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TREND FUNCTION HYPOTHESIS TESTING IN THE 

PRESENCE O F  SERIAL CORRELATION 


In this paper test statistics are proposed that can be used to test hypotheses about the 
parameters of the deterministic trend function of a univariate time series. The tests are 
valid in the presence of general forms of serial correlation in the errors and can be used 
without having to estimate the serial correlation parameters either parametrically or 
nonparametrically. The tests are valid for I(0) and I(1) errors. Trend functions that are 
permitted include general linear polynomial trend functions that may have breaks at 
either known or unknown locations. Asymptotic distributions are derived, and consistency 
of the tests is established. The general results are applied to a model with a simple linear 
trend. A local asymptotic analysis is used to compute asymptotic size and power of the 
tests for this example. Size is well controlled and is relatively unaffected by the variance of 
the initial condition. Asymptotic power curves are computed for the simple linear trend 
model and are compared to existing tests. It is shown that the new tests have nontrivial 
asymptotic power. A simulation study shows that the asymptotic approximations are 
adequate for sample sizes typically used in economics. The tests are used to construct 
confidence intervals for average GNP growth rates for eight industrialized countries using 
post-war data. 

KEYWORDS:Wald test, hypothesis test, partial sum. unit root, structural change, 
conservative test. 

1. INTRODUCTION 

IN THIS PAPER STATISTICS ARE PROPOSED to test general linear hypotheses 
regarding parameters of the deterministic trend function of a univariate time 
series. The framework is general enough to include most deterministic trend 
functions that are linear in parameters including polynomial trend functions that 
may have breaks at known or unknown dates. The innovations of the time series 
may be serially correlated and have up to one unit root. A priori knowledge as 
to whether the innovations are I (0)  or I (1 )  is not required. When the innova- 
tions are modeled as local to'a unit root in a model with a simple linear trend, 
the tests can be carried out without knowledge of the local to unity parameter or 
knowledge of the variance of the initial condition. This result is important as the 
local to unity parameter and the variance of the initial condition cannot be 
consistently estimated. 

' I thank Serena Ng, Pierre Perron, and Mark Watson for helpful comments and seminar 
participants at Cornell University, University of Rochester, Princeton University, and the 1996 
Winter Meetings of the Econometrics Society. I am grateful to a co-editor and two anonymous 
referees for helpful comments and suggestions that helped to improve the paper. I also thank the 
Center for Analytic Economics at Cornell University. 
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Another useful property of the statistics from an applied perspective is that 
the statistics are asymptotically invariant to all the serial correlation parameters. 
Estimates of the serial correlation parameters, either parametric or nonpara- 
metric, are not needed, and the sometimes subjective finite sample choices such 
as lag length, information criteria, kernel or truncation lag can be completely 
avoided. All that is required is that a functional central limit theorem hold for 
the partial sums of the innovations. 

Since the focus of this paper is trend function hypothesis testing, the serial 
correlation, i.e. the dynamics, are viewed as nuisance parameters. This would be 
the appropriate framework from an economic standpoint if the goal were, for 
example, forming confidence intervals on growth rates of GNP or testing for and 
identifying structural shifts in growth of GNP. Sometimes, however, dynamics 
are of interest, usually in a multivariate framework, e.g. business cycles, and 
individual series are often transformed to remove nonstationarities. These 
transformations commonly involve detrending and removing unit roots. Obvi- 
ously, detrending requires a well specified trend function. From the work of 
Perron (1988, 1989, 1990) it is well known that misspecification of the trend 
function can result in highly misleading unit root tests. So, even if the trend 
function is not of direct interest, correct specification of the trend function is 
required for additional modeling. 

The remainder of the paper is organized as follows. In order to motivate the 
usefulness of the statistics developed later in the paper, the next section 
contains a simple Monte Carlo experiment which illustrates some of the prob- 
lems that arise when the form of serial correlation is not known. It is shown that 
OLS-based Wald statistics suffer from substantial finite sample size distortions. 
If the standard Wald statistic is normalized by the sample size, a test with 
correct size is obtained. This statistic has good power when the errors are I(1) 
but lacks power when the errors are I(0). New statistics are proposed in Section 
3 that have good size and are powerful when the errors are I(0). These statistics 
along with the normalized Wald statistic comprise a class of tests with good size 
and complementary power. Asymptotic results are presented including limiting 
null distributions for I(0) and I(1) errors and conditions under which consis- 
tency holds. In Section 4 the general results are applied to a model with a simple 
linear trend function. Limiting distributions are tabulated, and the statistics are 
evaluated by examining asymptotic size and power. In Section 5 results from 
finite sample size and power simulations for the simple linear trend model are 
given. As long as the errors are not I(1) with an MA component with a root 
close to but not equal to one, the new tests have finite sample size close to the 
nominal level. Section 6 contains an empirical application. Confidence intervals 
for the average growth rate of real per capita GNP are constructed using 
quarterly post war data for eight industrialized countries. Confidence intervals 
for pre-1973 and post-1973 samples indicate that growth rates have slowed in 
many cases. Section 7 contains concluding remarks, and all proofs are given in 
an Appendix. 
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2. BACKGROUND AND MOTIVATION 

The literature on trend function hypothesis testing is quite large and no 
attempt is made to summarize it here. However, it is useful to review some 
classic and some recent results so that the statistics proposed in this paper can 
be placed in context. To facilitate the discussion consider a very simple time 
series model for t = 1,2,.. . ,T ,  

where {u,}is a mean zero error process. If { y , } is the logarithm of output, then 
p2 is the average growth rate of output. Suppose one were interested in 
inference about 0,. When { u , } is I(O), OLS estimates of (1) are efficient since 
they are asymptotically normal with variance equivalent to GLS. This follows 
directly from the classic results of Grenander and Rosenblatt (1957). Since the 
asymptotic variance in model (1) is proportional to the spectral density of { L L , }  at 
frequency zero, asymptotically valid inference can be carried out using any 
consistent estimate of the spectral density of {u,}.If, on the other hand, { L L , }  is 
I(l) ,  OLS applied to (1) no longer has optimality properties. But upon first 
differencing, the model d y ,  = P, + d u ,  is obtained and OLS again has optimal- 
ity properties. 

