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Abstract. Resulting from a clinical consulting case in urology we de-
veloped a software tool for determining nonlinear dose-response rela-
tionships. Unlike most existing statistical software packages, we directly
compute and display analytical pointwise 95% confidence intervals for
the prediction result. Furthermore, user-defined changepoints with 95%
confidence interval can be calculated in order to estimate the dosage for
a 50% response rate, for instance. This is necessary to compare the effect
of different retinoids, tumor cell lines, etc. In this way we supplement the
clinical software-equipment in our laboratory and encourage the evalua-
tion of dose-response data. The numerical and computational problems
arising with nonlinear regression, 4-parameter logistic as well as log-logit
modelling and the respective confidence intervals are addressed in par-
ticular. Analysis of real data and an example data set demonstrate the
approach. A demo version of the software tool can be downloaded from
the first author’s homepage.

1 Introduction

In the laboratory department of the Urologische Klinik und Poliklinik der Tech-
nischen Universität München, Klinikum rechts der Isar, the connection between
doses of certain retinoids and response rates such as ”cell kill” and ”invasivity” of
tumor cells are examined in vitro. The concentration is measured in µM, starting
with small values and increasing accordingly. The response rates range from 0
(= 0% response) to 1 (= 100% response). For the target variable ”invasivity” 0
equals to no invasivity of the tumor cells and 1 equals to 100% or full invasivity.
For ”cell kill” the response value 0 equals to no tumor cells left, i.e. 100% cell
kill, whereas 1 equals to nothing happened or 100% cell survival, i.e. 0% cell kill.
Fig. 1 displays an example file for a particular retinoid and tumor cell line. For
low concentrations we have a limit of 100% response. Increasing concentrations
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Fig. 1. Dose-response data (+) exemplifying laboratory measurements

yield decreasing response rates with a lower bound of 0% indicating a monotonic,
nonlinearly decreasing relationship.

In general, ten or twelve dose-response combinations are determined in one
trial. The response rates are obtained either by ELISA-reading for ”cell kill” or
counted manually within a reference field for ”invasivity” of tumor cells. One
aim is to estimate the underlying ”true” dose-response relationship, which is a
classical titration problem discussed in more detail e.g. in [1] and [2]. A common
approach for exploring connections of the present kind with continuous doses
and scaled binomial outcomes is the log-logit model. The 4-parameter logistic
regression model is a generalized version where uncertainty about lower and up-
per bounds of response rates can be taken into account additionally. Moreover,
confidence intervals are essential in order to compare retinoids and tumor cell
lines from different trials. However, the software of the ELISA-reader described
in [3] as well as most existing software tools for nonlinear regression display con-
fidence intervals in their output only for regression parameter estimates, but not,
although implicitly computed, for estimated response curves or predicted values,
respectively. Some of the packages like standard SPSS (Statistical Package for
Social Sciences) just do it on the grid of observed doses and not on the whole
range of measured concentrations. Fig. 2 gives the estimated response curve of
the ELISA-reader software for our example data in Fig.1.

Therefore, the task resulting from the laboratory consulting case was to pro-
vide a software tool for displaying the estimated response curve and the respec-
tive 95% confidence intervals simultaneously. Furthermore, a changepoint con-
centration should be detected indicating a significant decrease in the response
rate. This we call our significant changepoint. The speed of decrease and the de-
celeration of the response curve at the changepoint are of interest, too. According
to half-life periods of radioactive elements, concentrations with y% response rate
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Fig. 2. Dose-response data (+) and estimated response curve (—) from log-logit model

also have to be estimated. We calculated these kind of changepoints for y = 10,
30, 50 and 70. The concentration with an estimated 50% response rate is called
half-life concentration. Finally, we have to compute the 95% confidence intervals
for the significant changepoint and the y% concentrations as measures of the
accuracy of our estimates. Furthermore, the confidence intervals are essential in
order to compare different tumor cell lines, retinoids, etc. for a series of trials.

The methods and routines applied are described in the next section. Results
of the calculations for our example data file as well as a real data set are given
in Sect. 3. Sect. 4 concludes.

2 Methods for Data Analysis

The log-logit model is a common way of analyzing monotonic, nonlinear dose-
response relationships as given in Fig.1. It is a special case of the 4-parameter
logistic model defined by

y =
a − d

1 + (x
c )b

+ d , (1)

where y is the estimated, predicted response rate at concentration x. As we have
a 100% response (e.g. invasivity of tumor cells) for concentration x = 0 and
no response for sufficiently high values of x in our case, a natural choice for a
and d in (1) is a = 1 and d = 0. This yields the log-logit model underlying the
statistical analysis of our example data. Note that we only have to estimates two
parameters in this case: b describing how rapidly the curve makes its transition
from the asymptotes to the center of the curve and c, the half-life concentration.

If the lower and upper bound of the resopnse rates cannot be fixed in advance
as is common in real data problems, the use of the full 4-parameter logistic
regression mode (1) is a natural choice.
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In both cases estimation can be carried out by the method of least squares
which is equivalent to likelihood estimation for the assumption of Gaussian er-
rors, cf. [4], subsection 6.6.1. Because the regression function in (1) is nonlinear,
a solution in closed form does not exist and iterative algorithms have to be ap-
plied, cf. [5] for details. We used the MATLAB procedure nlinfit described in
[9], where the Gauss-Newton optimization method is implemented. A general
description of nonlinear regression algorithms can be found in [6]. The most
important methods are implemented in the optimization toolbox of MATLAB
[7].

