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WALD-TYPE TESTS FOR DETECTING
BREAKS IN THE TREND FUNCTION
OF A DYNAMIC TIME SERIES

TIMOTHY J. VOGELSANG
Cornell University

In this paper, test statistics for detecting a break at an unknown date in the trend
function of a dynamic univariate time series are proposed. The tests are based on the
mean and exponential statistics of Andrews and Ploberger (1994, Econometrica 62,
1383-1414) and the supremum statistic of Andrews (1993, Econometrica 61, 821-
856). Their results are extended to allow trending and unit root regressors. Asymp-
totic results are derived for both 1(0) and I(1) errors. When the errors are highly
persistent and it is not known which asymptotic theory (I(0) or I(1)) provides a
better approximation, a conservative approach based on nearly integrated asymp-
totics is provided. Power of the mean statistic is shown to be nonmonotonic with
respect to the break magnitude and is dominated by the exponential and supremum
statistics. Versions of the tests applicable to first differences of the data are also
proposed. The tests are applied to some macroeconomic time series, and the null
hypothesis of a stable trend function is rejected in many cases.

1. INTRODUCTION

Inherent in statistically modeling economic time series is the problem of speci-
fying the deterministic trend function. Incorrect specification of the trend func-
tion can be problematic because estimates of the parameters governing the dynamic
behavior of the model may be inconsistent. For example, Nelson and Kang (1981)
demonstrated that inappropriate detrending of a random walk process can lead to
spurious estimates of dynamic parameters. In addition, inference is often ad-
versely affected when the trend function is misspecified. In the context of testing
for a unit root, Perron (1988, 1989, 1990) showed that failure to include a time
trend (when the series is trending) or failure to account for possible breaks in the
trend function can result in highly misleading inference.

In practice, it is often assumed that parameters in the deterministic trend func-
tion do not vary over time. However, for many economic time series, even casual
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observation of the data can suggest the possibility of an unstable trend function
over time. The longer the time span being investigated, the greater the chance that
some form of structural change has occurred in the trend parameters. It is impor-
tant to detect potential structural change in the trend function to arrive at a rea-
sonably specified model.

In the time series econometrics literature, a great deal of attention has recently
been given to the subject of detecting structural change. Earlier work on structural
change has confined its focus to detecting parameter breaks in a univariate context
under restrictive assumptions such as independent and identically distributed (i.i.d.)
data, nontrending data, and/or stationary data, that is, no unit roots. More recent
work has successfully relaxed many of these restrictions. Andrews (1993) relaxed
the i.i.d. assumption by developing Wald, Lagrange multiplier (LM), and likeli-
hood ratio (LR) tests in a general regression framework that allows dependent and
heterogeneously distributed data, although trends are not permitted. Hansen (1990)
developed an LM test in a similar framework. Kramer, Ploberger, and Alt (1988)
developed a CUSUM test valid in the presence of serial correlation. The case of
trending data with stationary errors was considered by Kim and Siegmund (1989)
and by Chu (1989) and Chu and White (1992), with the latter two studies allowing
for serial correlation in the errors. For the case of trending data with a unit root,
Banerjee, Lumsdaine, and Stock (1992) (hereafter BLS, 1992) proposed a test for
detecting breaks in the slope of the trend function in the presence of a unit root.
Perron (1991) proposed tests of structural change in the polynomial trend of a uni-
variate dynamic time series. He derived results for both stationary and unit root er-
rors and suggested a conservative test when the order of integration is unknown.
Results within a Bayesian framework were provided by Zivot and Phillips (1994).
Tests for multiple structural changes were proposed by Bai and Perron (1997). Fi-
nally, recent tests valid within a multivariate framework, including cointegration,
have been explored by Hansen (1992a) and Bai, Lumsdaine, and Stock (1997).

The purpose of this paper is to add to the literature and provide a procedure that
can be used to test for structural change in the trend function of a univariate time
series that allows serial correlation in the errors. The trend function is modeled as
a polynomial in time. Asymptotic results are obtained for both 7(0) and I(1) er-
rors. The alternative hypothesis is a single break in the trend function at an un-
known date. Because the date of the break is only identified under the alternative,
test statistics are constructed using the methodology of Andrews (1993) and An-
drews and Ploberger (1994). The tests involve computing Wald statistics for a
break in trend over a range of possible break dates and taking the supremum and
exponential averages of the statistics. Because the results of Andrews (1993) and
Andrews and Ploberger (1994) do not permit trending regressors or unit root
errors, their results are extended to apply in the present case. When the errors are
highly persistent and it is not known a priori whether the errors are better char-
acterized as being I(0) or I(1), a conservative approach is suggested.

To justify the conservative approach, asymptotic results are provided model-
ing the errors as local to unity following Phillips (1987), Chan and Wei (1987),
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and others. Simulating the asymptotic distributions, it is shown that the distribu-
tion functions of the statistics are monotonically decreasing with respect to the
local to unity parameter. Therefore, a conservative test can be constructed using
the unit root critical values. The size and power of the conservative tests are
explored using local asymptotic analysis and finite sample simulations. One par-
ticularly interesting result obtained is that in certain empirically relevant cases
power can be nonmonotonic with respect to the magnitude of the break. This
result compares to those of Perron (1991), where nonmonotonic power was found
for dynamic extensions of the statistics of Gardner (1969) and MacNeill (1978).

The remainder of the paper is organized as follows. In Section 2, the model and
statistics are presented. In Section 3, the limiting distributions under the null
hypothesis are derived and critical values are tabulated. Local asymptotic size is
also examined in this section. In Section 4, local asymptotic power is explored for
the special case of a model with a simple linear trend. Finite sample results using
simulation experiments are provided in Section 5. Striking power results are ob-
tained for the case of two breaks in the trend function. In Section 6, versions of the
tests applicable to first differences of the data are discussed. The size and power
of the first-difference tests are compared and contrasted with the original statis-
tics. An empirical application is presented in Section 7 using the international
postwar GNP/GDP data used by BLS (1992), the international historic real GDP/
GNP series considered by Kormendi and Meguire (1990), and the data used by
Nelson and Plosser (1982). The results indicate that many macroeconomic time
series have trend functions with parameters that are not constant over time. Sec-
tion 8 has concluding comments, and proofs of the theorems in the text are given
in the Appendix.

2. DETECTING TREND BREAKS: THE MODEL AND TEST STATISTICS

Consider the following data-generating process (DGP) for a univariate time se-
ries process, {y,}7, with a break in trend at unknown time T,

v =f()0 + g(t,T)y + v, @
A(D)v, = e,, 2)

where f(t) = (1,1,1%,...,t7), g(t,T¢) = 1(t > TH){1,t — TE,(t — TE)3,...,
(t - Tbc)p}’ 0= (00901"--’0;7),’ Y= (70,717~-"7p),9 A(L) =1l—-aL— .- —
ay+1 L¥1 and 1(-)is the indicator function. The autoregressive polynomial A (z) is
assumed to have at most one real valued root on the unit circle and all others strictly
outside the unit circle, and the error process {e,} is assumed to be i.i.d. (0, o?) with
finite fourthmoment. Under (1) and (2),{ y,}is an autoregressive, stationary or unit
root, process around a pth-order deterministic time trend with a break at date 7.
The null hypothesis of a stable trend function is given by

Hy:y = 0. A3)
Under the alternative, at least one of the trend polynomials has a break,
H,:vy;#0 foratleastonei = 0,1,...,p. 4)
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For example, if p = 1, then for ¢ = T the intercept and the growth rate of {y,} are
6o and 6, respectively, whereas for # > T} the intercept and growth rate are (6, +
7o) and (8, + vy,). For the asymptotic analysis, it is assumed that the ratio of the
true break date, 75, to the sample size, T, remains a fixed proportion, A, as T
increases, that is, 7f = A.T.

