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TREND FUNCTION HYPOTHESIS TESTING IN THE
PRESENCE OF SERIAL CORRELATION

By TIMOTHY J. VOGELSANG'

In this paper test statistics are proposed that can be used to test hypotheses about the
parameters of the deterministic trend function of a univariate time series. The tests are
valid in the presence of general forms of serial correlation in the errors and can be used
without having to estimate the serial correlation parameters either parametrically or
nonparametrically. The tests are valid for 7(0) and I(1) errors. Trend functions that are
permitted include general linear polynomial trend functions that may have breaks at
either known or unknown locations. Asymptotic distributions are derived, and consistency
of the tests is established. The general results are applied to a model with a simple linear
trend. A local asymptotic analysis is used to compute asymptotic size and power of the
tests for this example. Size is well controlled and is relatively unaffected by the variance of
the initial condition. Asymptotic power curves are computed for the simple linear trend
model and are compared to existing tests. It is shown that the new tests have nontrivial
asymptotic power. A simulation study shows that the asymptotic approximations are
adequate for sample sizes typically used in economics. The tests are used to construct
confidence intervals for average GNP growth rates for eight industrialized countries using
post-war data.

Keyworps: Wald test, hypothesis test, partial sum, unit root, structural change,
conservative test.

1. INTRODUCTION

IN THIS PAPER STATISTICS ARE PROPOSED to test general linear hypotheses
regarding parameters of the deterministic trend function of a univariate time
series. The framework is general enough to include most deterministic trend
functions that are linear in parameters including polynomial trend functions that
may have breaks at known or unknown dates. The innovations of the time series
may be serially correlated and have up to one unit root. A priori knowledge as
to whether the innovations are 1(0) or I(1) is not required. When the innova-
tions are modeled as local to'a unit root in a model with a simple linear trend,
the tests can be carried out without knowledge of the local to unity parameter or
knowledge of the variance of the initial condition. This result is important as the
local to unity parameter and the variance of the initial condition cannot be
consistently estimated.

'I thank Serena Ng, Pierre Perron, and Mark Watson for helpful comments and seminar
participants at Cornell University, University of Rochester, Princeton University, and the 1996
Winter Meetings of the Econometrics Society. I am grateful to a co-editor and two anonymous
referees for helpful comments and suggestions that helped to improve the paper. I also thank the
Center for Analytic Economics at Cornell University.
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Another useful property of the statistics from an applied perspective is that
the statistics are asymptotically invariant to all the serial correlation parameters.
Estimates of the serial correlation parameters, either parametric or nonpara-
metric, are not needed, and the sometimes subjective finite sample choices such
as lag length, information criteria, kernel or truncation lag can be completely
avoided. All that is required is that a functional central limit theorem hold for
the partial sums of the innovations.

Since the focus of this paper is trend function hypothesis testing, the serial
correlation, i.e. the dynamics, are viewed as nuisance parameters. This would be
the appropriate framework from an economic standpoint if the goal were, for
example, forming confidence intervals on growth rates of GNP or testing for and
identifying structural shifts in growth of GNP. Sometimes, however, dynamics
are of interest, usually in a multivariate framework, e.g. business cycles, and
individual series are often transformed to remove nonstationarities. These
transformations commonly involve detrending and removing unit roots. Obvi-
ously, detrending requires a well specified trend function. From the work of
Perron (1988, 1989, 1990) it is well known that misspecification of the trend
function can result in highly misleading unit root tests. So, even if the trend
function is not of direct interest, correct specification of the trend function is
required for additional modeling.

The remainder of the paper is organized as follows. In order to motivate the
usefulness of the statistics developed later in the paper, the next section
contains a simple Monte Carlo experiment which illustrates some of the prob-
lems that arise when the form of serial correlation is not known. It is shown that
OLS-based Wald statistics suffer from substantial finite sample size distortions.
If the standard Wald statistic is normalized by the sample size, a test with
correct size is obtained. This statistic has good power when the errors are (1)
but lacks power when the errors are 1(0). New statistics are proposed in Section
3 that have good size and are powerful when the errors are 1(0). These statistics
along with the normalized Wald statistic comprise a class of tests with good size
and complementary power. Asymptotic results are presented including limiting
null distributions for 7(0) and I(1) errors and conditions under which consis-
tency holds. In Section 4 the general results are applied to a model with a simple
linear trend function. Limiting distributions are tabulated, and the statistics are
evaluated by examining asymptotic size and power. In Section 5 results from
finite sample size and power simulations for the simple linear trend model are
given. As long as the errors are not I(1) with an MA component with a root
close to but not equal to one, the new tests have finite sample size close to the
nominal level. Section 6 contains an empirical application. Confidence intervals
for the average growth rate of real per capita GNP are constructed using
quarterly post war data for eight industrialized countries. Confidence intervals
for pre-1973 and post-1973 samples indicate that growth rates have slowed in
many cases. Section 7 contains concluding remarks, and all proofs are given in
an Appendix.
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2. BACKGROUND AND MOTIVATION

The literature on trend function hypothesis testing is quite large and no
attempt is made to summarize it here. However, it is useful to review some
classic and some recent results so that the statistics proposed in this paper can
be placed in context. To facilitate the discussion consider a very simple time
series model for t=1,2,...,T,

(D V=Bt Byt tu,

where {u,} is a mean zero error process. If {y,} is the logarithm of output, then
B, is the average growth rate of output. Suppose one were interested in
inference about B,. When {(u,} is I(0), OLS estimates of (1) are efficient since
they are asymptotically normal with variance equivalent to GLS. This follows
directly from the classic results of Grenander and Rosenblatt (1957). Since the
asymptotic variance in model (1) is proportional to the spectral density of {u,} at
frequency zero, asymptotically valid inference can be carried out using any
consistent estimate of the spectral density of {u,}. If, on the other hand, {u,} is
I(1), OLS applied to (1) no longer has optimality properties. But upon first
differencing, the model Ay, = B, + Au, is obtained and OLS again has optimal-
ity properties.

In practice there are two considerations that can make inference more
difficult to carry out than suggested by the results of Grenander and Rosenblatt
(1957). First, it is often unknown whether errors are I(0) or I(1), and in series
with highly persistent errors often neither 1(0) nor /(1) asymptotics provide good
approximations to finite sample distributions. Second, sampling variability in
spectral density estimates can lead to poor approximations of asymptotic distri-
butions in finite samples. Furthermore, choices such as kernel and truncation
lag (in nonparametric estimation) and lag length (in parametric estimation) can
lead to conflicting results in practice.

The first consideration is addressed by Canjels and Watson (1997) where
model (1) is analyzed, and the errors are modeled as local to a unit root, or
nearly I(1). They consider several feasible GLS estimators and find that asymp-
totic distributions depend on a local to unity parameter and the variance of the
initial condition. Since these parameters cannot be consistently estimated from
the data, they proposed conservative tests based on Bonferoni confidence
intervals. They establish that nearly I(1) asymptotics provide a good approxima-
tion to finite sample distributions for parameter values often found in economic
data. Ultimately, they show that the Prais and Winsten (1954) feasible GLS
estimator performs the best in practice. A drawback of the Canjels and Watson
(1997) approach in a more general framework is that construction of the
Bonferoni confidence intervals can be quite demanding, although for model (1)
computing confidence intervals is fairly simple.