In practice there are two considerations that can make inference more 
difficult to carry out than suggested by the results of Grenander and Rosenblatt 
(1957). First, it is often unknown whether errors are I(0) or I(l), and in series 
with highly persistent errors often neither I(0) nor I(1)asymptotics provide good 
approximations to finite sample distributions. Second, sampling variability in 
spectral density estimates can lead to poor approximations of asymptotic distri- 
butions in finite samples. Furthermore, choices such as kernel and truncation 
lag (in nonparametric estimation) and lag length (in parametric estimation) can 
lead to conflicting results in practice. 

The first consideration is addressed by Canjels and Watson (1997) where 
model (1) is analyzed, and the errors are modeled as local to a unit root, or 
nearly I(1). They consider several feasible GLS estimators and find that asymp- 
totic distributions depend on a local to unity parameter and the variance of the 
initial condition. Since these parameters cannot be consistently estimated from 
the data, they proposed conservative tests based on Bonferoni confidence 
intervals. They establish that nearly I(1) asymptotics provide a good approxima- 
tion to finite sample distributions for parameter values often found in economic 
data. Ultimately, they show that the Prais and Winsten (1954) feasible GLS 
estimator performs the best in practice. A drawback of the Canjels and Watson 
(1997) approach in a more general framework is that construction of the 
Bonferoni confidence intervals can be quite demanding, although for model (1) 
computing confidence intervals is fairly simple. 

Regarding the second consideration, sampling variability is clearly unavoid- 
able when estimating the spectrum and may not be an issue if the sample size is 
large enough. With regards to choices such as kernel and truncation lag in 
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nonparametric estimation, much progress has been made recently on data 
dependent methods for making such choices. Robinson (1991) proposed and 
established the consistency of a data dependent method for choosing the 
truncation lag using a cross-validation procedure. Andrews (1991) proposed 
consistent data dependent methods for choosing the truncation lag using the 
"plug-in" method. Andrews (1991) also established the optimality of the 
quadratic spectral kernel in certain models. Andrews and Monahan (1992) 
found that prewhitening can improve the estimators considered by Andrews 
(1991). For parametric models of serial correlation Hall (1994) and Ng and 
Perron (1995) have shown that data dependent methods for choosing lag lengths 
in autoregressive approximations work well in unit root tests. 

To illustrate how serial correlation in the errors can affect inference regard- 
ing p, in model (1) a simple Monte Carlo experiment was conducted. The null 
hypothesis was p, = 0 and data were generated using the following ARMA(1,l) 
model for (u,}: 

with {q}i.i.d. N(0,l)  random deviates and 7, = 0. The (7,)were generated using 
the ranl( ) subroutine of Press et al. (1992) using -T  as the initial seed. 
Without loss of generality, p1 = 0. In all cases 1,000 replications were used, and 
the nominal level was 5%. Results are given for CY = 0.8, 0.9, 0.95, 1.0, and 
0 1  -1.0, -0.8, -0.4,0.0,0.4,0.8. 

Three Wald statistics were used to test the null hypothesis. The first is a Wald 
test based on the OLS estimate of p, from (1).The asymptotic variance of OLS 
is proportional to the spectral density at frequency zero of ( L L , }  which was 
estimated using the quadratic spectral kernel with the truncation lag chosen 
according to the automatic procedure of Andrews and Monahan (1992) using 
AR(1) prewhitening. This test is labeled OLS. The limiting distribution of this 
statistic is X f  when errors are I(0). The second test is based on the Prais-Wins- 
ten (1954) feasible GLS estimate of (1) using the AR(1) transformation as 
suggested by Canjels and Watson (1997). Additional correlation in the model 
was estimated using an autoregressive spectral estimate with the lag length of 
the autoregressive approximation chosen using a data dependent method sug- 
gested by Ng and Perron (1995). The conservative Bonferoni test based on the 
local to I(1) asymptotic approximation as recommended by Canjels and Watson 
(1997) was used. The limiting distribution of this statistic is X;.  The third test is 
the standard Wald test (using the OLS estimate of the variance) normalized by 
T-I which is labelled T-' W,. The 5% asymptotic critical value for T-' WT was 
taken from Table II(ii) with details given in Section 3. Phillips and Durlauf 
(1988) derived the limiting distribution of T-I WT under I(1) errors, but they did 
not tabulate critical values nor suggest using T-I WT as a test statistic. One of 
the contributions of this paper is to tabulate critical values for T - I  WT and to 
determine its properties as a test statistic. 
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Table I reports null rejection probabilities. Table I also reports results for 
statistics that are proposed later in the paper. The first result given by the table 
is that the OLS test has severe size distortions. As a approaches one, rejection 
probabilities become very large and worsen as T increases. This is not surprising 
since the OLS statistic diverges to r-c when a = 1.0. There are also distortions 
when the errors are clearly I(0). In unreported simulations it was found that 
these distortions disappear if the OLS variance is assumed to be known, 
suggesting that sampling variability of the estimate of the spectrum is a source 
of size distortion. The GLS statistic has much better size with rejection probabil- 
ities near or below 0.05 except when a = 1.0 and 8 =  -0.8 in which case 
rejection probabilities exceed 0.15. If this range is excluded from the parameter 
space, GLS has good size. The T - ' W ,  statistic has size close to 0.05 since 
rejection probabilities are always near or below 0.05. GLS and T P ' W T  are 
conservative when a < 1 as rejection probabilities are close to zero. 

If controlling size were the only concern, then GLS and T - ' W T  would be 
good candidate statistics. Since these statistics are based on I (1)  asymptotics, 
power of these tests should be good for a close to one. This was shown by 
Canjels and Watson (1997) for GLS. When a is not close to one, GLS and 
T - ' W ,  are conservative and will lack power. In the next section statistics are 
proposed which maintain the good size properties of GLS and T - ' W ,  but are 
designed to be powerful when the errors are I(0). 