It is convenient to factor the polynomial A(L) according to the augmented
Dickey—Fuller (ADF) procedure as A(L) = (1 — aL) — C(L)(1 — L), where
C(L) =3t c;Ll,c;= =3k} aj, and @ = 3] a,. Applying this factorization
to v, and defining 7 = a — 1 gives

k
Av, = v, + Z c;Av,_; + e,. 5)
=1
If « is modeled local to unity as &« = 1 — &/T where & is the local to unity
parameter, then by standard results 7 ~'/?v;,71 = owg(r), where 0% = 02/(1 —
C(1))?, wz(r) = f§exp(—a(r — s)) dw(s), where w(r) is a standard Wiener
process, [rT] is the integer part of T, and = denotes weak convergence. Note
that 1 — C(1) # 0 because {v,} has at most one unit root. When {v,} is 1(0), then
T2 3y, = a24(1) 2w (7).
Using A(L) and the ADF factorization, (1) can be rewritten as
k

Ay, =f()B + g(t,T5)6 + d(t, T )n + wy,, + 21 CiAy—; + e,

where d(t,T¢) = {1t =Tf + 1), 1t = Tf + 2),...,1¢ = Tf + b}, n =
m1,m2,...,m)’, and B, 8, and n are implicitly defined by f(¢) 8 = A(L)f(¢)6 and
g(t,Tf)d + d(t,Tf)m = A(L)g(t,Tf)y. Because the one-time dummy variables
d(t,Tf) are asymptotically negligible, it is convenient to drop them from the
model and consider

k
Ay, =f(t)B + g(t,T)6 + my,—y + Zl ciAy,; + e, 6)

Under the null hypothesis of no structural change, y = 0, and it directly follows
that & = 0. Therefore, test statistics can be constructed by estimating (6) and
testing the hypothesis that § = 0. Writing the model in the form given by (6) is
useful because serial correlation in the errors is handled by including enough lags
of Ay,. Because (6) is routinely estimated in unit root testing, tests based on (6)
can be routinely computed in practice.

Because A, is a parameter that is present only under the alternative hypothesis,
this testing problem falls within the class of tests proposed by Andrews and
Ploberger (1994). Andrews and Ploberger (1994) derived optimal test statistics
under quite general conditions that apply to models in which some parameters are
present only under the alternative. These tests are of average exponential form
over all possible values of the parameters that are present only under the alternative.

Suppose that (6) is estimated by ordinary least squares (OLS) using the break
date T, = [AT], where A € [A*,1 — X*] C (0,1). Note that the break date used in
the estimation, 7, may differ from the true break date, 7. Let W¢ (1) denote the
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Wald statistic for testing 8 = 0. Define the discrete set of possible break dates to
be A = (T}, Ty + 1,...,T — 1), where T; = [A+T]. The parameter A* is often
called the amount of trimming. Trimming, or the requirement that the set of break
dates maps into a closed subset of (0,1), is necessary for the asymptotic results to
be nondegenerate. Two statistics from the class of statistics proposed by Andrews
and Ploberger (1994) are

Mean Wf = T~ >, Wf(T,/T), )
ToEA
Exp WZ = log <T‘l > exp(% W{’(T,,/T))). 8)
ThEA

These statistics will be in the class of optimal statistics provided the regression
has stationary and nontrending regressors. Therefore, when p = 0 and {v,}is 1(0),
the mean and exponential tests are optimal, but when p = 1 and/or {v,} is I(1), the
optimality results do not apply. It is of interest to note that the Exp W{ statistic is
designed to have power in detecting alternatives distant from the null, large breaks,
whereas the Mean WY statistic is designed to have power in detecting alternatives
close to the null, small breaks.

A third related statistic proposed originally by Quandt (1960) and generalized
by Andrews (1993) is the supremum statistic defined as

Sup Wf = sup W¥(T,,/T). 9)

T,EA
The Sup W7 statistic is not a member of the class of optimal statistics proposed by
Andrews and Ploberger (1994) but is useful because it provides an estimate of the
true break date ratio A.. See Bai (1993) for details on setting confidence intervals
for estimates of A, using the supremum statistic in regression models.

The Mean W/, Exp W/, and Sup W¢ statistics have received some attention
in recent studies. Bai et al. (1997) considered all three statistics in testing for a
mean break in multivariate models. Hansen (1992a) examined the Mean W/
and Sup Wy statistics in testing for structural change in cointegration models,

whereas BLS (1992) used the Sup Wy statistic to test for trend breaks in mod-
els with unit root errors.

3. THE LIMITING DISTRIBUTIONS UNDER THE NULL HYPOTHESIS

In this section, the limiting behavior of the statistics under the null hypothesis
of no break in the trend function is investigated. The asymptotic results depend
on whether {v,} is I(0) or I(1), and separate theorems are given for the two
cases. To facilitate the presentation of the results, some additional notation is
needed. Define F(r) = (1,r,7%,...,r?) and G(r,A) = 1(r > M) (1,r — A(r —
M. (r = A)P) = 1(r > A)F(r — A), where r € [0,1]. Note that F(r) and
G(r,A) are (p + 1) row vectors of functions defined on the unit interval and that
7.f(t) = F(¢/T) and 7,2(¢,T,) = G(t/T,A), where r;isa(p + 1) X (p + 1)
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diagonal matrix with diagonal elements 1,7 !,T2,...,T 7. Let G(r,)A) and
Wwa(r) denote, respectively, the residuals from the projections of G(r,A) and
wa(r) onto the space spanned by F(r), for example, G(r,A) = G(r,A) —
F(r)(J¢ F(r)'F(r)dr)~! [¢ F(r)'G(r,)) dr. Using this notation, the limiting re-
sults are compactly summarized in the following theorems.

THEOREM 1. Let {y,} be the stochastic process described by (1)-(3). If the
process {v,} is 1(0), that is, |a| < 1, as T — oo:
1

1 1 -1
W;f'(Tb/T):>J; G~(r,/\)dw(r)<J;) G~(r,)t)’(7(r,)t)dr> J;G(r,)\)’dw(r)

=W\

uniformly in A,

1-X*
Mean Wf = f WP(A) dA = Mean W/,
"

1—=X* 1
Exp Wf = log{ f exp (5 Wf(/\)) dA} = Exp W/,
"
SupWf = Sup WF(A)dA = SupW?.
ASLX 1-2]

THEOREM 2. Let {y,} be the stochastic process described by (1)—(3). If the
process {v,} is nearly I(1), that is,a« = 1 — @/T, as T — oo:

Wi (T,/T) = H{ (A)H7 () "' H{ () = W,/ (A)

uniformly in A,

1-A*
Mean Wf = J WP(A) dA = Mean W/,
A*

1-* 1
Exp W = log{ f exp (5 Wf()\)) d/\} = Exp W/,
X
SupWf =  Sup WP(A)dA = SupW?,
AE[N, 1—A%]
where

1
HY(A) = J; G(r,A) aw(r)

1 1 1
_ Vo = ol = 2d
( j G\ Woa(r) dr fo wa(r)dW(r)>/ jo a2 db,

H{(A) = Jol G(r,A)’G(r,A)dr

1 1 1
- G "W G wa(7 ~a 2d .
(j(; G(r,A) wa(r)drj; G(r,A)wy( )dr>/f0 wg(r)*dr
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Note from the theorems that the limiting distributions of the statistics are non-
standard. When p = 0, Theorem 1 is a special case of Andrews and Ploberger
(1994), Andrews (1993), and Bai et al. (1997). Critical values from those studies
are available for a range of values for A*. For the other cases, the limiting results
are new, and critical values were obtained using simulation methods. When the
errors are 1(0) and purely I(1)(@ = 0), the distributions are free of nuisance
parameters and depend only on p and A*. Asymptotic critical values for p = 0,1,2
and X* = 0.01,0.15 are tabulated in Table 1 for the I(0) case and Table 2 for the
I(1)(@ = 0) case. The critical values were calculated by simulation methods
using N(0,1) i.i.d. random deviates to approximate the Wiener processes implicit
in W7 (X) and W/ (A). The integrals were approximated by the normalized sums
of 1,000 steps using 10,000 replications.