Regarding the second consideration, sampling variability is clearly unavoid-
able when estimating the spectrum and may not be an issue if the sample size is
large enough. With regards to choices such as kernel and truncation lag in



126 TIMOTHY J. VOGELSANG

nonparametric estimation, much progress has been made recently on data
dependent methods for making such choices. Robinson (1991) proposed and
established the consistency of a data dependent method for choosing the
truncation lag using a cross-validation procedure. Andrews (1991) proposed
consistent data dependent methods for choosing the truncation lag using the
“plug-in” method. Andrews (1991) also established the optimality of the
quadratic spectral kernel in certain models. Andrews and Monahan (1992)
found that prewhitening can improve the estimators considered by Andrews
(1991). For parametric models of serial correlation Hall (1994) and Ng and
Perron (1995) have shown that data dependent methods for choosing lag lengths
in autoregressive approximations work well in unit root tests.

To illustrate how serial correlation in the errors can affect inference regard-
ing B, in model (1) a simple Monte Carlo experiment was conducted. The null
hypothesis was B, = 0 and data were generated using the following ARMA(1,1)
model for {u,}:

2) u=au,_;+mn+0n_,,

with {n,} i.i.d. N(0,1) random deviates and 7, = 0. The {n,} were generated using
the ranl( ) subroutine of Press et al. (1992) using —7T as the initial seed.
Without loss of generality, 8, = 0. In all cases 1,000 replications were used, and
the nominal level was 5%. Results are given for «=0.8, 0.9, 0.95, 1.0, and
6= -1.0,-0.8,-0.4,0.0,0.4,0.8.

Three Wald statistics were used to test the null hypothesis. The first is a Wald
test based on the OLS estimate of B, from (1). The asymptotic variance of OLS
is proportional to the spectral density at frequency zero of {u,} which was
estimated using the quadratic spectral kernel with the truncation lag chosen
according to the automatic procedure of Andrews and Monahan (1992) using
AR(1) prewhitening. This test is labeled OLS. The limiting distribution of this
statistic is 2 when errors are 1(0). The second test is based on the Prais-Wins-
ten (1954) feasible GLS estimate of (1) using the AR(1) transformation as
suggested by Canjels and Watson (1997). Additional correlation in the model
was estimated using an autoregressive spectral estimate with the lag length of
the autoregressive approximation chosen using a data dependent method sug-
gested by Ng and Perron (1995). The conservative Bonferoni test based on the
local to I(1) asymptotic approximation as recommended by Canjels and Watson
(1997) was used. The limiting distribution of this statistic is x72. The third test is
the standard Wald test (using the OLS estimate of the variance) normalized by
T~! which is labelled T~'W;. The 5% asymptotic critical value for T~'W, was
taken from Table II(ii) with details given in Section 3. Phillips and Durlauf
(1988) derived the limiting distribution of 7~ W, under I(1) errors, but they did
not tabulate critical values nor suggest using 7~ 'W; as a test statistic. One of
the contributions of this paper is to tabulate critical values for T'W, and to
determine its properties as a test statistic.



TREND FUNCTION HYPOTHESIS TESTING 127

Table I reports null rejection probabilities. Table I also reports results for
statistics that are proposed later in the paper. The first result given by the table
is that the OLS test has severe size distortions. As « approaches one, rejection
probabilities become very large and worsen as T increases. This is not surprising
since the OLS statistic diverges to © when « = 1.0. There are also distortions
when the errors are clearly 7(0). In unreported simulations it was found that
these distortions disappear if the OLS variance is assumed to be known,
suggesting that sampling variability of the estimate of the spectrum is a source
of size distortion. The GLS statistic has much better size with rejection probabil-
ities near or below 0.05 except when a=1.0 and 6= —0.8 in which case
rejection probabilities exceed 0.15. If this range is excluded from the parameter
space, GLS has good size. The T~ !'W, statistic has size close to 0.05 since
rejection probabilities are always near or below 0.05. GLS and T 'W, are
conservative when « <1 as rejection probabilities are close to zero.

If controlling size were the only concern, then GLS and T~ !'W, would be
good candidate statistics. Since these statistics are based on I(1) asymptotics,
power of these tests should be good for « close to one. This was shown by
Canjels and Watson (1997) for GLS. When « is not close to one, GLS and
T-'W, are conservative and will lack power. In the next section statistics are
proposed which maintain the good size properties of GLS and T~ 'W; but are
designed to be powerful when the errors are 1(0).

3. THE GENERAL MODEL AND ASYMPTOTIC RESULTS
3.1 The General Model

Consider a univariate time series process {y,}, t =1,2,...,T, generated by
(3) Yr=f(t),B+”n

where f(t) = [f,(1), f,(t),..., fi (O] is a (kX 1) vector of trends, B=(8,, B,,
..., B.) is a (kX 1) vector of trend parameters and {u,} is an error process
satisfying

[«T]
4) (1-Lapu,=v,, t=2,3,....,T, u,= Y, atv,_;,

i=0

®©

) v,=d(L)e,, d(L)= Y. d, L', Yildl<e, and d(1)*>0,

i=0 i=0
where {e,} is a martingale difference sequence with E(e?le,_ ,e,_,,...) =1 and
sup,Ee} <o, L is the lag operator, and [x] is the integer part of x. Assume
there exists a (k X k) diagonal normalization matrix 7, and a (k X 1) vector of
functions F(r) defined on [0, 1] such that

(6) 70 f() =F(t/T) +o(1), le(r)dr<O°, and
0

det[le(r)F(r)' dr] > 0.
0
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Assumptions (4) and (5) are the same assumptions used by Canjels and
Watson (1997). A functional central limit theorem applies to the partial sums of
{e,} so that T7'/?¥l"Tle, = w(r) where w(r) is a standard Wiener process and
= denotes weak convergence in distribution. It directly follows that
7717220 e, = d(1)w(r). The restriction d(1)> >0 is equivalent to restricting
the spectral density at frequency zero of {v} to be positive. This rules out
nondegenerate cases. Other conditions on {u,}, such as mixing conditions
popularized by Phillips (1987a), could be considered without changing any of the
results that follow provided that the partial sums of {u,}, S, = X_ u;, satisfy a
functional central limit theorem. Assumptions (4) and (5) include I(0) and (1)
errors. When a; =« and |a|<1,{u,} is 1(0). When a;=0—a/T),{u,} is a
nearly (1) process® (a pure I(1) process when @ = 0). Throughout the paper
I(1) denotes errors with a; = (1 —@/T). Under these assumptions a functional
central limit theorem applies to {S,}. When {u} is 100), T'/2S, ;)= ow(r)
where ¢’ =d(1)’/(1 - a)?, when {u} is I(1), T~'?u,, = dV;(r) where
Vo(r) = we(r) + exp(—ra)w,(x), w.(r) = [jexp(—a(r —s)) dw(s), Ww.(k) =
[fexp(—a(k —s)) dw(s), and w(r) is a standard Wiener process independent
with w(r). Assumption (4) incorporates the effects of the initial condition into
the asymptotic distribution theory. The « parameter governs the variance of the
initial condition. When « =0, u, is an O,(1) random variable. When « > 0, u, is
0,(1) when {u,} is 1(0) but is O,(T"/*) when {u,} is I(1).

