, a rejection does 
not indicate what specification should be used for the trend function because the 
tests will have power in detecting more general alternatives. Other techniques 
would be needed to guide further specification of the trend function. 

8. CONCLUDING REMARKS 

In this paper, test statistics for detecting a break at an unknown date in the trend 
function of a dynamic univariate time series were developed. Asymptotic results 
were derived for both I(0) and I(1) errors. When the errors are highly persistent 
and it is not known which asymptotic theory (I(0) or I(1))provides a better 
approximation, a conservative approach based on nearly integrated asymptotics 
was provided. The tests were based on the mean and exponential statistics of 
Andrews and Ploberger (1994) and the supremum statistic of Andrews (1993). 
Their results were extended to allow trending and unit root regressors. An anal- 
ysis of the power of the statistics revealed that the mean statistic suffers from 
nonmonotonic power as the break magnitude increases, whereas the exponential 
and supremum statistics have monotonic power. Interestingly, all three statistics 
have nonmonotonic power when there are two breaks in the same direction. Ver- 
sions of the tests applicable to first differences of the data were also proposed. 
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It was found that first differencing results in superior power when the errors are 
purely I(1) or are highly persistent with a medium or large break. When the data 
are less persistent (but still near a unit root) and the break small, the levels tests 
have better power. Therefore, the levels and first-difference tests complement 
each other. 

NOTE 

1. The rejection of the France series is due to the labor strike of May 1968. For the series that 
interpolates out the strike observation, the null hypothesis cannot be rejected. 
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APPENDIX 

In this Appendix, proofs of the theorems are given. The approach is to establish conver- 
gence of the Wald statistic uniformly in A for each theorem. Then, by the continuous 
mapping theorem, convergence of the mean, exponential, and supremum statistics directly 
follows. The Wald statistics are expressed as continuous functions of stochastic integrals 
defined with respect to A, and the results of Hansen (1992b) are used to establish weak 
convergence uniformly in A. 

To simplify the presentation, it is convenient to write the model in matrix form as Y = 

g(T$)y + 6,or AY = g(T,')6 + + E, where Y, AY, v,  and e are the T X 1 vectors {y,), 
{Ayr),  {v,), and {e , ) ,g(Tg) is the T X (p + 1) matrix { g ( t ,  A,)), Z = ( Z 1 , Z 2 ) ,with Z1the 
T X 1 vector {y , - , ) ,  Z2 the T X k matrix {Ay,_,,. . .,Ay,-k), and 4 = (rr,cl)'with c = 

( c , ,...,c,)'. A tilde over a vector or matrix denotes the residuals from the projection onto 
the space spanned by f,which is the T X (p + 1) matrix {f ( t ) ) .Recall that a tilde over a 
function defined on the space [0,1]denotes the residuals from the projection onto the space 
spanned by F ( r ) .  Define X = ( X I ,X 2 ) where X I  is the T X 1vector {v,- and X2 is the T X 
k matrix {Av,-,, .. . ,Av , -~ ) .In addition to 7,defined previously, let T~denote a (k + 1) X 
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(k + 1)diagonal matrix with diagonal elements (T-'I2,1 , .  . . ,I) .  Unless otherwise noted, 
all sums run from 1 to T and given a matrix x, MAdenotes the matrix I - x(x lx ) - ' x ' .  

The next three lemmas establish convergence of moments that appear in the definitions 
of the Wald statistics. Using the lemmas, the theorems are easy to establish. 

LEMMAAl. As T -+ co,the following hold uniformly in A, 

dr,(a) T - 1 7 1 g ( T b ) ' g ( T b ) ~ 13 G ( r ,  ~ ) ' G ( r , h )  
(b) T 1 / ' 7 1  g(Tb)'e 3u, G(r ,  A)'d>v(r). 

Proof. 

- (I,' G(r,A) 'F(r)  dr 

and is trivially uniform in A. 