Several observations can be made based on the tabulated critical values. First,
as p increases, the distributions become skewed farther to the right. Second, as
the trimming is increased, the critical values become larger; however, the critical
values of the supremum statistic do not depend heavily on the amount of trim-

TABLE 1. Asymptotic distributions of Mean W/, Exp W/, and Sup W/

Mean W,” Exp W/ Sup W/

% p=0 p=1 p=2 p=0 p=1 p=2 p=0 p=1 p=2

Stationary Case, A* = 0.01
.01 0.18 0.54 1.01 0.08 0.34  0.67 1.72 4.10 476
025 0.22 0.65 1.14 0.11 040 0.78 2.01 4.55 6.32
.05 0.26 0.73 1.30 0.14 047 091 2.35 5.07 6.93
.10 0.32 0.86 1.49 0.17 0.57 1.06 2.77 6.69 7.64
.50 0.73 1.63 2.56 0.49 120 1.92 5.03 8.63 10.97
.90 2.00 3.49 4,74 1.59 276  3.70 9.24 13.62 16.06
95 2.66 4.42 5.65 2.20 352 441 10.85 15.44 17.89
975 3.34 5.36 6.69 2.80 418 522 1246 17.26 19.57
.99 421 6.64 8.14 3.63 524 624 1449 1990 21.65

Stationary Case, A* = 0.15
.01 0.08 0.29 056 —030 -0.12 0.13 0.76 2.40 4.04
025 0.10 0.35 0.67 —028 —0.06 0.24 0.92 2.74 4.55
.05 0.12 0.42 077 —0.26 0.01 0.34 1.14 3.16 5.03
.10 0.16 0.50 092 —-0.23 0.09 0.50 1.41 3.66 5.63
.50 0.47 1.10 1.76 0.06 0.70 135 3.22 6.38 8.84
.90 1.58 2.70 3.58 1.23 2.33  3.18 732  11.25 1396
95 2.20 3.50 441 1.89 3.13 398 9.00 13.29 15.84
975 285 4.35 5.25 2.53 3.88 4.68 10.69 15.12 17.61
.99 3.70 5.55 6.47 3.46 505 578 13.02 17.51 19.90

Note: The critical values were calculated via simulation methods using N(0,1) i.i.d. random deviates to approximate
the Wiener processes defined in the distributions given by Theorem 1. The integrals were approximated by the
normalized sums of 1,000 steps using 10,000 replications.
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TABLE 2. Asymptotic distributions of Mean W¢, Exp W, and Sup W{

Mean W,/ Exp W/ Sup W/

P p=0 p=1 p=2 p=0 p=1 p=2 p=0 p=1 p=2

Unit root case, A* = 0.01
.01 0.54 1.50 2.55 0.33 1.15 2.12 3.35 7.39 10.54
025  0.65 1.72 2.89 0.42 1.37 2.44 4.01 8.18 11.54
.05 0.77 1.95 3.24 0.53 1.60 2.74 4.66 8.99 12.44
.10 0.95 2.24 3.68 0.69 1.91 3.17 5.57 10.09 13.65
.50 1.91 3.96 6.00 1.82 3.69 5.50 9.74 15.00 19.21
.90 3.32 7.14 10.18 4.02 6.98 9.58 16.14 22.60 28.11
.95 3.91 8.22 11.74 4.84 8.18 11.09 18.20 25.27 31.35
975 4.53 9.29 13.17 5.68 9.27 1250 20.23 27.76 34.45
.99 5.35 10.54 14.80 6.69 10.56 14.42 22.64 3044 3843

Unit root case, A* = 0.15
.01 0.28 1.02 178 —0.12 0.70 1.69 2.16 6.36 9.82
025 035 1.17 2.10 -0.05 0.94 2.08 2.73 7.15 10.75
.05 0.44 1.38 2.40 0.05 1.19 2.39 3.32 8.05 11.69
.10 0.59 1.63 2.79 0.23 1.53 2.86 4.22 9.11 1291
.50 1.51 3.17 4.86 1.52 3.49 5.34 9.02 14.38 18.88
.90 2.87 6.12 8.65 3.87 6.90 9.54 1578 2229 27.99
.95 343 7.19  10.00 4.71 8.12 11.07 17.88 25.10 31.29
975  3.99 8.07 11.32 5.57 9.24 1247 20.08 27.56 34.39
.99 4.65 9.17 13.02 6.60 10.54 1434 2248 30.36 38.35

Note: The critical values were calculated via simulation methods using N(0,1) i.i.d. random deviates to approximate
the Wiener processes defined in the distributions given by Theorem 2. The integers were approximated by the
normalized sums of 1,000 steps using 10,000 replications.

ming. Third, the limiting distributions are different in the I(0) case as compared
with the I(1) case. If it is known a priori that the errors are 1(0), then the critical
values from Table 1 should be used. If it is known a priori that the errors are
purely I(1), then the critical values from Table 2 should be used.

In practice, it is often the case that the errors are highly persistent (a between
0.8 and 1), in which case it may not be obvious which distribution theory (I(0) or
I(1)) provides a better finite sample approximation. In this situation, the local to
unity asymptotic results of Theorem 2 can provide an approximation. Given a
value of & in a finite sample, the corresponding value of & can be obtained by & =
T(1 — @) and asymptotic critical values obtained from Theorem 2. The practical
limitation of this approach is that when « is not known, & cannot be consistently
estimated from the data. One way around this problem is to use a conservative
approach. Given a nominal significance level, a simple conservative test can be
constructed by using the largest critical value across values of @. This test will
have asymptotic size equal to the nominal level by construction. This approach is
further simplified because, given a nominal level, the critical values of the sta-
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tistics are monotonically decreasing in @&. Therefore, a conservative test can be
constructed by using the @ = O critical values that are given in Table 2.

To demonstrate that the critical values are monotonically decreasing in &, lim-
iting distributions for & = 0,4,8,...,16,20 were simulated using the same tech-
niques as those used for Tables 1 and 2. Plots of the distribution functions for the
mean statistic with p = 1 are given in Figure 1. Plots for other values of p and the
other two statistics are qualitatively similar and are not reported. For all nominal
levels, the critical values are the largest for & = 0.

An attractive feature of this conservative approach is that the size of the test
will be asymptotically correct. A drawback of this conservative approach is that
power will be penalized when @ > 0 (when the errors are not exactly 1(1)). One
way to investigate the potential power loss is to examine the rejection probabil-
ities under the null hypothesis for particular values of @ > 0. Conditional on &,
these rejection probabilities can be interpreted as asymptotic size. Using the sim-
ulated asymptotic distributions, asymptotic size of the statistics for @ =
0,2,4,...,18,20 was computed and is plotted in Figure 2. Results are only re-
ported for p = 1 and are qualitatively similar for other values of p. The nominal
size was 0.05. From the figure, asymptotic size is 0.05 when & = 0, which is true
by construction. As @ increases, asymptotic size steadily decreases as expected.
Thus, power of the conservative tests will be less than power of the tests had &
been known, and this loss in power increases as @ grows. A detailed examination
of the power properties of the tests is given in the next section.

1.0

0.8

0.6

Prob(Mean Wl < x)
0.4
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. L L L A

é).O
N
»
()}
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10 12

FIGURE 1. Cumulative distribution function of Mean W¢}, nearly I(1) errors, p = 1.
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FIGURE 2. Conservative test using & = 0 critical values. Asymptotic size, 5% nominal
level,p = 1.

4. LOCAL ASYMPTOTIC POWER: p =1

This section explores the local asymptotic power properties of the statistics for
the case of p = 1. Attention is focused on p = 1 to keep the exposition as simple
as possible. Results are only reported for the case where the errors are nearly (1)
and the alternative is a shift in slope (o = 0). This parameterization is appropri-
ate for many macroeconomic time series. A local asymptotic analysis for 7(0)
errors can be found in the working paper version of this paper (Vogelsang, 1994).
Consider the local alternative y, = T ~'/2%,, which leads to the model

Y =00+ 0.t + T V2% 1(t > TE)(t — TF) + v,. (10)

Note that the change in slope converges to the null value of zero at the usual rate
of T ~'/2, Transforming (10) using A(L) yields the following model:

Ay, = Bo + Byt + T 281(t > Tyf) + T~V28,1(¢ > Tf) (t — Tf)
k
+ay1t X cdy t e, (11)
=1

where By = (1 — a)fy +(a — C(1))8,, 8, = (1 — )0y, 8, = (@ — C(1))¥,,6, =
(1 - )y, ande, = e, + T~ 2%, 3] 1(t = Tf + i + 1)k ;1) ¢;. Using the
notation from the previous section, G(r,A) = 1(r > A)(1,r — A) and let
Gi(r,A) = 1(r> )(r — M.
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The following theorem provides the limiting distributions of the statistics un-
der model (10) with nearly integrated errors.