Assumption (6) simplifies the asymptotic representation of the statistics and
rules out ill behaved trend functions like fi(#)=1/¢ and trends that are
asymptotically collinear. Assumption (6) is general enough to permit polynomial
trends possibly with a finite number of structural changes. More general
assumptions on the trend function such as the conditions given in Grenander
and Rosenblatt (1957) could be used, but the assumptions above suffice for most
models of interest.

By forming partial sums of {y,}, (3) can be transformed as

) 7, =gty B+S,,

where g(t) = X S and z, = Z_’,-z 1y When {e,} is 1(0), {z,} has I(1) innova-
tions, while when {u,} is 1(1),{z,} has I(2) innovations. Define G(r) = [jF(s) ds.
The properties of g(z) and G(r) follow from (6) as T~ 'r,g(t) = G(¢t/T) + o(1),
[4G(r) dr < o and det[ [{ G(G)G(rY dr]> 0. It is convenient to write models (3)
and (7) as

(8) Y=X,B+u,
9) Z=X,B+S,
? Local to unity asymptotics is becoming standard in time series analysis involving integrated data.

Theoretical background can be found in Bobkoski (1983), Chan and Wei (1987), Phillips (1987b),
and Nabeya and Perron (1994).
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where Y={y}, Z={z}, u={u}, and S={S;} are (T X 1) vectors and X, =
{f(#)} and X, ={g(2)} are (T X k) matrices. Let B denote the OLS estimate of
B from (8) and let B8* denote the OLS estimate of 8 from (9). Define the OLS
estimates of the error variance in (8) and (9) as s; =T 'Y'M,Y and s?=
T-'Z'M, Z where M, =1 —x(x'x)"'x".

3.2 The Test Statistics

In order to define the test statistics some preliminary developments are
needed. Let /7! be the highest order polynomial of ¢ in f(¢). Consider the
regression models,

(10)  y,=f@Y B+ X vit' +u,

i=j

an z,=g(t) B+ f‘, vit'+S,.

i=j+1

Let J}(m) denote the standard OLS Wald statistic normalized by 7~! for
testing the joint hypothesis y;=7,,,= - =7, =0 in (10) and let J7(m)
denote the standard OLS Wald statistic normalized by 7' for testing the joint
hypothesis ¥, = ¥j,,= " =%, =0 in (11). Jz(m) is a unit root statistic
proposed by Park and Choi (1988) and Park (1990). When the errors are 1(0),
J1(m) converges to zero. When the errors are 1(1), J}(m) has a nondegenerate
limiting distribution. As a unit root statistic, J}(m) is a left tailed test. JZ(m) is
not a unit root statistic and has nondegenerate limiting distributions for I(0) and
I(1) errors with the I(1) limiting distribution skewed much farther to the right
than the I(0) limiting distribution. J}(m) and J2(m) are used to smooth
discontinuities in the limiting distributions of the statistics of interest as the
errors go from 7(0) to I(1).
Consider testing hypotheses regarding B of the form

H,: RB=r, H:RB#r,

where R is a (g X k) matrix of constants and r is a (g X 1) matrix of constants.
Using the OLS estimate of 8 from (8), the T~ ' W, statistic is defined as

T W, =T (RA—r)[RCX1X)'R] ™ (RE-7r)/s2.

A statistic similar to 77 "W, constructed from the OLS estimate of 8 from (9) is
defined as

PS; =T U(RB* ~ Y [RCGX) TR (RB* = 1) /(s2exp(bl} (m))
(i=1,2),
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where b is a constant. A third statistic which is the standard OLS Wald statistic
with s_‘l, replaced by another sample moment is

(RE—r)[RCXIX)'R](REB-7)
[ 77 1100s2exp(bIf(m))]

PSW} =

The 100 is included in the denominator of PSW; to normalize the critical values
and becomes important computationally in some applications including tests for
structural change (see Vogelsang (1997b)). This normalization does not affect
the size or power of PSW;. Different values for b are used for each statistic.
When g = 1, ¢ statistics can be defined which are useful for one sided tests and
constructing confidence intervals.

The PS} and PSW] statistics are designed to have power when the errors arc
1(0) but remain robust to /(1) errors in terms of size. Suppose that b = 0 so that
the Ji(m) statistics disappear from the definitions of PS) and PSW{. In this
case PSy and PSW/ have nondegenerate limiting distributions for both 7(0)
and I(1) errors, but the distributions are skewed much farther to the right when
the errors are /(1) compared to I(0). This would make asymptotically valid
inference possible only if it were known whether the errors were 1(0) or I(1).
When b >0, the J;-(m) statistics smooth the discontinuities of PS} and PSW}
as the errors go from 7(0) to /(1) by taking on large values for I(1) errors and
small values for 7(0) errors. For example, when the errors are 1(0), J;(m) is zero
asymptotically and has no effect on the distribution of PS;. When the errors are
I(1), the distribution of PS;. is skewed to the right and at the same time J;.(m)
becomes nondegenerate and exp(hJ;(m)) takes on large values, reducing the
critical values of PSV}V. Therefore, the b’s can be chosen to bring the /(0) and
I(1) distributions of PS} and PSW/ close together. Given a percentage point, b
can be chosen so the J(0) and I(1) critical values are the same, providing a test
that has the correct asymptotic size simultancously for 7(0) and /(1) errors. The
J}(m) statistic has the nice property that it does not affect the asymptotic power
of PS} and PSW} when the errors are 1(0). While J;(m) does affect power in
the 1(0) case, PS7 and PSW; have better finite sample size in certain cases and,
unlike PS} and PSW./, can be configured to be robust to fractionally integrated
errors. Results with fractionally integrated errors are available upon request.

3.3 Asymptotic Results

In this section limiting distributions of the statistics under the null hypothesis
are given and are expressed as functionals of standard Brownian motions. The
limiting distributions of PS} and PSW;. depend on the trends in the model since
partial summing of the data places a unit root in the model by construction.
Likewise, when the errors are /(1), the limiting distribution of 7~ 'W, depends
on the trends in the model. The asymptotic results obtained in this section are
new and are used by Vogelsang (1994, 1997b) to construct tests for structural
change in the trend function.
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Because estimators of coefficients on some trends converge at different rates,
additional notation is needed. Let w; <0 be the largest nonpositive power of T
appearing in the nonzero elements in the ith row of R7,. Define a (¢ X g)
diagonal matrix A such that 4;; =T*), and let R* = lim, A 'Rr,. The R*
matrix pulls from R the elements of the constraint that converge the slowest
and dominate the limiting distribution.