3. THE GENERAL MODEL AND ASYMPTOTIC RESULTS 

3.1 The General Model 

Consider a univariate time series process (y,}, t = 1,2,.. .,T ,  generated by 

where f ( t )  = [f , ( t ) ,  f , ( t) ,  .. . ,f,(t)l' is a ( k x 1) vector of trends, p = ( P I ,P 2 ,  

. . . , p,)' is a ( k  x 1) vector of trend parameters and (u ,}  is an error process 
satisfying 

[ K T ]  

(4) ( I - L c Y ~ ) u ~ = c ~ ,  u l =t = 2 , 3 , . . . , T ,  z ~ Z c 1 - ~ >  
r = O  

2 2 


( 5 )  c, = d ( L ) e , ,  d ( L ) = z d,Lr,  z lldrl< r-c, and d(112> 0 ,  
r = O  i = O  

where (e,} is a martingale difference sequence with ~ ( e , 'let- , ,e,+,,.. . ) = 1 and 
s u p , ~ e :< =, L is the lag operator, and [XI is the integer part of x. Assume 
there exists a ( k  x k )  diagonal normalization matrix T ,  and a ( k  X 1) vector of 
functions F ( r )  defined on [ O , 11such that 

(6) T ,  f ( t )  =F ( t / T )  + o ( l ) ,  / I F ( ? )  dr < =, and 
0 

d e t [ ~ l F ( r ) F ( r ~d r ]  > 0 .  
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Assumptions (4) and ( 3 )  are the same assumptions used by Canjels and 
Watson (1997).A functional central limit theorem applies to the partial sums of 
{e , ) so that T-'/'C\'Lr,]et* IV( I . )where ~ ( 1 . )is a standard Wiener process and 
=1 denotes weak convergence in distribution. It directly follows that 
T--

i = 1  I ,1 =1c i ( l ) ~ v ( ~ . ) .  cl(1)' > 0 is equivalent to restricting I j l ~ [ i . T ]  The restriction 
the spectral density at frequency zero of {c,)  to be positive. This rules out 
nondegenerate cases. Other conditions 011 {u , ) ,  such as mixing conditions 
popularized by Phillips (1987a),could be considered without changing any of the 
res~llts that follow provided that the partial sums of { z r , ) ,  S ,  = C\= , u , ,  satisfy a 
functional central limit theorem. Assumptions (4)and ( 5 ) include I (0 )  and I (1 )  
errors. When aT= a ant1 1 a /< 1 ,  { u , ) is I(O). When a ,  = ( 1  - E / T ) , { u , ) is a 
nearly I (1 )  process' (a pure I (1 )  process when E = 0).  Throughout the paper 
1(1) denotes errors with a ,  = ( 1  - CY/T). Under these assumptions a functional 
central limit theorem applies to { S t ) .When { ~ i , )  is I(()), T-]."S,,,, * crw(r)  

,1
where cr' = d(1 ) ' / ( l  - a )', when { z r , )  is I ( l ) ,  T-' / - ~ r , ~ . , ,  * d ( l ) V z ( r )  where 
Vz(r.)= I V ~ ( I ' )+ e x p ( - r . E ) ~ S , ( ~ ) ,I . ~ ' ~ ( I . )  / ( ; e x p ( - E ( ~ . -  s ) ) c ~ M : ( s ) ,  == G $ K )  
j,;exp( - C Y (  K - s ) )dM'(s), and 12?(r.)is a standard Wiener process independent 
with ~ ( 1 . ) .Ass~~mption(4) incorporates the effects of the initial condition into 
the asymptotic distribution theory. The K parameter governs the variance of the 
initial condition. When K = 0 ,  1 1 ,  is an 0,,(1) random variable. When K > 0 ,  u ,  is 
0,,(1) when {u , ) is I(O) but is O,,(T~)'"when { L I , )  is [ ( I ) .  

Assumption (6) simplifies the asymptotic representation of the statistics and 
rules out ill behaved trend functions like f , ( t )  = l / t  and trends that are 
asymptotically collinear. Assumption ( 6 ) is general enough to permit polynonlial 
trends possibly with a finite number of structural changes. More general 
assumptions on the trend function such as the conditions given in Greiiander 
and Rosenblatt (1957) could be used, but the assumptioils above suffice for most 
models of interest. 

By foriniilg partial sums of { y , ) , ( 3 ) can be transformed as 

where g ( t )= Ci=, f ( j )  and z ,  = C: ,  ,j.,.When { u , )is 1(0), { z , ) has I ( ] )innova-
tions, while when { u , )is I ( l ) ,( 2 , ) has I (2)  innovations. Define G ( r )= l , ;F(s)  ds. 
The properties of g ( t )  and G ( r ) follow from ( 6 ) as T - - ' ~ , . g ( t )= G ( t / T )  + o(l),  
j,;G ( r )  dr. < = and det[ j,,'G(r.)G(r.)'dl-]> 0 .  It is convenient to write models ( 3 )  
and ( 7 ) as 

Local to unity asyrnptotics is becoming standard in time series analysis involving integrated data. 
Theoretical backgl.ound can hc found in Bobltoski (10831, Chan and Wci (1987), Phillips (1987b). 
and Nabeya and Perron (1994). 
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where Y = {y,}, Z  = {z ,} ,  u  = {u,}, and S = IS,} are ( T  X 1) vectors and X,= 

{ f ( t > ' }and X,= {g( t ) ' }are ( T  X k )  matrices. Let f i  denote the OLS estimate of 
p from (8 ) and let p* denote the OLS estimate of P from (9).Define the OLS 
estimates of the error variance in (8) and (9 )  as s; = T - ' Y f M X , Y  and s; = 

T - ~ Z ' M , ~ Zwhere Mx = I  - x ( x l x ) - ' x ' .  

3.2 Tlze Test Statistics 

In order to define the test statistics some preliminary developments are 
needed. Let t i- '  be the highest order polynomial of t in f ( t ) .  Consider the 
regression models, 

Nt 

(10)  y, =f ( t ) '  p + Cyiti + u , ,  
i = j  

111 

(11)  z ,  =g(tY p + C y,ti + S,.  
i=j+ 1 

Let J;(rn) denote the standard OLS Wald statistic normalized by T- '  for 
testing the joint hypothesis yj = y j+ ,= ... = xi, = 0 in (10) and let ~ ; ( n z )  
denote the standard OLS Wald statistic normalized by T- '  for testing the joint 
hypothesis y j+ ,= y,+, = ... = y,,, = 0 in (11). J;(rn) is a unit root statistic 
proposed by Park and Choi (1988) and Park (1990). When the errors are I(O), 
J;(rn) converges to zero. When the errors are 1(1), J;(rn) has a noildegenerate 
limiting distribution. As a unit root statistic, J;(nz) is a left tailed test. ~ : ( r n )is 
not a unit root statistic and has nondegenerate limiting distributions for I (0) and 
I (1)  errors with the I (1)  limiting distribution skewed much farther to the right 
than the I(0) limiting distribution. ~ ; ( r n )and J % ( m )  are used to smooth 
discontinuities in the limiting distributions of the statistics of interest as the 
errors go from I(0) to I(1). 