THEOREM 3. Let {y,} be the stochastic process described by (1), (2), and
(10). If the process {v,} is nearly I(1), that is,« = 1 — @/T, as T — oo:
WT1 (Tb/T) = [V,LZ(ADA'C)’ + Ll (A)’]LZ(A’ A)—l [LZ(/\’ Ac)y + Ll (A)]
=L(A)
uniformly in A,

1-x
Mean W = L(A) dA,

A*
1-X* 1
Exp W = log{ J exp (5 L(A)) d)t},
A*

SupWi =  Sup L(A)dA,
AE[X, 1= 4]

where

1

L = fo G dwir) — fo G(r, ) [kGr(r,1.) + Wal1)] dr

[ 61010 + w1 )
0

b

X 1
f [kG,(r,A,.) + Wg(N]? dr
0

1
Lud) = [ GGl
1
| [ 600y 1600 + wrlar
0

1
f G-(r’A2)[KG~l(r9/\c) + wﬂ(r)]dr
0

X 1

[ 620 + wot ar
0

k=%/o, v=26/o.,, and & =%,(1— C(1),a).

The local asymptotic distributions depend on ¥,, &, C(1), o2, and o°2. There-
fore, local asymptotic power depends on these parameters. It is difficult to deter-
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mine analytically how power depends on ¥, and & because the distributions are
complicated functions of these parameters. Therefore, local power functions were
simulated using the same techniques as those used to generate the asymptotic
critical values in Section 3. To control the effects of C(1) and o2 on power,
C(1) =0and o2 = 1 (¢*> = 1) for all simulations. This parameterization corre-
sponds to {v,} being a nearly integrated random walk with unit variance innova-
tions. Results are reported for Mean Wy and Exp W4 only. Results for Sup Wy are
very similar to those of Exp W7} and are available upon request. Local power is
reported for ¥, = 0,2,...,18,20 and @ = 0,4,...,16,20. The nominal level was
0.05 and A* = 0.01 in all cases. Results for Exp W;' are given in Figure 3, and
results for Mean W, are given in Figure 4.

First, consider power of the Exp W} statistic. As & increases, power is higher
provided ¥, is not too close to the null. If ¥, is close to the null, power is decreas-
ing in &, and this occurs because of the conservative nature of the test. However,
power is quite poor in general for y; = 2. Therefore, power increases as the errors
become less persistent unless the break is very small in which case power is low
in general.

The results for the Mean W, statistic are much more striking. As seen in Fig-
ure 4, the power of Mean Wy} is nonmonotonic in ¥; except when & = 0. The
nonmonotonicities become more pronounced as @ increases. For small breaks,
power is increasing in & and for medium breaks power is decreasing in &, whereas

Power

Lo L I i

o9 2 4 6 8 10 12 14 16 18 20

7

FIGURE 3. Asymptotic power Exp W7, nearly I(1) errors, p = 1.
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FIGURE 4. Asymptotic power Mean Wy, nearly I(1) errors, p = 1.

for large breaks power is again increasing in @. This suggests that Mean Wy will
have problems detecting medium-sized shifts, and the problems become more
pronounced the less persistent the errors.

Finally, by comparing Figures 3 and 4, it is quite apparent that Exp Wy} dom-
inates Mean W4 in terms of power except when the shift is small in magnitude.
This is consistent with the justification for the statistics given by Andrews and
Ploberger (1994).

5. POWER IN FINITE SAMPLES

In this section, simulation results are presented which explore the finite sample
power of the statistics. Select results are reported for p = 0 and p = 1. Size
simulations were also performed, and the results correspond very closely to the
local size results of Section 3 and are omitted. The remainder of this section
reports finite sample power for two cases: (1) a single break in trend and (2) two
breaks in trend. Results for the Sup Wy statistic are not reported because they are
very similar to the results for Exp Wy.

5.1 Finite Sample Power for a One-Time Break

To investigate the finite sample power of the tests against a one-time break in the
trend function, series of size 7 = 100 were generated using the following DGP:
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Ye =Yol(t>AT) + v, (p=0) 12)
Y =%1t>AT) +y1¢>AT)(t—AT)+v, (p=1) 13)
v, = av,_, + e, 14)

with {e,} i.i.d. N(0,1) and vy = 0. The parameters 6, and 0, were set to zero
because the statistics are exactly invariant to their values. Models (12,14) and
(13,14) generate series having a break in the trend function at date 7 = A.T with
AR(1) errors. All power experiments had 2,000 replications with the test statis-
tics calculated using regression (6) with £ = 0. For model (12,14), regression (6)
was estimated using p = 0; for model (13,14), regression (6) was estimated using
p = 1. The values of 0.0,0.1,...,1.0 were used for . The simulations were con-
ducted for three values of A, 0.25, 0.5, and 0.75. Results are only reported for
A, = 0.5. Results for A, = 0.25, 0.75 can be found in Vogelsang (1994). The 5%
conservative asymptotic critical values were used in all simulations. The power
simulations were not size adjusted because the interest is in examining the power
of the conservative procedure by using asymptotic critical values. Trimming in
all cases was 1%.

Consider first the case of p = 0. This case was not covered by the local as-
ymptotic analysis. Power was calculated for y, = 0,1,...,10. Because the errors
have standard deviation of one, y, measures intercept shifts in units of standard
deviations of the errors. Thus, y, = 1.0 is a moderate break, whereas y, = 10 is
a very large break. The resulting power functions are plotted in Figure 5. Several
observations can be made. As a decreases, power increases. Thus, as the errors
become less persistent, power increases. If « is held fixed, power is increasing in
7o for Exp W;? but is nonmonotonic in y, for Mean Wy. Surprisingly, large breaks
cannot be detected using Mean W, even if the errors are not highly persistent. The

FIGURE 5. Power against a change in mean, p = 0, T = 100, 5% nominal size. Left:
Mean W{, A, = 0.5, 1% trimming. Right: Exp W, A, = 0.5, 1% trimming.
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main conclusion to draw from these results is that Exp W, (and Sup W;?) domi-
nate Mean W in terms of power.

Now consider the case of trending data, p = 1. Power in detecting a shift in
intercept, 7y, is not reported because it is similar to the results for p = 0. Power
for detecting a shift in slope is reported in Figure 6. Power is plotted for vy, =
0.0,0.3,...,3.0, and vy = O in all cases. The results are very similar to the results
of the local asymptotic analysis from Section 4, and a detailed discussion is not
required. Again, the main implication is that the Mean W} statistic has nonmono-
tonic power in y; whereas the other statistics have monotonic power.

What is the reason behind the nonmonotonic power of the Mean Wy statis-
tic? All three statistics can be viewed as weighted averages of Wald statistics
across a set of possible break dates. It is the weights that determine whether or
not power is monotonic. The Mean W; statistic places equal weights across
break dates. The Exp Wy statistic places higher weights on large values of the
Wald statistics and smaller weights on small values of the Wald statistics be-
cause the exponential function is an increasing function. The Sup W; statistic
places a weight of one on the largest Wald statistic and a weight of zero on the
other Wald statistics. Perron (1991) proposed dynamic versions of the statistics
of Gardner (1969) and MacNeill (1978) and found that these statistics exhibit
nonmonotonic power similar to that of Mean Wy. It is easy to show that the
Perron statistic is simply a weighted average of LM statistics across all break
dates based on regression (6) for testing y, = 0 with weights proportional
to A(1 — A). Thus, for p = 0, the Perron and Mean Wy statistics are very
similar.