Limiting distributions are expressed in terms of the following functionals. Let
v(r) be a scalar function and let B(r) and B,(r) be (n, X 1) and (n, X 1)
vectors of functions all that lie on the space [0,1]. Let C be a (g X n;) matrix of
constants. Define the functionals,

-1 !
K(v(r),By(r),C) = C(lel(r)B,(r)' dr) lel(r)dv(r)]
0 0

-1

-1
X C(f]Bl(r)Bl(r)' dr) C’
0

-1
XC(];)lBl(I‘)BI(I‘)I dr) /()]Bl(r)dv(r),

-1 !
L(v(r),B,(r),C) = [C(folBl(r)Bl(r)' dr) fOlB](r)v(r) dr]

ool
X [C(/OIB,(I')BI(I')' dr) c

-1
XC(j;lBl(r)Bl(r)' dr) fOlB](r)v(r) dr,
M), B = [ () dr - ) 'B.(r) v(r) dr

-1
X /OlBl(r)B,(r)' dr) fOIB,(r)V(r) dr,

J(v(r), B(r), B,(r))
= [M(v(r), B,(r)) —M(v(r), B,(rN1/M(v(r), B,(r)).

In addition define Q,(r)=(F(),r/,r/*' ..,r™Y and Q,(r)=(G(r),ri*!,
ri*2 .., r™Y. The limiting null distributions of PS}, PSW}.,, and T~ 'W, depend
on whether the errors are I(0) or /(1) and are summarized in the following
theorems.
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THEOREM 1: Suppose {u,} follows (4) and (5) and a;= a,|a| <1 so that {u,}
is 100). If (6) holds for model (3), then under H, as T — =,

T ' W, =0,
PS; = Lw(r),G(r), R*) /M(w(r),G(r)),
PSW} = K(w(r), F(r), R*) /[100M(w(r),G(r)],
PS; = L(w(r),G(r),R*) /IM(w(r),G(r))
xexp{bJ(w(r),G(r), Q,(rN}],
PSW; = K(w(r), F(r), R*) /[100M (w(r),G (1))
xexp{bJ(w(r),G(r),Q,(rN}].

THEOREM 2: Suppose {u,} follows (4) and (5) and a;=1—a/T) so {u} is
I(D). If (6) holds for model (3), then under H, as T — =,

T "Wy = L(V.(r), F(r), R*) /M(V.(r), F(r)),

PS»,‘-=>L(frV£—y(s)cls,G(r),R*)/
0

[M(frp%(S)dS’G(l'))eXP{bJ(VE(r),F(r),QI(,A))}},
0
PSI/V.II. zL(VH(,:), F(r), R¥ )/

[100M(IFVH(S) ds,G(r))exp{bJ(VE(r), F(r), QI(/'))}},
0

PS7 :L(V/;'VE(S)(IS,G(I‘),R>z<)/

|:M([FV(—\,(S) ds,G(r))cxp{b](frVE(s) ds,G(r), Qz(r))}},
0 0

r

PSW} = L(V.(r), F(r), R‘*‘)/[]OOM([ V_(s) ds,G(r))
0

xexp{b](frVa(s)ds,G(;-),Qz(r))}].
0

The proofs are given in the Appendix. When ¢ =1, ¢ statistics can be
considered and their limiting null distributions can be expressed using similar
notation. The distributions in the theorems are nonstandard and depend on the
trends in the model, but critical values can be easily simulated case by case.
With the exception of @« and «, the distributions are asymptotically free of
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nuisance parameters, and the tests can be implemented without requiring
estimates of serial correlation parameters (o? or d(1)). For PS, and PSW/
suppose the b’s are chosen so that the 1(0) critical values and the o=« =0 I(1)
critical values are the same, and for 7~ 'W, suppose the @ = k=0 I(1) critical
values are used. When implemented in this way for model (1), it is shown in the
next section that practically speaking the statistics are conservative with respect
to o and k and the tests can be used without knowledge of @ and k. This
robustness to @ and « holds in many other models as well; see Vogelsang (1994,
1997b). Finally, to implement the PS} and PSWj statistics m must be chosen.
The choice of m can be justified asymptotically by examining the size /power
trade off when the errors are I(1) as is done for model (1) in the next section.

3.4 Consistency

Conditions for consistency of the tests are established under the fixed alterna-
tive
(12) H:RB=r+34,
where 8 is a (g X 1) vector of constants. The results are given by the following
theorems.

THEOREM 3: Suppose {u,} follows (4) and (5) with a; = a,|la| <1 so that {u,}
is 1(0), and (6) and (12) hold for model (3). Then as T — «, PS%., PSW{ diverge to
o, If there exists a j such that §; # 0 andAj‘j1 >TY fory>0,thenas T — o, T ' W,
diverges to .

THEOREM 4: Suppose {u,} follows (4) and (5) with ay =1 —a/T) so {u,} is
1(1) and (6) and (12) hold for model (3). If there exists a j such that § a& 0 and
A>T, then as T — o, T~ ' Wy, PSY, and PSW}. diverge to ». If A;;' <T'/?
for all i such that &, # 0, then as T — o, T™' Wy, PS; and PSWy are O, (1)

The proofs are given in the Appendix. When the errors are 1(0), Theorem 3
establishes that PS% and PSW/. are consistent while 7~'W, is consistent unless
departures from the null involve trends that are not growing over time. For
example, 77 'W, cannot be used to consistently test hypotheses about the
constant. When the errors are I(1), the tests are consistent provided that
departures from the null do not exclusively involve parameters on regressors
that are growing slower than 772,

4. MODEL WITH SIMPLE LINEAR TREND

Using the theorems in Section 3, results are easily obtained for specific
models. In this section results are presented for model (1). Transforming (1) by
partial summing gives

z,=Bit+ By [3(2+ )] +5,.
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In the notation of Section 3 we have f(r) =[1,t], 7, = diag(1,T~"), F(r) =[1,r7,
g =1[6,3*+ 0, G =I[r,21, Q) =U,r, 7% ....,r"Y, and O,(r) =
(r.572,7%,...,7™). The hypothesis of interest is H,: 8, = B, or H,: R =r with
R=1[0,1],r= B, giving 4 =[T"'Tand R* =[0,1]. The limiting null distributions
follow directly from Theorems 1 and 2. Since g =1, t-statistic versions of the
tests can be used and are denoted by -PSh., t-PSW{, and T~/ ?t-W,.