Consider testing hypotheses regarding P of the form 

H,: RP = r ,  H I :RP # r ,  

where R is a ( q x k )  matrix of constants and r is a ( q x 1)  matrix of constants. 
Using the OLS estimate of P from (81, the T- '  WT statistic is defined as 

A statistic similar to T-I W, constructed from the OLS estimate of ,8 from (9 ) is 
defined as 



where 13 is a constant. A third statistic which is the standard OLS Wald statistic 
with sf replaced by another sanlple moment is 

The 100 is included in the denominator of PSbII; to ~lormalizc the critical values 
and beconles important computationally in some applications including tests for 
s t r~lc t~l ra lchange (see Vogelsang i l997b)) .  This normalization does not affect 
the size or  power of PSLV;;. Different values for 13 are used for each statistic. 
When c/ = 1, t statistics can be defined n.hich arc uscf~11 for one sided tests and 
constructing confidence inter\,als. 

The PS; and PSI4f; statistics are designed to have power when the cnors  are 
I ( 0 )  but remain robust to I( I) errors in t e r ~ u s  of size. Suppose that 13 = 0 so that 
the J ; ( I I T )statistics disappear from the definitions of PS; and PSI4f;. In this 
case PS; and PSW; have nondegenerate limiting distributions for both I ( 0 )  
and I ( 1 )  errors: but the distributions are sliened much farther to the right when 
the errors are [ ( I )  compared to I(O). This wo~l ld  make asymptotically valid 
inference possible only if it were known whether the errors were I(O) or I ( 1 ) .  
When 11 > 0 ,  the J ;  ( 1 1 1 )  statistics smooth the discontinuities of PS; and PSLVj' 
as the crrors go fro111 I ( 0 )  to I ( 1 )  by taking on large values for I( I )  errors and 
snlall \-alues for I ( 0 )  errors. For example. when the errors arc I(O).Jj  ( 1 1 1 )  is zero 
asymptotically and has no effect 011the distribution of PS;. When the crrors are 
I ( l ) ,  the d is t r ibut io~~ of PS; is skewed to the right and at the same time J j  ( I ? ? )  

becomes nondegenerate and cxp(l1J:(1?7))takes on large values. reducing the 
critical \.alucs of PS;. Therefore, the h's can be chosen to bring the I(O) and 
I ( 1 )  distributions of PS; and PSIL'; close together. Ci\-en a percentage point. h 
can be chosen so the IiO) 2nd f i t )  critical values are the same. pro\iding a test 
that has the correct asymptotic size sinlultaneously for I ( 0 )  and I ( 1 )  crrors. The 
Jj  ( 1 7 1 )  statistic has the nice property that it does not affect the asymptotic power 
of PS: and PSM',' when the crrors are I (0) .  While J ~ ( I ? I )does affect pon.cr in 
the I ( 0 ) case. PSJ and PSII/,' ha\.e better finite sample size in ccrtai~l  cases and. 
unlike PS; and PSW;. can be configured to be robust to fractionally integrated 
crrors. Results with fractionally integrated errors are a\-ailable upon request. 

In this section limiting distributio~ls of the statistics under the null hypothesis 
are given and arc expressecl as f~unctionals of s~andarcl Brownian motio~ls. The 
limiting distributions of PS; and PSI.I'; depend on the trends in the model since 
partial sunlnling of the data places a unit root in the model by construction. 
Likewise. when the errors are I(1) .  the limiting distribution of T ' T.t', depends 
on the trends in the model. The asynptotic results obtained in this section are 
new and are used by Vogelsang (1994, 399%) to construct tests for structural 
change in the trend function. 
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Because estimators of coefficients on some trends converge at different rates, 
additional notation is needed. Let p, i 0 be the largest nonpositive power of T 
appearing in the nonzero elements in the ith row of RT,. Define a (q X q )  
diagonal matrix A such that A,, = TF!, and let R" = lim,, ,A-'RT,. The R': 
matrix pulls from R the elements of the constraint that converge the slowest 
and dominate the limiting distribution. 

Limiting distributions are expressed in terms of the following functionals. Let 
v(r) be a scalar function and let B,(r) and B2(r) be ( 1 1 ,  x 1) and ( n ,  x 1) 
vectors of functions all that lie on the space [ O , l ] .  Let C be a (q x n , )  matrix of 
constants. Define the functionals, 

In addition define Q,(r) = (F(r>l, rl ,  rl", . . .,rn7>i and Q,(r) = (G(rY, r'", 
. . . , I ." ' ) ' .  The limiting null distributions of PS;, PSW;, and T I  W ,  depend 

on whether the errors are I ( 0 )  or 1(1) and are summarized in the following 
theorems. 
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THEORERI1: Srlppo~e I11 } J01lo)ts ( 4 )  (/12d (5) L / ~ I C /  a ,  = a , / ct 1 < 1 S O  fhot { L I , }  

15 I ( 0 )  Ij ( 6 )  liol(1~ for 1~7odel (3 ) . t11e11 u17der. H,, rrs T + 2.  

T Cl',- =10, 

PS; - L ( l t ( r  ) . G ( I  ) .  R ) /2 . i ' ( t v ( l . ) ,G( r ) ) .  


PSLV; K ( l t ( r  ). F ( r ) ,R ) / [ lOOA\ f (~( I . ) , G ( r ) ) ] ,  


PS; =1L ( I I( I  ) . G ( I 1. R )/[ ,VI(l t  ( I  ) , G ( r  1) 


xexpIW(tt ( I  ) , G ( r ) ,  Q 2 ( r . ) ) l l ,  


PSW~,' -K (u , ( r . ) .  F(r ), R )/[lOOlki'.l(~t
( I . ) . G ( I) )  

x c x p { W ( ~ \( I  ) , G ( r . ) ,& - ( I  ) ) } I .  