(b) T - ' / 'ZG(t/T, A)'e, = T -"' 
T 

F(t /T - A)'e, 
T,- I 

uniformly in A by Theorem 2.1 of Hansen (1992b) because {e , }  is a martingale 
difference sequence and F(t /T - A) =1F ( r  - A) uniformly in A. Using this result, 
it directly follows that 

uniformly in A. 
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LEMMAA2. Let la1 < 1 so that {v,} is I(0).As T + co,thefollowing hold uniformly 
in A: 

(a) T - ' / * ~ ' PaW where 9 is a (k  + 1 )  X 1 multivariate normal random variable. 
(b) T - ' X f %  3 flwhere fl = EXIX, with X ,  = ( ~ , , A V , - ~ ,..., A v , - ~ )and a-'exists. 
(c) T - I T ~ ~ ( T ~ ) ~ Z= op( l ) .  

Proof. These are standard results (see Fuller 1976) and trivially hold uniformly in A. 

LEMMAA3. Let a = 1 - Z/Tso  that {v,} is nearly I(1).As T -+ co,thefollowing hold 
unijormly in A: 

(a) T - ' / ~ T ~ ~ ' Z= [ T - ~ % ~ E , T - ' / ~ ~ ~ E ]a 

where 91is a k X 1 multivariate normal random variable. 

where CL22 = EX;,X2,, X2, = (Av,-,, ...,Av,-k), and fl2;' exists. 

Proof. 
-

(a) T - ' X i  Z = T - 'BO,-~e, 3aa,J"d cii ,(r)dw ( r )uniformly in A from Theorem 4.4 of 
Hansen (1992b). Because {Av,) is a stationary process with innovations {e,}, it 
follows from standard results (e.g., Fuller, 1976) that T - ' / ~ T ~ E*9;and is triv-
ially uniform in A. 

(b) T-2212 - T - 2 2 - 2  
1 1 - v , - ~  u 2$; %*(r)' dr. Because {Av,)is stationary, it follows 

from standard results that T -'g&aC12,and T -3/2j?;22= o p ( l ) .These trivially 
hold uniformly in A. 

(c) = T ~ ~ ~ ~ Z ~ ( ~ / T , A ) ' D , - ~a$;6 ( r , ~ ) ' i ~ ; ~ ( r )uniformly in A 
because T-"lZZG(t/T,A) 'V,-~= T -3/2B$b+lF(t /T - A)'V,-~3 a $i ,F(r  -
A)'wh(r)= u $; G ( r ,A)'w,(r) uniformly in A. Because {Au,} is stationary, it fol-
lows from standard results that T-'g(Tb)'% = o p ( l ) .  

Proof of Theorem 1. Under the null hypothesis y = S = 0, 7 = D and AT = 24 + E. 
Direct calculation gives 

uniformly in A by Lemmas A1 and A2. 
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uniformly in A by Lemmas A1 and A2. 

s 2  = T - ~ Z ' M ~ Z+ op(l) = T-IZ'Z + oP(l) 3 U: 

The theorem follows from simple algebraic manipulation. 

Proof of Theorem 2. Under the null hypothesis y = S = 0, 1' = 6,and A? = 24 + t?. 
Direct calculation gives 

uniformly in A by Lemmas A1 and A3. 
I 

uniformly in A by Lemmas A1 and A3. Because A E [A*,1 -'A*], H[(A)-' exists. 

The theorem follows from simple algebraic manipulation. 

Proof of Theorem 3. Becausep = 1 , ~ ~= diag(1,T-I) and T~ = diag(T-'/*,I). Under 
the local alternative (lo), 1' = T - ' / * ~ ~ ( T ~ ) ~ ~+ 6and A? = T - " ~ ~ ( T ~ ) S+ 24 + t? + 
o,(l), where2 = [T-1/2gl(~, ' )~1+ Z1,x2]+ op(l).Recall that under (10) S = jil[a -
C(1),1 - a] = 7111 - C/T - C(l),Z/T]. Therefore, T;'S = 7, [ l  - Z/T - C(l),Z] a 
jil [ l  - C(l),Z] = 6. First consider convergence of the following moments: 

uniformly in A by Lemmas A1 and A3. 
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uniformly in A by Lemmas A1 and A3. 