The limiting null distributions of PS), PSWj, t-PSk, and -PSW/ in the 1(0)
case arc presented in Table II(i). The critical values were simulated using
N(0,1) i.i.d. random deviates to approximate the Wiener processes in Theorem
I. The integrals were approximated by normalized sums of 1,000 steps using
10,000 replications. The random number generator used was ranl( ) taken from
Press, et al. (1992) with initial seed of —1000. Only right tail critical values are
reported as they are of interest for hypothesis testing. Left tailed tests can be
carried out using the ¢ statistics since they have symmetric distributions. The
numbers in parentheses under the critical values are the b’s that result in the
a=x=0 I(1) critical values with m =9 being the same as the I(0) critical
values for that percentage point. The b’s were obtained using simulations. The
limiting null distributions of 7°'W, and T~ '/*-W, for @a=«x=0 I(1) errors
are given in Table II(ii) with the critical values simulated using the same
methods as for Table I1(). The limiting distribution of T7'W, in this case was
obtained by Phillips and Durlauf (1988), but they did not tabulate critical values.
For the remainder of this subsection the focus is on the ¢ statistic version of the
tests as analogous results hold for the Wald statistics. Results are not reported
for the -PSW; statistics given the similarity to results for the -PS} statistics.

TABLE I1(i)
ASYMPTOTIC DISTRIBUTIONS: PSS}, PSWi, t-PS}, AND t-PSW4, 1(0) ERRORS
MODEL: y, = B, + Bt + 11, z,= Byt + Bal2(2 + D1+ S,;
Hy: B> = By; b’s GIVEN IN PARENTHESES

90.0% 95.0% 97.5% 99.0%

PS 3.017 4.537 6.121 8.759
(1.451) (1.966) (2.685) (3.946)

PSW} 0.674 1.013 1.436 1.986
(1.533) (2.085) (2.848) (4.227

-PS} 1.331 1.720 2.152 2.647
(0.494) (0.716) (0.995) (1.501)

+-PSW; 0.601 0.818 1.015 1.245
(0.539) (0.750) (1.036) (1.603)

PS; 2.027 2.784 3322 3.949
(0.183) (0.286) (0.455) (0.753)

PSWy 0.448 0.612 0.785 0.887
0.191) (0.305) (0.468) (0.783)

1-PS? 1.152 1.392 1.677 1.849
(0.050) 0.095) (0.147) (0.265)

1-PSW;} 0.520 0.652 0.793 0.890

(0.056) (0.099) (0.156) (0.267)
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TABLE I1(ii)
ASYMPTOTIC DISTRIBUTIONS: T~ ' W, AND T '/ 2+-W, 1(1) ERRORS WITH @ =0, k =0
MODEL: y, = B, + Bat +u,, z,= Byt + Bo[3(2+ D1+ S,; Hy: B =By

90.0% 95.0% 97.5% 99.0%
T-'w, 5.161 7.727 11.004 15.370
TV Wy 1.724 2.298 2.835 3.479

In order to justify using @ = k=0 b’s for t-PS} and @ = k = 0 critical values
for T7!/2t-W,, asymptotic rejection probabilities were simulated for a=
—-0.6,—-04,...,12.0, and «k=0,02,...,1.0, with the nominal level 5% using
10,000 replications. To place the values of @ in perspective, a = 4 corresponds
to a=0.96 in a sample with 100 observations. Results with « =0 are reported
in Table III, panel (a) for ¢-PS} (m =2,3,...,9), t-PS? (m =9), and T~'/?t-Wj..
Rejection probabilities for ¢-PS; are at or below 0.05 regardless of m except
when @ = —2 (explosive errors) in which case rejection probabilities are slightly
higher than 0.05. Similar results hold for #-PS7. Therefore, asymptotic size of
t-PS}. and t-PS2 does not depend on m. As long as @=0, 7~ '/*-W, has
rejection probabilities at or well below 0.05. Simulations reported in the working
paper Vogelsang (1996) showed that rejection probabilities are not sensitive to «
and that asymptotic size remains at 0.05 for « > 0. Since, when the errors are
I(0), rejection probabilities are 0.05 by construction for ¢-PS} and ¢-PS7 and
zero by construction for 7~ !/?t-W,, the tests have asymptotic size of 0.05
whether the errors are I(0) or are /(1) provided explosive errors are ruled out.

Since asymptotic size of ¢-PS; and ¢-PSZ does not depend on m, a natural
way to choose m is to maximize asymptotic power. There does not appear to be
an analytic method of maximizing power with respect to m, but heuristic
evidence can be provided. Using the local alternatives H,: 8, = B, + T */*c for
1(0) errors and H: B, = B,+ T~ '/%c for I(1) errors, local asymptotic distribu-
tions were obtained and used to compute asymptotic power functions. The local
asymptotic distributions were simulated using similar methods to those used to
obtain limiting null critical values. Asymptotic power depends on ¢/o in the
1(0) case and on ¢/d(1) in the I(1) case. Since the expressions of these limiting
distributions are not particularly useful themselves, they are not reported but
can be found for #-PS} and t-PSW,} in the working paper Vogelsang (1996).

Asymptotic power of ¢-PS; does not depend on m in the 1(0) case. Therefore,
the choice of m was made on the basis of power in the (1) case which is given
in Panel (b) of Table III for the same range of m as in panel (a). The range of
local alternatives (relative to d(1)) is 5,10, ...25. Power is clearly increasing in m
given c¢/d(1). In unreported simulations it was found that power does not
increase substantially for m > 9 and flattens off. Thus, m =9 results in tests
with approximately the highest power. Similar results were obtained for ¢-PS7.
In unreported simulations it was also found that when the errors are 1(0), power
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TABLE 111

ASYMPTOTIC SIZE AND POWER OF 1-PS}., t-PSTz, AND T™ '/~
NoMINAL SiZE = 0.05, USING @ = 0, k = 0 CRITICAL VALUES

/2
1/

t- W5 1(1) ERRORS

137

MODEL: y, = B + Bor + 11, 2,= Byt + B[22 + O+ S, u, =1 —&/Thu,_ + v,
Hy: By< By Hi Bo=By+ T 7e, k=0

Panel (a): Null Rejection Probabilitics

-PS} -PS}

a c/dl) m=2 m=3 m =4 m=3 m=0 m=7 m=38 m=29 m=9 TV ey
-6 0.0 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000
-4 00 0.003  0.004 0.003 0.003 0.003 0.002 0.003 0.003 0.004 0.070
-2 00 0.049  0.064 0.061 0.064 0.068 0.066 0.068 0.072 0.063 0.275

0 00 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
200 0.036  0.033 0.029 0.028 0.027 0.026 0.026 0.026 0.033 0.033
4 00 0.037 0.031 0.028 0.023 0.025 0.024 0.023 0.023 0.028 0.000
6 00 0.035 0.030 0.028 0.025 0.025 0.024 0.023 0.024 0.030 0.000
8§ 00 0.033  0.030 0.029 0.027 0.027 0.024 0.024 0.024 0.033 0.000
10 00 0.033 0.029 0.029 0.029 0.028 0.026 0.026 0.025 0.034 0.000
1200 0.031  0.030 0.029 0.030 0.029 0.027 0.026 0.027 0.037 0.000
Panel (b): Power
-PS}