THEOKLM2: Sztyyore { r t , }  follo~ix ( 4 )  trrzrl ( 5 )  and a ,  = ( 1  - z / T )  50 { r l , }  i ~  
I( I ) .  If ( 6 )  11olrO for rnorlel (3) . tlier~ rlr~rler H,,  os T +z, 

T- 'LV, - L ( V , ( r ) .  F ( I . ) ,R F ( I . ) ) .) / 21 f (V; , (~ . ) ,  

The proofs are given in the Appendix. When q = 1, t statistics can be 
considered and their limiting null distributions call be expressed using similar 
notation. The distributio~ls in the theorems arc nonstandard and depend on the 
trends in the model, but critical values call be easily simulated case by case. 
With the exception of Z and K ,  the distributions are asymptotically frcc of 
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nuisance parameters, and the tests can be implemented without requiring 
estimates of serial correlation parameters ( r r '  or d(1)). For PS; and PSW,! 
suppose the 12's are chosen so that the I (0)  critical values and the Li = K = O I (1 )  
critical values are the same, and for T-' W, suppose the Li = K = 0 I (1 )  critical 
values are used. When implemented in this way for model (1) , it is shown in the 
next section that practically speaking the statistics are conservative with respect 
to Li and K and the tests can be used without knowledge of E and K .  This 
robustness to E and K holds in many other models as well; see Vogelsang (1994, 
1997b). Finally, to implement the PS; and PSW,! statistics m must be chosen. 
The choice of 172 can be justified asymptotically by examining the size/power 
trade off when the errors are I (1 )  as is done for model ( 1 )  in the next section. 

3.4 Consistency 

Conditions for consistency of the tests are established under the fixed alterna- 
tive 

( 1 2 )  H , : R p = l - + 6 ,  

where 6 is a ( q  x 1)  vector of constants. The results are given by the following 
theorems. 

THEOREM3: S ~ ~ p p o s e  follows (4 )  and ( 5 )  with a ,  = a ,  la1 < 1 so that {u , }  { L L , }  

is I(O), and ( 6 )  and (12)  hold for model (3).  Then as T -m, PS;,  PSW,! di~lerge to 
x. If there exists a j such that 6, f 0 and A ,  > T" for y > 0, then as T + x,T 1  W ,  
di~lerges to x. 

THEOREM4: Suppose ( 1 1 , )  follow's ( 4 )  and ( 5 )  wit17 a ,  = (1  - Z / T )  so { I L , }  is 
I (1) ,  and ( 6 )  and (12)  hold for nzodel (3) .  If tlzeve exists a j such that 6, f 0 and 
A '  > T 1 / ' ,  then as T +  PS;, a n d P S W ;  dicevge to x. I ~ A ; '_< T ~ / ~ri x,T ' W , ,  
for all i s~lcl? that 6) f 0,  tlzen as T + x,T I  W,, PS; and PSW,! are 0,,(1). 

The proofs are given in the Appendix. When the errors are I(O), Theorem 3 
establishes that PS; and PSW; are consistent while T '  W ,  is consistent unless 
departures from the null involve trends that are not growing over time. For 
example, T p ' W ,  cannot be used to consistently test hypotheses about the 
constant. When the errors are I ( l ) ,  the tests are consistent provided that 
departures from the null do not exclusively involve parameters on re, ~ressors 
that are growing slower than TI''. 

4.  MODEL WITH SISlPLE LINEAR TREND 

Using the theorems in Section 3, results are easily obtained for specific 
models. In this section results are presented for model (1).  Transforming (1) by 
partial summing gives 

z , = p , t + p 2 [ ; ( t 2 + t ) ]  + S , .  
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In the notation of Scclion 3 \\-c hare f ( t )  = [ I ,  t]', T~ =diag( l ,  T- '  ), F(r.1 = [ I , I . ] ' :  

g(t )  = [ t ,  i ( t '  + t)Y, G ( r )  = [I., +I.']', Q,(I . )= (1. I., I . - ; .  . . . r-"'Y, and &?(I.)= 

(I.. +I.', I.?, . . . ,I.'")'. The hypothesis of interest is H,,:P2 = Po or H,,:R,B = I. with 
R = [O, I], r. = p, giving A = [T- '1  and R" = [0,11.The limiting null distributions 
follow directly from Theorems 1 and 2. Since q = 1, t-statistic versions of the 
tests can be used and are denotcd by t-PS;, t-PSW;, and T-ll't-KTT. 

The limiting null distributions of PS;, PSPV;, t-PS;. and t-PSL/; in the I (0 )  
case arc prescntcd in Table II(i). The critical ~ 'a lues  \yere simulated using 
,\TO, 1)i.i.d. random deviates to approximate the Wiener processes in Theorem 
1. The integrals were approximated by normalized sums of 1,000 steps using 
10,000 replications. The random number generator used was rani( ) taken from 
Press. ct al. (1992) with initial seed of - 1000. Only right tail critical values arc 
reported as they arc of interest for hypothesis testing. Left tailed tests can be 
carried out using the r statistics since thcy have symmetric distributions. The 
numbers in parentheses under the critical valucs arc the b's that result in the 
-
a = fc = O I(1) critical values with 171 = 9 being the same as the I(0) critical 
values for that percentage point. The b's were obtained using simulations. The 

' 'limiting 11~111distrib~tions of T - M/(- and T - 'r-l,tfr for E = ,c = 0 l(1) errors 
are given in Table II(ii) with the critical values simulated using the same 
methods as for Table II(i). The limiting distribution of T '  W, in this case was 
obtained by Phillips and Durlauf (1988). but thcy did not tabulate critical values. 
For the remainder of this subsection the focus is on the r statistic version of the 
tests as analogous results hold for the Wald statistics. Results are not reported 
for the t-PSIV'; statistics given the similarity to results for the r-PS; statistics. 

TABLE II(i) 


.As\ atrlorlc.DIS~RIRVI-10x5: 
P S .  PSll';. r-PLY;. AND I-PSLt;!. I ( 0 )  ERROII~  
MODF_L: = plr  + i,:. z r  = p.r p 1 [ i ( r 2+ r ) l  + 5 , :j., p ,  

H , , :p ,  = p , , : b's GIVE\I N  P A R E ~ T I - I E ~ E ~  
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TABLE II(ii) 

In order to justify using 5= K = 0 b's for t-PS; and 5= K = 0 critical values 
for T- ' / ' t -w, ,  asymptotic rejection probabilities were simulated for E = 

-0.6, -0.4,. . .,12.0, and K = 0,0.2,. . .,1.0, with the nominal level 5% using 
10,000 replications. To place the values of 5 in perspective, 5= 4 corresponds 
to cr = 0.96 in a sample with 100 observations. Results with K = 0 are reported 
in Table 111, panel (a) for ~-Ps;(m = 2,3,.  . .,9), ~-Ps+(rn = 9), and T- ' / ' t -w, .  
Rejection probabilities for [ -Ps i  are at or below 0.05 regardless of m except 
when a = -2 (explosive errors) in which case rejection probabilities are slightly 
higher than 0.05. Similar results hold for t-PS;. Therefore, asymptotic size of 
f-PS; and ~-Ps;  does not depend on m. As long as 52 0, T -  l l2t-wT has 
rejection probabilities at or well below 0.05. Simulations reported in the working 
paper Vogelsang (1996) showed that rejection probabilities are not sensitive to K 

and that asymptotic size remains at 0.05 for K > 0. Since, when the errorr are 
I(O), rejection probabilities are 0.05 by construction for ~-Ps&and ~-Ps+and 
zero by construction for T- ' / ' f -w , ,  the tests have asymptotic size of 0.05 
whether the errors are I(0) or are I(1) provided explosive errors are ruled out. 