3 [ I,'6 ,A ( A d + u B ( r , * ) ' ~ ~ ( r )dr,o2xkI,' 
uniformly in A by Lemmas A1 and A3. Straightforward but tedious calculations give 

Direct calculation gives 

uniformly in A by ( A .1)-(A.4), Lemma A l ,  and algebraic manipulation. 

Proof of Theorem 4. Let a tilde over a vector or matrix denote demeaned values and a 
circumflex over a function on the space [0,1]denote residuals from a projection onto the 
space spanned by the constant function 1. Write the DGP as AP = AO, A? = 2 * a  + A2 
where Z" is the T X ( k  + 1) matrix { A Y , - ~ ,..., A Y , - ~ - ~ } .Let X *  denote the T X ( k  + 1) 
matrix {rlv,-, ,...,Au , -~ - Direct calculation gives 

[ T - ' ~ ~ ~ ~ ( T ~ ) ' M ~ * ~ ~ ( T ~ ) ] - '= O,,(1) by Lemmas A1 and A2. T - " 2 ~ o ( ~ b ) ' ~ 2 - ~ 2= 
T -" ' r ,  io(Tb) 'M2*B(L)e^where B ( L )  = 1 - L. The limit of T - ' / ~ ~ ~ ( T ~ ) ' M ~ *B ( L ) ~is 
proportional to B ( 1 )  = 0 and is thus zero. Therefore, the numerator of WD; is o,(l). The 
proof is complete by showing s2  2u:: 

Proof of Theorem 5. It is convenient to write the DGP as A? = 2 , ~+ 2,c + 2, or 
AO = kln- + k 2 c  + e^ and note that M i .  z2= 0. Direct calculation gives 
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Using 7~ = -E/T gives 

T 1 / 2 g o ( ~ ) ' ~ g * ( ~ 17~ + 2) = - T - " ~ ~ ~ ( T ~ ) ' M ~ .xlE + T - ' / ~ ~ ~ ( T ~ ) ' M ~ *2 

= - T - ~ / ~ ~ ~ ( T J , ) ' X ~ti + ~ - ~ / ~ i ~ ( ~ ~ ) ~ 2+ op(1 )  

* u e l 1 & 0 ( r , A ) d > v ( r ) - E u  I,'&o(r ,~ ) iT '5 ( r )dr  

uniformly in A by Lemmas A1 and A3. 

T - ' i o (Tb) 'Mk*i o ( T h )* l1d o ( r , ~ ) ~dr 

uniformly in A by Lemmas A1 and A3. 

s2  = T - ' ( X ~ T+ ~ ) ' M ~ * ( X ~ T+ 2) + op(1 )= T - ~ ; ~ M ~ - ~ "+ 0,(1) 

= T- 'S1e^+ o,(l) *uz. 

The theorem follows by simple algebra. 

Proof of Theorem 6. Under the local alternative (lo), A? = T - 1 / 2 g , ( ~ g ) 7 1+ AO + 
o,(l), which implies that 2" = X *  + o,(l). Direct calculation gives 

uniformly in A by Lemmas A1 and A3. 

T - ~ / ~ ~ ~ ( T ~ ) ' M ~ - ( T - ~ / ~ ~ ~ ( T $ ) ~ ~+ L O )  = T - ~ $ ~ ( T ~ ) ~ M ~ ~ ~ ~ ( T ; ) ~ ~  

+ T - ' / ~ ~ ~ ( T , ) ~ M ~ ~ ( X , T+ 2) + o,,(l) 

uniformly in A by Lemmas A1 and A3. Straightforward algebra gives s 2*u:, and alge-
braic manipulation completes the proof. 
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