@ c/dl) m=2 m=3 m =4 m=23 m=0 m=7 m =38 m=9

0 5 0238 0315 0338 0363 0380 0384 0397 0417

10 0269 0384 0429 0456 0485 0492 0511 0540

15 0285 0420 0473 0.505 0533 0.547 0568 0598

20 0296 0445 0501  0.534 0570 0582 0.605 0.633

25 0.305 0463 0.524 0556 0594 0.609 0.629  0.659

5 5 0.343 0486 0.525 0552 0578 0.586  0.600  0.630

10 0.386 0.565 0.623  0.652 0.690 0.698 0.717 0.745

15 0.407 0.603 0.673 0.706 0.738 0.751 0.769 0.797

20 0.420  0.630 0.700 0.739 0.773 0.784 0.802 0.828

25 0.430  0.650 0.719 0.763 0.793 0.804 0.823 0.849

10 5 0.453  0.685 0.750 0.786 0.812 0.822 0.835 0.855

10 0.499  0.769 0.832 0.863 0.886 0.896 0909 0.927

15 0522 0805 0.870 0.893 0914 0924 0938 0.951

20 0.537  0.826  0.890 0.909 0.931 0941 0.950 0.963

25 0.547 0.841 0900 0.920 0943 0950 0.959 0.970

of ¢-PS; follows a similar pattern. Therefore, in all cases the asymptotic power
results suggest the use of m =9 in practice. In what follows, m =9 is always

used.

Since asymptotic size of the statistics is excellent whether the errors are 1(0)
or I(1), it is useful to compare asymptotic power of the statistics. In all cases
that follow the nominal level was 5%. Consider the case where the errors are
1(0). Under the 1(0) local alternative, asymptotic power of 7~ '/?1-¥; is equal to
size since the limiting distributions is the same as under the null hypothesis.
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FIGURE 1.—Asymptotic power in model (1), 1(0) errors; Hy: B < By, Hy: By =By +cT73/2

Asymptotic power of t-PS} and ¢-PS? is not degenerate and is plotted in Figure
1. As a baseline for comparison, asymptotic power of ¢-W;, the unnormalized ¢
statistic, is also plotted. When the errors are (0), -, can have optimality
properties. Asymptotic power of the ¢-W, statistic was computed analytically
since its limiting distribution is normal under both the null and local alternative.
As expected, t-W, is the most powerful statistic, but ¢-PS} and ¢-PS? have
nontrivial asymptotic power with ¢-PS} slightly more powerful than ¢-PS2.

Now consider power when the errors are /(1). Under the /(1) local alternative
all of the statistics including 7~ '/?¢-W, have nondegenerate limiting distribu-
tions. Asymptotic power is plotted for &= 0,5, 10 in Figures 2—4. For a baseline

Power
. 024 . 0.6 0.8

1.0

T == — —T

- — t—PS
4 --- t—Ps?
S/ — _T-—1 Qt_WT

2 t—WT, AYt=52+AUt

0.0 0.2

FIGURE 2.—Asymptotic power in model (1), I(1) errors, a=0; H:

cT™1/2,

Ba< By, Hyt Ba=pBo+
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FIGURE 3.—Asymptotic power in model (1), I(1) errors, a=5; Hy: B, < By, Hi: Ba= B+
cT~1/2,

of comparison, Figure 2 contains a plot of the asymptotic power of -, based
on the model Ay, = 8, + Au, which is an optimal statistic when @ =0 and {v,}
are i.i.d. and normal. As can be seen from Figure 2, when @ =0, T~ '/?t-W, is
much more powerful than ¢-PS; and ¢-PS7 and has comparable, but lower,
power to the optimal ¢-W; statistic. As @ increases, the rankings of the statistics
change with 7-PS; and /-PS? having higher power for alternatives close to the
null and 7~'/2¢-W, having higher power for alternatives far from the null (see

1.0

Power
0.4 0.6 0.8]

0.2

0.0

0 1 2 3 4 5 6 7 8 9 10
c/d(1)

FIGURE 4.—Asymptotic power in model (1), I(1) errors, a=10; Hy: B, < By, H;: Ba=Bo+
cT™1/2,
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Figures 3 and 4). These results suggest that the statistics will have complemen-
tary power in finite samples as the errors go from (0) to I(1).

5. FINITE SAMPLE SIMULATIONS FOR LINEAR TREND MODEL

This section provides evidence on the finite sample size and power of the new
tests in model (1). Results are given for the Wald versions of the tests with
similar results holding for the ¢ statistics. Results are only reported for PS% as
results for PSW, are similar. Without loss of generality, consider testing the
hypothesis H,: B8, =0. In Table I rejection null probabilities are reported for
PS; and PS? using m =9 and 5% asymptotic critical values. Recall that u, =0
which is equivalent to setting « =0. Unreported simulations (available upon
request) using u,# 0 were also performed, and it was found that the finite
sample behavior of the statistics does not depend in any practical way on u,.
When T = 100, rejection probabilities of PS; and PS} are close to or below 0.05
unless # = —0.8 and « is close to 1. If MA errors with a root close to but not
equal to one cannot be ruled out, the tests are oversized. As T increases the size
distortions disappear for PS7. Recall that GLS is also oversized in the same
region of the nuisance parameter space. If there is the possibility of (1) errors
with an MA component with a root near but not equal to one, GLS and PS}
should be used with caution.

Finite sample power with 8, = 0.0, 0.05, 0.1, and 0.2 for 7' = 100 is reported in
Table IV and was obtained using simulations with 1,000 replications and {u,}
generated using (2) with « = 0.9, 0.95, and 1.0 and 6 = —0.4, 0.0, and 0.4. These
are parameter values where exact size is close to nominal size and power
comparisons are meaningful. To mimic how the tests are used in practice, 5%
asymptotic critical values were used so power is not size adjusted. There is no
statistic that uniformly dominates the other statistics. When B, =0.2, T~'W,
often has the highest power. When « = 1.0, T7~'W, and GLS have the highest
power. When a=0.9 and S, <0.1, PS} and PS; have the highest power with
PS} more powerful when #<0 and PS? more powerful when 6> 0. When
a = 0.95, either PS} or PS? has the most power for 8, < 0.1, while for 8, = 0.2,
T~ 'W; is the most powerful. These power results are consistent with the local
asymptotic predictions.