Since asymptotic size of [ -Ps i  and ~-Ps+does not depend on m, a natural 
way to choose 171 is to maximize asymptotic power. There does not appear to be 
an analytic method of maximizing power with respect to rn, but heuristic 
evidence can be provided. Using the local alternatives H I : P ,  = P ,  + T-"/ 'c  for 
I(0) errors and H I : p2 = Po + T- l i 2c  for I(1) errors, local asymptotic distribu- 
tions were obtained and used to compute asymptotic power functions. The local 
asymptotic distributions were simulated using similar methods to those used to 
obtain limiting null critical values. Asymptotic power depends on c/cr in the 
I(0) case and on c/d(l) in the I(1) case. Since the expressions of these limiting 
distributions are not particularly useful themselves, they are not reported but 
can be found for t-PS; and t-PSW; in the working paper Vogelsang (1996). 

Asymptotic power of t-PSi does not depend on 1n in the I(0) case. Therefore, 
the choice of m was made on the basis of power in the I(1) case which is given 
in Panel (b) of Table I11 for the same range of m as in panel (a). The range of 
local alternatives (relative to d(1)) is 5,10,. . .25. Power is clearly increasing in 1n 
given c/d(l). In unreported simulations it was found that power does not 
increase substantially for 1n > 9 and flattens off. Thus, m = 9 results in tests 
with approximately the highest power. Similar results were obtained for t-PS;. 
In unreported simulations it was also found that when the errors are I(O), power 
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I -P I  j 

of t-PS, follo\vs a similar pattern. Therefore. in all cases the asymptotic power 
results suggest the use of 171 = 9 i11 practice. In what follows, I I I  = 9 is always 
used. 

Since asymptotic size of the statistics is excellent whether the errors arc I (0 )  
or I(1). it is useful to compare asymptotic power of the statistics. In all cases 
that follow the nominal level was 5%.  Consider the case where the errors are 
I(0). Under the I (0 ) local alternative, asymptotic power of T-'.' t -ST/,is equal to 
size since the limiting distributions is the same as under the null hypothesis. 
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FIGURE1.-Asymptotic power in lnodcl (I ) .  I ( 0 )  errors; H,,: P2  < PO, H I :  P2 = PO+ CT-'". 

Asymptotic poacr of t-PS; and ~ - P s ;is not degenerate and is plotted in Figure 
1. As a baseline for comparison, asymptotic power of t-W,, the unnormalized t 
statistic, is also plotted. When the errors are I(O), t-W, can have optimality 
properties. Asymptotic power of the t-W, statistic was computed analytically 
since its limiting distribution is normal under both the null and local alternative. 
As expected, t-W, is the most powerful statistic, but t-PS; and t-pS; have 
nontrivial asymptotic power with t - ~ S islightly more powerful than t-pS;. 

Now consider power when the errors are I(1). Under the I (1 )  local alternative 
all of the statistics including T 1 / ' t - W ,  have nondegeilerate limiting distribu- 
tions. Asymptotic power is plotted for Zi = 0,5 ,10 in Figures 2-4. For a baseline 

FIGURE power in model (11, I ( 1 )  errors, C= 0: H , :  P2 < Po.  H I :  P1 = P,, +2.-Asymptotic
cT-l !2 
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C O 1 2 3 4 5 h 7 9 " ; C 

c/u \, 

FIGURE3.-Asymptotic power in model (I), I ( I )  errors. Z= 5: HI,:P, 5 P,,, HI: P2= Po+ 
( . T 1 ,  2 

of comparison, Figure 2 contains a plot of the asymptotic power of t-W, based 
on the model Ay, = p2+ ALL,which is an optimal statistic when E = 0 and { r , , )  
are i.i.d. and normal. As can be seen from Figure 2, when Z= 0, T- ' / ' t -WT is 
much more powerful than ~ - P S ;and ~-Ps+and has comparable, but lower, 
power to the optimal t-WT statistic. As 5 increases, the rankings of the statistics 
change with t-PS; and t-PS; having higher power for alternatives close to the 
null and T-"'t-W, having higher power for alternatives far from the null (see 

I , 'I 2 3 " 5 6 7 3 3 1C 

,- '1 ,'c,/ ,'I- / 

FIGURE4.pAsymptotic power in model (11, 1(1) errors, 5= 10; H,,: P2S Po. HI: P2= PI, + 
cT-l /' 
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Figures 3 and 4). These results suggest that the statistics will have complemen- 
tary power in finite samples as the errors go from I (0)  to I(1).  

5. FINITE SAMPLE SIMULATIONS FOR LINEAR TREND MODEL 

This section provides evidence on the finite sample size and power of the new 
tests in model (1).  Results are given for the Wald versions of the tests with 
similar results holding for the t statistics. Results are only reported for PS; as 
results for PSWj are similar. Without loss of generality, consider testing the 
hypothesis H,: p2= 0.  In Table I rejection null probabilities are reported for 
PS!, and PS; using ulz = 9 and 5% asymptotic critical values. Recall that u,, = 0 
which is equivalent to setting K = 0.  Unreported simulations (available upon 
request) using u,, # 0 were also performed, and it was found that the finite 
sample behavior of the statistics does not depend in any practical way on u, , .  
When T = 100, rejection probabilities of PS!, and PS: are close to or below 0.05 
unless 0 = -0.8 and cr is close to 1. If MA errors with a root close to but not 
equal to one cannot be ruled out, the tests are oversized. As T increases the size 
distortions disappear for PS;. Recall that GLS is also oversized in the same 
region of the nuisance parameter space. If there is the possibility of I (1)  errors 
with an MA component with a root near but not equal to one, GLS and PS; 
should be used with caution. 