Nonmonotonic power can be explained in the following way. To keep ideas
concrete, suppose p = 0 and that there is a shift in intercept, v, # 0. If the Wald

<>
<> -
’.- <>
P,
722

FIGURE 6. Power against a change in trend, p = 1, T = 100, 5% nominal size. Left:
Mean W}, A, = 0.5, 1% trimming. Right: Exp W, A = 0.5, 1% trimming.
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or LM statistic is computed using the true break date, 7, the Wald or LM statistic
will be large. Conversely, if the Wald or LM statistic is computed using a break
date distant from the true break date, the regression will be misspecified. From
the results of Perron (1990) it is well known that if a shift in mean is misspecified
in a regression like (6) the estimate of 7 will be biased toward zero and the fitted
model cannot be distinguished from a model with a unit root and no shift in trend.
Therefore, the Wald or LM statistic will be relatively small. As the shift in mean
increases, the Wald or LM statistics increase at the true break date but decrease at
break dates far from the true break date. The average and, hence, power may fall
as the magnitude of the break increases. The reason the Exp Wy and Sup Wy
statistics exhibit monotonic power is that they place most or all of the weight on
the Wald statistics near the correct break date. For a detailed explanation of why
the Mean W4 statistic has nonmonotonic power, see the simulation study of Vo-
gelsang (1996).

5.2 Power with Two Breaks

It is interesting to examine the power of the tests in the presence of two breaks in
the trend function at dates A; and A,. For simplicity, assume that the magnitudes
of the breaks are equal. Results are only reported for p = 1 and slope changes.
Results for p = 0 and p = 1 with intercept shifts can be found in Vogelsang
(1994). The following DGP was used:

yo=y1[1(t> M T) (e = M T) + 1t > A1) (= A, T)] + vy, (15)

with v, still defined by (14). The values of 0.25 and 0.75 were used for A; and A,,
respectively. The number of replications was 2,000, and the sample size was kept
at 100. Again, y, = 0.0,0.3,...,3.0 and « = 0.0,0.1,...,1.0.

The results are shown in Figure 7. Strikingly, it can be seen that both statistics
now show nonmonotonic power functions. The Sup W statistic also exhibits
nonmonotonic power. Interestingly, power is now much lower as compared with
the single break case, as a comparison to Figure 6 indicates. Therefore, if two
breaks in the same direction have occurred, none of the statistics will be able to
detect the shifts unless the shifts are relatively small and the errors are not too
persistent. If two large breaks in the same direction have occurred, the statistics
cannot detect them even though the breaks would be obvious in the data.

6. THE STATISTICS IN FIRST DIFFERENCES

In this section, versions of the tests that are applicable to first differences of the
data are developed. It is useful to consider taking first differences because this
will result in efficiency gains when & = 0. Results are only provided forp = 1 and
are easily generalized. Details are kept to a minimum to simplify the exposition.
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FiGURE 7. Power against two changes in trend, p = 1, T = 100, 5% nominal size. Left:
Mean W¢, A, = 0.25, A, = 0.75, 1% trimming. Right: Exp W}, A, = 0.25, A, = 0.75, 1%
trimming.

The DGP under the null hypothesis of no break in the trend function is still
governed by equations (1)—(3). First differencing and transforming (1) with p =
1, the regression of interest can be written as

k+1

Ay, =By + 6,1t >Ty) + E a;Ay,; + Ae,. (16)
i=1

Note that B, and &, vanish upon first differencing, and so the first-difference
procedure cannot be used to detect breaks in the intercept of a series. Suppose that
(16) is estimated by OLS. Let WD.(A) denote the Wald test for testing §, = 0 in
(16). Define the first-differenced statistics as

Mean WD} = T~' > WD(T,/T), an
T,EA )
1
Exp WD} = log <T“1 > exp (— WDT(T,,/T))). (18)
T,EA 2
Sup WD} = sup WD (T,,/T). 19)
TEA

Let Go(r,A) = 1(r > A) — (1 — A). Note that Gy(r,A) is the residual from a
projection of 1(r > A) onto the space spanned by the identity function on [0,1].
The next two theorems give the asymptotic null distributions of (17)—(19).

THEOREM 4. Let {y,} be the stochastic process described by (1)—(3). If the
process {v,} is 1(0), that is, |a| < 1, as T — oo:

WD(T,/T) = 0
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uniformly in A,
Mean WD} =0, ExpWD}=0, and SupWD}=0.

THEOREM 5. Let {y,} be the stochastic process described by (1)-(3). If the
process {v,} is nearly I(1), that is,a« = 1 — @/T, as T — co:

1 1 2
WDMT,/T) = (J; Go(r, )y aw(r) — c_va'a'e_‘J; Go(r, ) wg(r) dr)

X (JOI Go(r,2)? dr>—1

= WD.())
uniformly in A,

-
Mean WD} = WD, (A) dA = Mean WD)},

A

1—X* 1
Exp WD} = log{ f exp <-2- WD! (A)) dA} = Exp WD},

A*

SupWD}= Sup WD.(A)dA = Sup WD..
A€M, 1-2]

In the stationary case, the statistics converge to zero. However, when the errors
are nearly integrated, the statistics have nondegenerate distributions. When & =
0, the limiting distributions reduce to the expressions given by Theorem 1 with
p = 0. If the data are highly persistent, then a conservative test can be constructed
by using the value of & that results in the largest critical values based on the
limiting distributions given by Theorem 5. As is true for the level statistics, using
a = 0 critical values gives a conservative test.

To demonstrate this fact, the distribution functions of the statistics were sim-
ulated using the same techniques in Section 3 for @ = 0,4,...,16,20. The distri-
butions are only reported for the Mean WD statistic and are qualitatively similar
for the other two statistics. Figure 8 depicts plots of the distribution functions for
Mean WD}. As is clearly evident, the critical values are monotonically decreas-
ing in &, and so the & = O critical values provide a conservative test.

To compare the power properties of the first-difference tests with the levels
test, the local asymptotic distributions of the first-difference statistics were de-
rived under the same local alternative, (10). The results are summarized in the
following theorem.
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FIGURE 8. c.d.f. of Mean WD}, nearly I(1) errors, p = 1.

THEOREM 6. Let {y,} be the stochastic process described by (1), (2), and
(10). If the process {v,} is nearly I(1), that is, « = 1 — @/T — oo:

1 -1
WD(T,/T) = (J Gy(r,A)? dr)
0

1 1
><<7la;' f Go(r,A) Go(r,2) dr + f Go(r,2) aw(r)
0 0

1 2
- c’va‘a‘[‘f Go(r, )wz(r) dr)
0

= LD(A)
uniformly in A,

1-X*

Mean WD} = LD()\) dA,
A*

1—A*

exp (% LD(A)) d)\},

Sup WD} = Sup LD(A)dA.

AEDN,1-2%]

Exp WD} = log{ f

A
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Using the results of Theorem 6, asymptotic power curves were simulated for
the first-difference statistics. Results are reported only for the Exp WDj statistic.
The results for Mean WDy and Sup WD, are similar to Exp WD, Figure 9 depicts
asymptotic power of Exp WDy for ¥, = 0,2,4,...,12 and for & = 0,4,8,...,16,20.
For small breaks, power is decreasing in &, but for large breaks power is increas-
ing in @. Note that power is monotonic in ¥, . If the plots in Figure 8 are compared
with the plots in Figure 3, it can be determined under what conditions the first-
difference tests will be preferred to the levels tests and vice versa. To facilitate
such a comparison, differences of power in the two figures are plotted in Fig-
ure 10. Points above the zero axis are where the levels test has higher power, and
points below the zero axis are where the fist-difference test has higher power. If
@ = 0, then the first-difference test delivers higher power. Therefore, the first-
difference tests should perform better with highly persistent series. But as the
errors become less persistent (@ increases), the levels tests are more powerful in
detecting small breaks, whereas the first-difference tests remain more powerful
in detecting large breaks.

To see if the first-difference tests also exhibit nonmonotonic power when there
are two breaks, simulations were run using DGP (15) and the statistics were
computed using regression (16) with k = 1. As before, 2,000 replications were
used and the 5% asymptotic critical value with & = 0 was used. Power was

Power

|

o0 2 4 8 8 10 12 14 18 18 20
V1

FIGURE 9. Asymptotic power Exp WD}, nearly I(1) errors, p = 1.
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Ficure 10. Difference in asymptotic power of Exp Wy and Exp WD}, nearly I1(1) errors,
p=1

simulated for y, = 0.0,0.1,...,1.0, and the results are plotted in Figure 11. Notice
that the power curves are monotonic with respect to ;. Except for small breaks,
for instance, y; = 0.2, power of the first-difference tests dominates the levels
tests when there are two breaks in the same direction.