6. EMPIRICAL APPLICATION

The ¢ statistics from model (1) were used to construct confidence intervals for
estimates of post WWII real GNP quarterly growth rates for the U.S., Canada,
France, Germany, Italy, Japan, and the U.K. The sources of the data can be
found in Banerjee, Lumsdaine, and Stock (1992). Perron (1991), Banerjee,
Lumsdaine, and Stock (1992), and Vogelsang (1997a) concluded that there is
considerable evidence of a shift in slope for many of the series. Jointly for
France, Germany, and Italy, Bai, Lumsdaine, and Stock (1994) constructed a
90% confidence interval of (1972, 1975) for the estimated break date which
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TABLE IV
FINITE SAMPLE POWER, ARMA(1, 1) ERRORS USING 5% ASYMPTOTIC CRITICAL VALUES
MODEL: y, = f; + Bat + 1, z,= Byt + Bo[3(t> + O+ S, u, + au,_ +v,+ Oe,_;
Hy: B, =0; T=100, 1,000 REPLICATIONS; POWER IS NOT SIZE ADJUSTED

@ 0 B> GLS ='Wy PSk PS}
0.9 -04 0.0 0.023 0.000 0.033 0.041
0.05 0.206 0.001 0.383 0.254
0.10 0.325 0.178 0.702 0.390
0.20 0.878 0.995 0.871 0.500
0.9 0.0 0.0 0.006 0.000 0.023 0.037
0.05 0.024 0.001 0.116 0.131
0.10 0.084 0.023 0.265 0.254
0.20 0.316 0.734 0.502 0.378
0.9 0.4 0.0 0.003 0.000 0.019 0.036
0.05 0.014 0.001 0.050 0.089
0.10 0.049 0.007 0.147 0.187
0.20 0.150 0.305 0.319 0.318
0.95 -0.4 0.0 0.023 0.000 0.036 0.034
0.05 0.098 0.002 0.202 0.128
0.10 0.197 0.159 0.411 0.231
0.20 0.826 0.938 0.642 0.320
0.95 0.0 0.0 0.007 0.001 0.018 0.031
0.05 0.014 0.002 0.054 0.067
0.10 0.044 0.028 0.122 0.134
0.20 0.302 0.514 0.251 0.230
0.95 0.4 0.0 0.008 0.001 0.012 0.027
0.05 0.012 0.002 0.034 0.047
0.10 0.032 0.007 0.066 0.094
0.20 0.094 0.207 0.150 0.172
1.0 -0.4 0.0 0.077 0.026 0.113 0.066
0.05 0.106 0.089 0.138 0.075
0.10 0.262 0.250 0.228 0.118
0.20 0.719 0.740 0.407 0.194
1.0 0.0 0.0 0.045 0.056 0.054 0.058
0.05 0.076 0.080 0.059 0.058
0.10 0.143 0.152 0.073 0.073
0.20 0.414 0.425 0.131 0.116
1.0 0.4 0.0 0.051 0.060 0.038 0.056
0.05 0.059 0.073 0.046 0.056
0.10 0.088 0.112 0.050 0.060
0.20 0.218 0.257 0.078 0.088

Note: The underlined entries are the highest power for that simulation.
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includes 1973, the date often associated with slowdowns in growth. None of
these studies reported confidence intervals for the estimated growth rates of
GNP.

What can be said about the magnitude of GNP growth rates before 1973
compared to after 1973? Using asymptotic critical values, 90% confidence
intervals for the full period as well as for periods before and after 1973 were
constructed by inverting the -PSh (i=1,2), T~'/*t —W,, and GLS statistics.
The GLS statistic was computed using an autoregressive spectral density estima-
tor with the order of the autoregression chosen using the general to specific data
dependent method analyzed by Ng and Perron (1995) where the last included
lag is checked for significance using a two-tailed 10% test. This data dependent
method requires a maximal autoregressive lag length, kmax. Results are re-
ported for kmax =5 and 10. The selected lag length, k, is reported along with
the estimate of the sum of autoregressive parameters, @. The results are given
in Table V. In all cases the point estimates of B8, are higher pre-1973 than
post-1973, indicating that growth rates have slowed. For France, Germany, Italy,
and Japan, the pre-1973 and post-1973 confidence intervals often do not overlap,
indicating the drop in growth rates is statistically significant. Growth rates fell by
as much as 50% and many confidence intervals indicate that point estimates are
fairly precise.

This empirical application illustrates some interesting properties of the statis-
tics. First, GLS confidence intervals are often sensitive to the choice of kmax.
This is particularly true for post-1973 Canada and Germany where increasing
kmax from 5 to 10 results in different choices of lag length and vastly different
confidence intervals. This shows how different estimates of serial correlation
parameters can have large effects on empirical results. These problems are
avoided by the other statistics as estimates of serial correlation parameters are
not required. Second, tighter confidence intervals are often obtained with
T~ '/2t-W; compared to t-PS; when & is close to one. This is not surprising as
T~'/2t-W, is often more powerful when errors are I(1) as shown above. Third,
confidence intervals for the full period are often wide when using PSj. In many
cases the confidence interval end points exceed +99. Such wide confidence
intervals should simply be interpreted as noninformative; that is, the statistics
cannot be used to reject any reasonable null hypothesis regarding B,. This is
equivalent to saying that the tests have low power. The asymptotic and finite
sample results suggest that PS} has low power when the errors are /(1). This is
confirmed by Table V as wide confidence intervals occur when & is close to 1.
When & is not close to 1, the confidence intervals using PS) are often much
tighter as predicted by the theory.

There is another potential source of wide confidence intervals when using the
1-PS% statistics for the full samples. In model (1) it is assumed that the slope is
not changing over time, but many of the series have a slope shift around 1973.
In a simulation experiment reported in the working paper, Vogelsang (1996), it
was shown that a shift in slope causes the PS confidence intervals based on
model (1) to be wide. As the shift in slope increases, confidence intervals
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become wider. In practice a wide PS} confidence interval may be an indication
of structural change in the trend function.

7. CONCLUSION

New tests of hypotheses regarding parameters of the trend function of a
univariate time series were proposed. The tests can be applied to trend func-
tions that are linear in parameters. The tests are asymptotically valid in the
presence of general serial correlation and do not require estimation of the serial
correlation parameters, either parametrically or nonparametrically. The tests
are asymptotically valid whether the errors are I(0) or I(1), and are, for all
practical purposes, invariant to the variance of the initial condition. The statis-
tics should prove very useful in practice as they remove the need to specify the
form of serial correlation and are relatively easy to compute. While separate
critical values are needed for each specification of the trend function, Theorems
1 and 2 along with modern computing power make simulation of asymptotic
critical values easy in most cases.

Dept. of Economics, Cornell University, Uris Hall, Ithaca, NY 14853-7601,
U.S.A.; jiv2@cornell.edu

Manuscript received January, 1996; final revision received February, 1997.

APPENDIX

This appendix contains proofs of the theorems contained in the text. The proofs are simplified by
first establishing some preliminary lemmas. The lemmas are stated without proof as they follow from
standard results.

LEMMA Al: Suppose {u,} follows (4) and (5) and ay = a,|a| <1 so that {u,} is 1(0). Then if (6)
holds for model (3), as T — o,

(@) T~ %r, Xju = ofiF(r) aw(r),

) T 70 X X 70 = [aF(r)F(r) dr,

© T3/, X8 = o[ G(Hw(r) dr,

(d) T3 Xy Xy = [ GOHG(rY dr.

LEMMA A2: Suppose {u,} follows (4) and (5) and ay = —a/T) so {u,} is I(1). Then if (6) holds
for model (3), as T — =,

@) T73 %1, X{u = d()[(F(r)Vy(r) dr,

) T77/ %1, X3S = d() [ GO [{ Vas) ds)dr,

(©) T748'S = d(D? [ f{V(s) ds)* dr.