Finite sample power with p2= 0.0, 0.05, 0.1, and 0.2 for T = 100 is reported in 
Table IV and was obtained using simulations with 1.000 replications and {u , }  
generated using ( 2 )with cr = 0.9, 0.95, and 1.0 and 0 = -0.4, 0.0, and 0.4. These 
are parameter values where exact size is close to nominal size and power 
comparisons are meaningful. To mimic how the tests are used in practice, 5% 
asymptotic critical values were used so power is not size adjusted. There is no 
statistic that uniformly dominates the other statistics. When ,B2 = 0.2, T p 'WT 
often has the highest power. When cr = 1.0, T- '  W T  and GLS have the highest 
power. When cr = 0.9 and p2I:0.1, PS; and PS; have the highest power with 
PS; more powerful when 0 < 0 and PS: more powerful when 0 > 0. When 
cr = 0.95, either PS!, or PS; has the most power for p, r 0.1, while for ,B2 = 0.2, 
T-'w, is the most powerful. These power results are consistent with the local 
asymptotic predictions. 

The t statistics from model ( 1 )were used to construct confidence inte~vals for 
estimates of post WWII real GNP quarterly growth rates for the US. ,  Canada, 
France, Germany, Italy, Japan, and the U.K. The sources of the data can be 
found in Banerjee, Lumsdaine, and Stock (1992). Perron (1991), Banerjee, 
Lumsdaine, and Stock (19921, and Vogelsang (1997a) concluded that there is 
considerable evidence of a shift in slope for many of the series. Jointly for 
France, Germany, and Italy, Bai, Lumsdaine, and Stock (1994) constructed a 
90% confidence interval of (1972, 1975) for the estimated break date which 
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TABLE IV 


FIYITES,\R~PLE ARMA(1,l) ERRORS 5% ASYMPTOTIC VALUESPOWER. U S I ~ G  CRITICAL 
MODEL:J,= PI + P2i+ 11,. z,  = Pli + p2[;(i2 +i l l  + S , ,  ci ,  + u ~ i ,  I + i., + H L . , _  ,; 

H,: p, = = POWERIS YOT SIZE AD.IUSTED 0; T 100. 1,000 R E P L I C ~ \ T I ~ K ~ ;  

Norc- 7'hc underlined c l l t r ~ c iarc thc  i i ~ g h s r t  p o a c ~  f o ~  that i l m ~ ~ l a t l o n  



142 TIMOTHY J. VOGELSANG 

includes 1973, the date often associated with slowdowns in growth. None of 
these studies reported confidence intervals for the estimated growth rates of 
GNP. 

What can be said about the magnitude of GNP growth rates before 1973 
compared to after 1973? Using asymptotic critical values, 90% confidence 
intervals for the full period as well as for periods before and after 1973 were 
constructed by inverting the t-PS; ( I  = 1,2), T - ' I 2 t  - W,, and GLS statistics. 
The GLS statistic was computed using an autoregressive spectral density estima- 
tor with the order of the autoregression chosen using the general to specific data 
dependent method analyzed by Ng and Perron (1995) where the last included 
lag is checked for significance using a two-tailed 10% test. This data dependent 
method requires a maximal autoregressive lag length, kl?za,x. Results are re-
ported for kmcrx = 5 and 10. The selected lag length, k,  is reported along with 
the estimate of the sum of autoregressive parameters, &. The results are given 
in Table V. In all cases the point estimates of P ,  are higher pre-1973 than 
post-1973, indicating that growth rates have slowed. For France, Germany, Italy, 
and Japan, the pre-1973 and post-1973 confidence intervals often do not overlap, 
indicating the drop in growth rates is statistically significant. Growth rates fell by 
as much as 50% and many confidence intelvals indicate that point estimates are 
fairly precise. 

This empirical application illustrates some interesting properties of the statis- 
tics. First, GLS confidence intervals are often sensitive to the choice of kmnx. 
This is particularly true for post-1973 Canada and Germany where increasing 
kmnx from 5 to 10 results in different choices of lag length and vastly different 
confidence intervals. This shows how different estimates of serial correlation 
parameters can have large effects on empirical results. These problems are 
avoided by the other statistics as estimates of serial correlation parameters are 
not required. Second, tighter confidence intervals are often obtained with 
T - ' / ' ~ - w ,  compared to t-PS; when & is close to one. This is not surprising as 
T-"'t-W, is often more powerful when errors are I(1) as shown above. Third, 
confidence intelvals for the full period are often wide when using PS;. In many 
cases the confidence interval end points exceed i 9 9 .  Such wide confidence 
intervals should simply be interpreted as noninformative; that is, the statistics 
cannot be used to reject any reasonable null hypothesis regarding P,. This is 
equivalent to saying that the tests have low power. The asymptotic and finite 
sample results suggest that PSI, has low power when the errors are I(1). This is 
confirmed by Table V as wide confidence intervals occur when 6 is close to 1. 
When 6 is not close to 1, the confidence intervals using PS; are often much 
tighter as predicted by the theory. 

There is another potential source of wide confidence intelvals when using the 
t-PSI, statistics for the full samples. In model (1) it is assumed that the slope is 
not changing over time, but many of the series have a slope shift around 1973. 
In a simulation experiment reported in the working paper, Vogelsang (1996), it 
was shown that a shift in slope causes the PS; confidence intervals based on 
model (1) to be wide. As the shift in slope increases, confidence intervals 
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become wider. In practice a wide PS;. confidence interval may be an indication 
of structural change in the trend function. 

7. CONCLUSIOV 

New tests of hypotheses regarding parameters of the trend function of a 
univariate time series were proposed. The tests can be applied to trend func- 
tions that are linear in parameters. The tests are asylnptotically valid in the 
presence of general serial correlatio~l and do not require estimation of the serial 
correlation parameters, either parametrically or nonparametrically. The tests 
are asymptotically valid whether the errors are I(0) or I(1), and are, for all 
practical purposes, invariant to the variance of the initial condition. The statis- 
tics should prove very useful in practice as they remove the need to specify the 
form of serial correlation and are relatively easy to compute. While separate 
critical values are needed for each specification of the trend function, Theorems 
1 and 2 along with modern computing power make simulation of asymptotic 
critical values easy in most cases. 