7. EMPIRICAL RESULTS

To illustrate the usefulness of the statistics in the p = 1 case, they were applied to
three sets of data that recently have been analyzed in the macroeconomics liter-
ature. The first series is comprised of international postwar real GNP/GDP data
that were used by BLS (1992). This set of data is very similar to the data analyzed
by Perron (1991). The countries include Canada, France, Germany, Italy, Japan,
the United Kingdom, and the United States. All series in this set were quarterly.
The sources can be found in BLS (1992). The second set of data is taken from
Kormendi and Meguire (1990). The historical real GNP/GDP series for 12 coun-
tries including Australia, Canada, Denmark, Finland, France, Germany, Italy, the
Netherlands, Norway, Sweden, the United Kingdom, and the United States are
used. These series are annual and span more than 100 years (1870-1986). The
sources can be found in Kormendi and Meguire (1990). In a recent study, Ben-
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FIGURE 11. Power against two changes in trend, p = 1, T = 100, 5% nominal size. Left:
Mean WD}, A, = 0.25, A, = 0.75, 1% trimming. Right: Exp WD}, A; = 0.25, A, = 0.75,
1% trimming.

David and Papell (1995) applied the supremum statistics from this paper to a
broader set of series from the data set in Kormendi and Meguire (1990). The third
set of data is the data used by Nelson and Plosser (1982). The Nelson—Plosser
data were also used by Perron (1989) in the context of unit root tests allowing for
abreak in the trend function and by Chu and White (1992) who implemented tests
for structural change in the trend function. These data are annual, spanning from
the late 1800’s to 1970. The exact sources can be found in Nelson and Plosser
(1982). Note that all three sets of data comprise series that are trending over time.

For the tests based on the levels of the data, the statistics were calculated using
estimates from (6) (with p = 1) and 1% trimming. Critical values were taken from
Table 2. In practice, one must choose a value for k, the order of the estimated
autoregression. An approach recommended by Perron and Vogelsang (1992) was
used. One first estimates regression (6) by using a maximal value of 10 for k. One
then tests the significance of the coefficient on the last included lag by using a 5%
two-tailed ¢-test. Asymptotic normality of the #-test is used to carry out inference.
Asymptotic normality holds whether the errors are stationary or have a unit root.
If this coefficient is significant, the procedure is stopped. Otherwise, k is reduced
by 1 and regression (6) is estimated by using k = 9. This continues until one either
finds significance or until k = 0. When k = 10 and the coefficient on the 10th lag
was significant, the maximal value of k was increased to 15. Asymptotically, this
procedure yields the same distributions under the null hypothesis as when the
order of the autoregressive is known. See Hall (1994) and Ng and Perron (1995)
for theoretical details. The results are reported in Table 3 in columns 3-5 along
with the break date chosen by the Sup W' statistic in column 6.

Using the Sup Wy statistic, the null hypothesis is rejected for two of the post-
war GNP series (France'! and Japan), seven of the historical GNP series, and six



TABLE 3. Empirical results

Levels statistics First-difference statistics
Series Sample Mean Exp Sup T, Mean Exp Sup T,
International quarterly real GDP/GNP
Canada 48:1-89:2 5.05 5.44 19.64 81:2 1.73 1.22 6.01 75:2
France 63:1-89:2 4.46 14.18¢ 39.46¢ 68:2 5.09¢ 6.17¢ 14.17¢ 74:1
France* 63:1-89:2 4.69 4.12 13.57 72:3 2.014 3.53% 12.87¢ 66:2
Germany 50:1-89:2 2.13 1.45 7.19 80:1 4.08° 3.17¢ 9.16 60:3
Italy 52:1-82:4 5.36 4.81 17.74 69:4 5.25¢4 4.36“ 15.18¢ 74:2
Japan 52:1-89:2 13.64¢ 20.77¢ 49.10¢ 68:3 3.95° 6.49¢ 20.98¢ 73:2
UK. 60:1-89:2 2.58 5.81 20.25 79:4 0.59 0.25 1.63 73:4
U.S. 47:1-89:2 3.62 2.78 16.36 64:4 0.54 0.27 10.19¢ 51:3
Historical annual real GDP/GNP

Australia 1870-1986 10.03% 9.09¢ 23.394 1927 0.62 0.31 6.66 1946
Canada 1870-1986 4.74 13.18¢ 43.11¢ 1929 1.10 1.20 7.51 1933
Denmark 1870-1986 3.13 5.03 28.56° 1939 0.81 0.57 4.67 1943
Finland 1900-1986 3.58 5.64 20.06 1918 0.66 0.51 11.73¢ 1918
France 1870-1986 6.13 16.21¢ 56.40¢ 1942 0.87 1.25 12.66° 1947
Germany 1870-1986 5.55 6.01 19.65 1946 0.40 0.29 7.57 1946

Italy 1870-1986 5.11 8.04 25.29¢ 1945 1.31 2.134 16.76% 1945
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Netherlands 1900-1986 3.93 7.77¢ 38.48¢ 1945 0.51 0.76 8.57 1944

Norway 1870-1986 2.81 3.90 17.40 1947 4.01% 3.53% 15.98¢ 1947
Sweden 1870-1986 3.46 2.67 9.22 1960 0.91 0.48 3.08 1918
U.K. 1870-1986 5.08 14.25¢ 38.00¢ 1918 0.73 043 5.13 1932
U.s. 1870-1986 2.08 2.22 11.54 1929 0.64 0.29 2.16 1944
Nelson—Plosser data, annual
CPI 1860-1970 5.32 4.88 13.48 1872 1.31 0.75 9.89¢ 1879
Employment 1890-1970 2.19 2.02 11.43 1929 0.21 —0.06 423 1906
GNP deflator 1889-1970 1.91 4.83 18.29 1920 0.46 0.13 5.39 1940
Industrial Productivity 1860-1970 1.93 3.15 26.98¢ 1929 0.62 0.14 1.86 1952
Interest rate 1900-1970 9.13¢ 7.77¢ 25.74¢ 1962 3.09¢ 6.53¢ 14.68¢ 1967
Money stock 1889-1970 1.94 2.01 10.89 1928 0.16 —0.08 3.02 1920
Nominal GNP 1909-1970 3.24 6.09 31.60¢ 1929 0.26 —0.03 7.87 1932
Per capita GNP 1909-1970 2.28 4.31 16.38 1938 0.26 —0.03 5.77 1921
Real GNP 1909-1970 2.95 4.27 21.34 1929 0.27 —0.03 5.76 1938
Real wages 1900-1970 3.03 5.38 23.37¢ 1940 0.51 0.16 8.48 1938
Stock prices 1871-1970 7.07 8.72¢ 24.96¢ 1936 0.54 0.21 5.89 1947
Unemployment rate 1890-1970 2.90 4.33 23.45¢ 1929 0.11 —0.11 242 1933
Velocity 1869-1970 4.58 341 11.66 1947 1.60 0.98 8.84 1949
Wages 1900-1970 2.67 4.00 17.00 1929 0.28 —-0.01 3.99 1920

Note: a, b, ¢, and d denote significance at the 1%, 2.5%, 5%, and 10% levels, respectively, and * denotes the French GNP series with the strike of 1968:2 interpolated out. See BLS (1992)
for details on the interpolation.
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of the Nelson-Plosser data series. The Exp W7 statistic allows rejection in almost
as many cases as the Sup W statistic but never rejects when the latter fails to do
so. However, the Mean W7 statistic rejects the null hypothesis in only three cases:
the Japanese postwar real GDP series, the Australian historical GDP series, and
the Nelson—Plosser interest rate.