LEMMA A3: Suppose {u,} follows (4) and (5) and ay = a,|lal <1 so that {u} is 1(0). Then if (6)
holds for model (3), as T — o,

(@) TV (- B)= ol [{F(IFGY dr]™ YdF(r) dw(r),

(b) s)z, = gl=lim;_  E(T7'CT_ u?),

(© TV 71(p* = B) = ol [{G(NG(rY dr]~ ' fd G(rIw(r) dr,

@ T s = o2M(w(r), G(r)).


mailto:fjr2@cor7zell.edu

TREND FUNCTION HYPOTHESIS TESTING 145

LeEMMA A4: Suppose {u,} follows (4) and (5) and ar =1 —a/T) so {u,} is I(1). Then if (6) holds
for model (3), as T — =,

(@) T V21 B~ B) = dI [{F(IFGY dr]™ A FG)WVi(r) dr,
() T7's? = d)*MV(r), F(r)),

(© T7'2%31(B* = B) = d)L f§ G(NG(rY dr]™ 3 G(r) [§ V() ds]dr,
(d) T73s2 = d(1)>M([§V,(s) ds, G(r)).

The J§(m) statistics can be expressed in terms of moments like s7 and 7~ 's?. Their limiting
distributions follows from straightforward arguments and details are omitted. Theorems 1-4 are
proven for 77 'W, and PS%. Similar arguments for PSW;. are omitted.

PROOF OF THEOREM 1: Using Lemma Al (a), (d), Lemma A3 (a)—(d), J4(m) =0, and J2(m) =
J(w(r), G(r), Q,(r)), we have

T W, = T URB - [ROXX) ' RT (RB—1r)/s?
=T '[A 'R, T3 (B - )]
X[A"RTT(T' e X1 X,7) 1 RA 'I[AflRTTTI/zT}I(é—B)]/S'z
=77'0,(1)=0,
PSi =T (RB* — Y [R(X4X,) 'R (RB* — 1) /(s2exp(bTi(m)))
=[A'Rr, T2 (¥ —,8)]’[A*'RTT(T‘~‘TTX§XZTT)"TTR'A*'] o

X[ AR TV 271 (B — B)1 /(T 's2exp(bJi(m)))
= Lw(r),G(r), R*)/Mw(r),G(r)), i=1,
= Lw(r),G(r), R*) /IMw(r),G(r)exp{bI (w(r),G(r), 0,(rN}], i=2.

PROOF OF THEOREM 2: Using Lemma Al (b), (d), Lemma A4 (a)—(d), J}(m) = J(V,(r), F(r),
0,(r), and JF(m) = J(j{Vi(s) ds, G(r), 0+(r)), we have

T W, =T (RE - [ROXX) 'R (RE—r)/s?
A ’ — =1
=[A Rep T e (B = Y[ A7 Rep (T 'mp X X 7))~ 7y RAT

X[A™ ' Re, T~ 21— )1 /(T 's2)
= LV, (r), F(r), R*) /M(V (1), F(P)).

PSh=T"'(RB* - rY[R(X3X,) 'R (RB* —r)/(s2exp(bli(m))
=[A"'Rr, T~/ 31 (B* — B)I[A_'RT»E(T_gTTXﬁXZTTf ITTR'A’ l] -
X[AT' R T~V 2271 (B* — B /(T 3s2exp(bIi(m)))

=>L(frV(-,(s)ds,G(r),R’:‘)/
0
M(frVn(s) ds,G(r))exp{bJ( Vo(r), F(r), Q,(r))}] s i=1,
i 0
= L| (Vo) ds, G, R
(fo () ds,G(r )/

M f’an(s)(ls,G(r) exp{ bJ f’.V(—Y(S)cls,G(r),Qz(r) , i=2.
| Vo 0
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As a preliminary to the proofs of Theorems 3 and 4, note that under the alternative (12) s and
s2 are exactly invariant to & as the models are estimated under the alterative. Therefore s and s?
have the same limiting behavior as under the null hypothesis. Similarly, the limiting behavior of the
Ji(m) statistics are exactly invariant to & and have the same limiting distribution under the null and
alternative hypotheses. Recall that A4 is a diagonal matrix with elements that are nonpositive powers

of T. Therefore, 47! is a diagonal matrix with elements that are nonnegative powers of T and
TA ! >,

PROOF OF THEOREM 3: Rewriting the alternative (12) as » = R — §, we have

T W, = T-(RE—RB+ 8V [R(X| X)) 'R1 (RE—RB+8)/5>
=T[4 'Re, T2 (f— B)+ T4 6]
><[A—‘RTT(T—'TTX§X17T)_'TTR/A—' -

X[A™' R, T 220 (B )+ T'/247 81 /52
-1

-1
=A- '5’[#1{* {le(r)F(r)' (lr} R*] 84" +0,(1).
0

If A=' =, then T~ 'Wy = since 8'[0,’R*{[JF(r)F(rY dr}~'R*]7'6> 0. If A~'=0,(1), then
T~'Wy=0,(1). For PS} we have

PSE =T~ '(RB* —RB+8)[RX3X,) "R (RB* — RB+8)/(s2exp(bJ-(m))
=[A"'Re T2 (B = B) + T4 s ]
s[4 Rep (30, X3 X7 R

X[ A Rry TV 27 (B% — B) + TV/247 181 /(T s2exp(bI - (m)))
-1

-1
=TA~ '6’[M(w(r),G(r))R* {IIG(I‘)G(I')I dr} R*'
0

84 +0,(1) =,

since 8'[M(w(r), GUNR*{[¢ G(r)G(rY dr} 'R*'17'8> 0 and TA~" — . Similar arguments hold for
PS# and are omitted.

PROOF OF THEOREM 4: Rewriting the alternative (12) as r = RB — & we have
(13) T W, = T (RE—RB+ 8 [R(X|X) 'R1 (RE—RB+8) /5>
=[A 'Re TV 27 (B— B+ T7 1247 5]
><{A*‘RTT(T-ITTX,’X,TT)"TTR'A-J]_]
X[AT Rr T 200 (= B) + 171247181 /(T 's2).
(14) PSi=T '(RB* —RB+8V[R(X,X,) 'R
X(RB* —RB+ 8)/(slexp(bJi(m)))
=[A7'Re T2 (B* = B + T~ 1247 18]
><[A"'R?T(T"37TX§X37-7-)_ITTR’A_' B

X[AT'Rryp TV 27 (BF = BY + T7'/247 161 /(T 's2exp(bJi(m))).
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The terms in (13) and (14) are O,(1) and nonzero with the possible exception of 7~ /24718, If there

exists a j such that 8> 0 and a;;' > T'/?, then T~'/247'8 — o and T~'W; = = and PS} = . If

aj;" <T'? forall j, then T~'/2A~'8=0,(1) and T~' Wy = O,(1) and PS;=0,(1).
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