Depf. of Economics, Come11 Unicersity, Uris Hall, Ifhaca, N Y  14853-7601, 
U.S.A.; fjr2@cor7zell.edu 

APPENDIX 

This appendix contains proofs o f  the theorelus contained in the text. The proofs are simplified by 
first establishing some preliminary lemmas. The  lemmas are stated without proof as they follow from 
standard results. 

LEMRIAA l :  Siippo~e { i t , )  follow^ (4) t~rld(5) tltzd a ,  = a ,  a < 1 SO tllnt { i d , )  is I(O). Tilei7 if ( 6 )  
l~olclsfor r71orlel (3),  (is T + =. 

(a)  T - ' / ' T ~X i ~ i= r]dF(r)d ,v(r ) .  
( b )  T - ' r , x ; x , r ,  =, ! ; ~ ( r ) F ( r ) 'dl,. 
(c )  T - ~ " T , X ~ S= m/;G(r)w(r)  dr. 

(dl T - " ~ , X ;~ , r ,- ) iC(r)G(r) '  dr. 


LERI~IA follo,vs (4)  iitld ( 5 )  iirld a7  = E / T )  so {u , )  i~ I(1). Tlzer? if (6)  holrls A2: Slippose { I ( , )  (1 -
for model (3), (is T + =; 

(a) T - ~  Xi11 d ( l ) / ~ ~ ( r ) ~ $ ( r )= dr, 
( b )  T- ' / 'T,  X i S  = V'(s)cls] dr, d ( l ) ] [ lG( r ) [ ] ( ;  
(c )  T - 4 ~ ' ~d( l ) ' / , {[ / ;v ~ ( s )  dr.- ( 1 ~ 1 ~  

LEMMAA3: Suppose {1i,} follorvs (4)  iirzrl ( 5 )  iit~d a7  = a ,  al < 1 so iizai {z i , )  is I(O). Then if (6)  
holds Jor inode1 (3). ns T -t 2, 

(a)  T ' / ' T J ' (  p - p )  - r[)~F(r.)F(r)Idr]-'jdF(r)dw(r). 
(b )  s: - = lim, -.,E(T-' c:= 1, 

c T ( - p )  =) 0-1 j : C ( r . ) G ( r ) ' c l r ] ' j : ~ ( r ) ~ . v ( r ) d r . ,  

( d )  sf - r r ' ~ ( , v ( r ) .C(r.)). 

mailto:fjr2@cor7zell.edu
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LEMMAA3: Szip(,ose {ri,} foiloivs (3) ot~tl  (5) N I I ~aI = (1 - E/T)SO {u,} is I(1).Tlieti if (6) izolcl's 
for. rnodel (3), rrs T -t x .  

(a) T 1 / ' i 7  I( P - P ) = d ( l ) [ , / t ~ ( r ) ~ ( r . ) '  tlr. 
(b) T ' S ;  - r l ( l ) "14(~~(r ) .  

ilr]-- ' ) , :F(~)V~(I . )  
F(I.)), 

(c) T- '  '??I( p"- P )  = V,(s) tis]rli., - d(l)[],;G(r.)G(rY r i r ] ' / , ~ G ( r ) [ ] ~  
(d) T - ~ S ;= c1(1)~114(]4VZ(s) (1s. G(r,)). 

The J+( r i~)  statistics can be expressed in terms of moments like s f  and T- 's i .  Their limiting 
distributions follows from straiglitfol-\vard arguments and details are omitted. Theorelus 1-4 are 
proven for T I  CV7 and 4's;. Similar arguments for PSCV; are omitted. 

PROOFOF THEOREM =1: Using Lemma A1 (a). (d). Lemma A3 (a)-(dl, J;(nl) 0, and Jf(riz) = 
.I(n.(r). G(r). Q2(r)), we have 

T ' I . ~ ~ - = T ' ( R ~ - I ~ ~ [ R ( X ~ X ~ ) ~ ~ R ' ] ' ( R ~ - ~ ) / ~ ~ ~  

= T - l [ A - 'R - Tl/2T-1
' 7  T ( j - p ) i  

PROOFOF THEOREM F(r) .2: Using Leni~iia A1 (b), (dl, Lemma A4 (a)-(d). J;(r?i) -.l(Vr(r). 
Q,(r.)). and J;(~?I)  *J (  1 ;  VX(s) (1s. G(r.1, Q,(r)), we have 
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As a prelimina~y to the proofs of Theorems 3 and 4, note that under the alternative (12) sl  and 
si are exactly invariant to 6 as the models are estimated under the alterative. Therefore sl and sl 
have the same limiting behaviol. as under the null hypothesis. Similarly; the limiting behavior of the 
.I;(i?7) statistics are exactly invariant to 6 and have the iame limiting distribution under thc null and 
al ternati~c hypotheses. Recall that A i i  a diagonal matrix with elements that arc nonpositivc powers 
of T. Thcrcforc. A-I  is a diagonal matrix with elements that are nonnegative porvcsi of T and 
T A - I  +=. 

PROOFOF THEOREM the alternative (12) as I.=R P  -3: R e ~ ~ r i t i n g  6.wc have 

If A '  +r. then T ' w ,  > 0. If A - '  =z since 6 ' [ q , ' ~ " { / , ' ~ ( r ) ~ ( r ) ' r l r ) - ' ~ " : ' ] 1 6  O,,(I). then 
T ' I . ~ / ,= O,(I). For PS; LYC havc 

iincc 6 ' [ ~ ( n ~ ( r ) . G ( r ) ) R ' : ' { / , ~ G ( r ) G ( r ) 'r l r ) ' ~ : : ' ] - ' 6> 0 and T A 1  -,z. Similar arguments hold for 
PS$ and arc omitted. 

PROOFOF THEOREM the altcrnativc (12) as r = RP - 6 rvc have 4: R e ~ ~ r i t i n g  
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The terms in (13) and (14) arc O,,(I) and nonzcro with the posiible csccption of T 1 / ' - l  '6. I1 there 
exists a j such that 6, > 0 and C I ; '  > T I 1 ' ,  then T 1 / ' A 1 6 +  -.;and T ' IT ' ,  =. x and PS; =. x.If 
( I ; '  s T"' Lor all j ,  then T 1 / ' i l - ' 6  = 0,,(1) and T iWT= 0,,(1) and PS; = 0,,(1). 
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