The first-difference statistics were also applied to the series. The same values
of k used in the levels tests were used for the first-difference tests. This was done
to avoid potential problems caused by first differencing a stationary process and
inducing noninvertible moving average errors with a unit root. The results are
reported in Table 3 in columns 7-9, and the value of 7, chosen by Sup WD} is
reported in the last column. The critical values were taken from Table 1 (p = 0
column). For the postwar GNP/GDP series, rejection of the null hypothesis is
now possible for six of the eight series. The null hypothesis can be rejected for
four of the series in which rejection was not possible by using the tests in levels.
Interestingly, for France, Japan, and Italy, the Sup WD} statistic picked break
dates near the time of the oil crisis (1973). For the other two sets of data, in only
three instances could the null hypothesis be rejected when the tests in levels failed
to do so. They were the historical GNP series for Finland and Norway and the
Nelson—Plosser CPI series. The rejections for the Norway series were the strongest.

The results of this section clearly indicate that the assumption of a stable linear
trend will not result in well-specified univariate models for many of the series
examined. This is true whether one views these series as being stationary or as
having a unit root. It is important to keep in mind that a rejection has little to say
beyond whether a stable trend leads to a well-specified model. Even though the
tests are designed to detect a single break in the trend function, a rejection does
not indicate what specification should be used for the trend function because the
tests will have power in detecting more general alternatives. Other techniques
would be needed to guide further specification of the trend function.

8. CONCLUDING REMARKS

In this paper, test statistics for detecting a break at an unknown date in the trend
function of a dynamic univariate time series were developed. Asymptotic results
were derived for both I(0) and I(1) errors. When the errors are highly persistent
and it is not known which asymptotic theory (1(0) or I(1)) provides a better
approximation, a conservative approach based on nearly integrated asymptotics
was provided. The tests were based on the mean and exponential statistics of
Andrews and Ploberger (1994) and the supremum statistic of Andrews (1993).
Their results were extended to allow trending and unit root regressors. An anal-
ysis of the power of the statistics revealed that the mean statistic suffers from
nonmonotonic power as the break magnitude increases, whereas the exponential
and supremum statistics have monotonic power. Interestingly, all three statistics
have nonmonotonic power when there are two breaks in the same direction. Ver-
sions of the tests applicable to first differences of the data were also proposed.
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It was found that first differencing results in superior power when the errors are
purely I(1) or are highly persistent with a medium or large break. When the data
are less persistent (but still near a unit root) and the break small, the levels tests
have better power. Therefore, the levels and first-difference tests complement
each other.

NOTE

1. The rejection of the France series is due to the labor strike of May 1968. For the series that
interpolates out the strike observation, the null hypothesis cannot be rejected.
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APPENDIX

In this Appendix, proofs of the theorems are given. The approach is to establish conver-
gence of the Wald statistic uniformly in A for each theorem. Then, by the continuous
mapping theorem, convergence of the mean, exponential, and supremum statistics directly
follows. The Wald statistics are expressed as continuous functions of stochastic integrals
defined with respect to A, and the results of Hansen (1992b) are used to establish weak
convergence uniformly in A.

To simplify the presentation, it is convenient to write the model in matrix form as Y=
3(TE)y + o, or AY = §(T$)6 + Zp + &, where Y, AY, v, and e are the T X 1 vectors {y,},
{Ay}, {v,}, and {e;}, §(T) is the T X (p + 1) matrix {g(t,A.)}, Z = (Z,,Z,), with Z, the
T X 1 vector {y,—}, Z, the T X k matrix {Ay,—1,...,Ay,—i}, and ¢ = (w,c’)’ with ¢ =
(c1,...,cx)'. Atilde over a vector or matrix denotes the residuals from the projection onto
the space spanned by £, which is the T X (p + 1) matrix { f(¢)}. Recall that a tilde over a
function defined on the space [0,1] denotes the residuals from the projection onto the space
spanned by F(r). Define X = (X1, X,) where X is the T X 1 vector {v,—;} and X, is the T X
k matrix {Av,—1,...,Av,—}. In addition to 7, defined previously, let 7, denote a (k + 1) X
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(k + 1) diagonal matrix with diagonal elements (T ~*/2,1,...,1). Unless otherwise noted,
all sums run from 1 to T and given a matrix x, M, denotes the matrix  — x(x'x) "x’.

The next three lemmas establish convergence of moments that appear in the definitions
of the Wald statistics. Using the lemmas, the theorems are easy to establish.

LEMMA Al. As T — oo, the following hold uniformly in A,

@ T7'1g(1,)E(T,)m = foié(r,/\)'é(f,/\) dr,
(b) T_l/leg(Tb)'e = a'ef()l G(r,)t)'dw(r).

Proof.
@ T7'1g(T) M) =T 'r8(T,) g(T,) ™
= Tl (L) fri (T~ 7y fifr) ' T e f8 ()
=T '3SGt/T,A\)'G(t/T,\)
— T7ISG(t/T,N)'F(t/T)[T ~'SF(t/T)'F(¢/T)]
X TISF(t/T) G(t/T,\)

1
= J G(r,A)G(r,A) dr
0

1
- (f G(r,A\)'F(r)dr
0

-1 1
X [J: F(r)’F(r)dr} lj(; F(r)’G(r,)\)dr)

1
= f G(r,N)'G(r,A) dr,
0
and is trivially uniform in A.

T
b)Y T V235G (t/T,N) e, =T V2> F/T— MN'e,

Tp+1

1 1
=>Ue£ F(r—X) aw(r) = a'ej; G(r,A) dw(r),

uniformly in A by Theorem 2.1 of Hansen (1992b) because {e,} is a martingale
difference sequence and F(z/T — A) = F(r — A) uniformly in A. Using this result,
it directly follows that

T—l/le g(Tb)’e = T_I/ZEG(t/T» A)’e;
— (T 7'SG(/T, A F(t/T)[T ~'SF (/) F(t/T)] "
X T~V25F(t/T)'e,)

1
=0, f G(r,N) dw(r)
0

uniformly in A. L]
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LEMMA A2. Let |a| < 1 so that {v,} is 1(0). As T — oo, the following hold uniformly
in A:

(@) T~V2X'é = ¥ where ¥ is a (k + 1) X 1 multivariate normal random variable.

(b) T7'X'X = Q where Q = EX} X, with X, = (v,,Av,—1,...,Av,—;) and Q™" exists.

© T '1g(T)'X = 0p,(1).

Proof. These are standard results (see Fuller 1976) and trivially hold uniformly in A.
]

LEMMAAS3. Leta =1 — &/T so that {v,} is nearly I(1). As T — oo, the following hold
uniformly in A:

1 '
@ T V*r,X'e=[T"'X|eT ?X;é) =>[a'¢ref wa(r) dw(r),\Ifi] s
0

where W, is a k X 1 multivariate normal random variable.

1
(TZJ Wa(r)z dr 0]Xk
0

OkX 1 ‘0'22

s

R T2X|X, T7¥XX,
BT ' X' X7y = . -
) AR g%, TR,

where Qyp = EX3,Xos, Xor = (Av,—1,...,Av,—t), and Q3 exists.

(©) T~171 g(Tb)’gTZ = [T-.3/2g(Tb)'}?l,T_lg(Tb),X2]

1
= l:a' fo G(r,\)'wz(r) dr,O(p+1)Xk].

Proof.

(@ T 'Xie=T""'30,_1e,= o0, f§ Wsz(r) dw(r) uniformly in A from Theorem 4.4 of
Hansen (1992b). Because {Av,} is a stationary process with innovations {e,}, it
follows from standard results (e.g., Fuller, 1976) that T ~1/2X}& = ¥} and is triv-
ially uniform in A.

(b) T2X|X,=T72352, = 02 [4 wz(r)? dr. Because {Av,} is stationary, it follows
from standard results that T ~' X3 X, = Qy,and T 32X X, = 0,(1). These trivially
hold uniformly in A.

(©) T™(T,)X, = T ?3G(/T,\)'D,-; = o Jg G(r,A)'Wz(r) uniformly in A
because T ~*25G(t/T,N)'v,—y = T ¥?3L \F(t/T — N'vimy = o [{F(r —
N)'wz(r) = o [¢ G(r,A)'wg(r) uniformly in A. Because {Av,} is stationary, it fol-
lows from standard results that T ~'§(T},)'X, = 0,(1).

Proof of Theorem 1. Under the null hypothesis y = 8 = 0, ¥ = 5 and AY = Z¢ + ¢&.
Direct calculation gives

W (T,/T) = T~"2& Mz g(T,)7, [T ™' §(T;) Mz §(T;,) 1] ™!
X T~V27 §(T,) Mg é/s>.
T V27 g(T,)Mgé =T’ §(T,) e = T ' §(T,)X[T'X'X] ' T~2K e

=0, Jl G(r,A) dw(r)
0

uniformly in A by Lemmas Al and A2.
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T '18(T,)' Mz g(T)r =T '7§(T,)' §(T,)7,
~T7'7g(T)X[T'X'X]7'T'X'§(T,)m

1
= f G(r,A)'G(r,A\) dr
0

uniformly in A by Lemmas Al and A2.
s2=T7'e'Mgé +0,(1) =T '¢¢+ 0,(1) = 7.
The theorem follows from simple algebraic manipulation. u

Proof of Theorem 2. Under the null hypothesisy =86 =0, ¥ = §,and AY = Z¢p + &.
Direct calculation gives

WF(T,/T) = T~ '2&' Mz g(T,)7, [T "', §(T,) Mz §(T,)7 ]~
X T~V27 §(T,) Mg &/s2.

T~'27,5(T,)Mgé =T~ 27, §(T,)e — T'1, g(T,) Xr, [T " '7, X' Xr, ] 7' T "1, X e

1
= a'ef G(r,\) dw(r)
0

1
- <a‘ef0 G(r,N)'wa(r) J: 1711£-,(r)dw(r))/f0I Wwa(r)?dr= o, HF(X)

uniformly in A by Lemmas A1 and A3.
T7'1 §(T,) Mz g(Ty)1 = T~ '1 8(T,) §(Ty) 7

=T §(T,) Ko [T 'y X' X ] ' T 7'y XV 3(T) 7y

1
= Jo G(r,N)'G(r,A) dr

- <fl G (r,1) W5(r) fol G(r,)t)%(r))/fl%(r)zdr= HI(A)
uniformly in A by Lemmas Aloand A3. Because A € [A*,1 — )\*],0 H{ (M) 7! exists.
s2=T7'e'Mgé+0,(1) =T '¢¢ + 0,(1) > 0.

The theorem follows from simple algebraic manipulation. n

Proof of Theorem 3. Becausep = 1, 7; = diag(1,T ~') and 7, = diag(7 ~"/2,1). Under
the local alternative (10), ¥ = T V2§, (T¥) ¥, + 6 and AY = T~25(T£)6 + Zop + é +
0,(1), where Z = [T ™25, (Tf) ¥, + X1,X,] + 0,(1). Recall that under (10) 8 = ¥, [a —
c(1),1 - a]=#¥,[1 — &/T - C(1),&/T]. Therefore, 7{ '8 = y,[1 — &/T — C(1),a] =
%,[1 = €(1),&] = 8. First consider convergence of the following moments:

T71,Z'e = [T73P51(T) ey, + T7'Xie,T 712 Xse] + 0,(1)

1
= {Uefo [71Gi(r,A,) + aWa(n)] dW(r),‘I'z}, (A1)

uniformly in A by Lemmas A1 and A3.
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T '7Z7'Zr,
[T T 5T 7 + TR )T 0 (T + T2, ] T2 [T '5 (T 7 + T™V20]'X,
L T2 31Ty + T2, ] T7'%%,

+ 0,(1)

(A.2)

-fol [%1Gi(r,A0) + oWwa(r)] dr lek]
Oix1 Q2 ,
uniformly in A by Lemmas A1 and A3.
T™'1&(T) Zry = [T7'1 g8 (AT ™' + T 1 g X, T 7' 2(V)'X, ]
+ 0,(1)

1 1
:>|;71J(; G(n)‘)/él(r’/\c)dr—i_ O-J(; G(raA),w&(r)draOZXk:Ia (A'3)

uniformly in A by Lemmas A1 and A3. Straightforward but tedious calculations give
s?=> 02, (A4)
Direct calculation gives
Wi (T,/T) = [8'77' T '7y §(T) Mz (Ty) 7y + T2’ Mz§(T,) 7]

X [T'r §(T,)'Mzg(T,) ]!

X [T7'7 g(T,)' Mz&(T)my 7' 8 + T~ '27, §(T,)' MzE]/s?

= [0 '8'Ly(AA) + L) 1L (A1) 7 o7 ' La(A,A.)8 + Li()],

uniformly in A by (A.1)-(A.4), Lemma A1, and algebraic manipulation. ]

Proof of Theorem 4. Let a tilde over a vector or matrix denote demeaned values and a
circumflex over a function on the space [0,1] denote residuals from a projection onto the
space spanned by the constant function 1. Write the DGP as AY = AD, AY = 2*a + Aé
where Z* is the T X (k + 1) matrix {Ay;_1,...,Ay,—x—1}. Let X* denote the T X (k + 1)
matrix {Av,—y,...,Av,—;—}. Direct calculation gives

WDHT,/T) = T~ V206'Mg+ 8o(T,)[T ' 20(T,) Mz~ §o(Tp)] ' T ~V/220(T,) Mg~ Aé/s.

[T "7 80(T,)' Mg+ $o(T,)] "' = O,(1) by Lemmas Al and A2. T ~'/24,(T,)'Mg-Aé =

T Y27, 5o(T,) My+B(L)é where B(L) = 1 — L. The limit of T ~'/28,(T;,)’ M3~ B(L)é is

proportional to B(1) = 0 and is thus zero. Therefore, the numerator of WD?, is 0p(1). The

proof is complete by showing s = 202

52 =T 'Aé'Mg-Aé + 0,(1) = T'A&'Aé + 0,(1) = T7'3(é, — é,-1)* + 0,(1)
=202 n

Proof of Theorem 5. It is convenient to write the DGP as AY = Z,7 + Z,c + &, or
Ad = X7 + X,c + é and note that M- Z, = 0. Direct calculation gives
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WDHT,/T) = T~V2(Xy 1 + &) My 2o(T,)[T ™' 80(T;) M+ o(T,)] !
X T™V28(T,) Mg+ (i + &)/52.
Using m = —a/T gives
T~V250(T,)' Mg-(Rym + 6) = =T ~V240(T,)' Mg-X @ + T =220 (T,) M- é
= T ¥24(T,)' X, @ + T2§0(T,)'é + 0,(1)

1 1
= o-eJ- Go(r,A) dw(r) — &af Go(r,\)Wg(r) dr
0 0
uniformly in A by Lemmas Al and A3.
1
T '40(T,) M+ 8o(T,) = f Go(r,A)*dr
0

uniformly in A by Lemmas A1 and A3.
s2=T ' Xy7 + &' Mgs(Xy 7 + &) + 0,(1) = T7'¢'Mg+é + 0,(1)
=T71¢'é +0,(1) = 0.
The theorem follows by simple algebra. u

Proof of Theorem 6. Under the local alternative (10), AY = T ~/2go(T) 7, + AD +
0,(1), which implies that Z* = X* + 0,(1). Direct calculation gives

WDH(T,/T) = T V(T ~V2go(T) ¥1 + AD) Mz §o(T,)
X [T 80(Ty) Mz 80(T,)] ™!
X T71280(T,) M2+ (T ~V2go(T) 71 + AD)/s>.

1
T“lg’o(Tb)'Mz”*g’o(Tb)ﬂf Go(r,A)? dr
0

uniformly in A by Lemmas A1 and A3.
T~1280(T,) Mz(T ~V2go(T) ¥, + AD) = T 7' 8o(T},) M2+ go(Ty) 71
+ T 71280(T,) My (Xym + &) + 0,(1)

1
=7 f Go(r,)Go(r,A,) dr
0
1 A
+ o-ef Go(r,A) dw(r)
0

1
- c'w'J Go(r,/\)Wa(r)dr,
0

uniformly in A by Lemmas A1 and A3. Straightforward algebra gives s> = o2, and alge-
braic manipulation completes the proof. |
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