Special attention has to be drawn to badly-scaled data yielding singular ma-
trices to be inverted within the nonlinear programming procedure. An indication
of that problem are extremely high condition numbers as discussed in [8], sub-
section 4.5. Remedial measures can be taken by strictly monotonic increasing
transformations of the concentration values. The log-function is a commonly used
transformation in order to try come to a well-scaled problem. On the whole, the
success of the nonlinear regression approach depends heavily on the scaling of
the data. This is true for all available nonlinear regression tools.

To compute analytical 95% confidence intervals for the estimated response
rates there are two ways, in principle. One is to impute the lower and upper
confidence limit of the parameter estimates supplied by most of the usual soft-
ware packages into formula (1). However, this is a heuristic approach and yields
unsymmetric confidence intervals, in general. Moreover, a possible correlation be-
tween the likelihood estimates of b and c is not considered. Therefore we applied
the δ-method described for example in [4], chapter 2, in order to get symmetric,
pointwise confidence intervals. The necessary inverse of Fisher’s information ma-
trix is calculated from the score function stored in the Jacobian of the MATLAB
function nlinfit, cf. [9]. A numerical stable implementation can be cribbed from
the MATLAB procedures nlparci or nlpredci contained in the statistical toolbox
cf. [9]. The relevant first partial derivatives of the log-logit function in (1) with
respect to the regression parameters b and c can easily be obtained by symbolic
differentiation in the symbolic math toolbox of MATLAB, cf. [10]. The toolbox
is based on a MAPLE V kernel. An analytic formulation of the derivatives is
given in the demo version of our software tool, procedures geschw and beschl.
In the same way the first partial derivatives of (1) with respect to a and d can
be calculated for the 4-parameter logistic model.

Exact confidence intervals in nonlinear regression as developed in [11] are
not in common use. Bootstrap confidence intervals established in [12] would be
a further choice if the analytical approach does not converge. However, in the
setting of nonlinear regression they are extremely demanding with respect to
computation time and power.

For computation of changepoints we have to devide between the y% concen-
trations and the significant changepoint. The y% concentration is easily obtained
via the inverse formula of (1) given by

x = c(
a − y

y − d
)1/b . (2)
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Again we have a = 1 and d = 0 for log-logit regression.
The significant changepoint is defined as the concentration value x where

the upper limit of the regression curve confidence interval is instantly below a
response rate of 1. This is the starting point for a significant reduction of the
response rate. The respective confidence intervals for both types of changepoints
are calculated by a grid search on the confidence limits of the response curve
ensuring at least two valid figures after the decimal point. The speed of reduction
of the response rate at the significant changepoint xsig is defined as the first
derivative of (1) with respect to x, evaluated at xsig, and the deceleration is the
respective second derivative. Again the symbolic formulation of the derivatives
can easily be obtained from [10].

The previously discussed features together with the log-logit model (1) are
implemented in our software tool ”titration”.

3 Results

Applying the software tool to the example data from Fig. 1 we get the regres-
sion curve estimate with 95% confidence interval within a graphic window as
displayed in Fig. 3. Most of the data points lie inside the confidence region. As
the 0 µM concentration is forced to have response rate 1 according to a = 1 in
formula (1), the length of the confidence interval tends to zero in this area.
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Fig. 3. Dose-response data (+) and estimated response curve (—) with pointwise 95%
confidence interval (- -) from log-logit model

The respective regression parameter estimates for the model in (1), y% con-
centrations for y = 10, 30, 70, and the significant changepoint with its speed
and response deceleration are obtained as text output summarized in Table 1. In
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particular, the confidence intervals are necessary to compare different retinoids,
tumor cell lines, etc. for a series of trials.

Table 1. Estimates of regression parameters and changepoints with 95% confidence
intervals from log-logit modelling of example data in Fig.1. Sig. refers to significant.

Parameter or changepoint Estimate 95% confidence interval

Parameter b 3.8454 [3.0821 . . . 4.6087]
Parameter c = half-life concentration in µM 1.0124 [0.9554 . . . 1.0694]
70% concentration in µM 0.8122 [0.7412 . . . 0.8762]
30% concentration in µM 1.2620 [1.1962 . . . 1.3353]
10% concentration in µM 1.7928 [1.6242 . . . 1.9846]
Significant changepoint in µM 0.1533 [0.1176 . . . 0.3322]
Speed of decrease at sig. changepoint in %/µM -0.0176
Deceleration at sig. changepoint in %/(µM)2 -0.3266

Due to uncertainties in laboratory measurements, upper and lower bounds
of response rates cannot be fixed in advance when evaluating real data sets.
Therefore we apply the full 4-parameter logistic model in the following.

The real data set indicates the rate of cell kill for ten different concentrations
of the retinoid 4-HPR for prostate tumor cell line DU145. Fig. 4 displays the es-
timated regression curve with 95% confidence interval on a semilog(x) scale. The
measurement uncertainty is reflected by the width of the confidence interval at
initial concentrations as well as the three upmost concentrations. Changepoints
as indicated in the figure and regression parameter estimates of the 4-parameter
logistic model are summarized in Table 2. The resulting point estimates in com-
bination with their estimated 95% confidence intervals can be used for reasons of
comparison with our example date, other prostate tumor cell lines like LnCaP,
PC3, or different kinds of retinoids like 13cRA. For example, the half-life concen-
tration of 4-HPR in Table 2 is significantly lower than the half-life concentration
in our example data as the point estimate of c in Table 2 is below the lower
bound of the 95% confidence interval of c in Table 1.

Further comparisons have to be left to a more extensive evaluation. At this
stage, we want to demonstrate the usefulness and the necessity of comparisons of
this kind for our application. Furthermore, we now have a basis for an automatic
evaluation with our software tool “titration”.

4 Conclusion

Initiated by a consulting case in urology, we developed a software tool for dis-
playing estimated dose-response rates and their 95% confidence intervals simul-
taneously. Furthermore, a series of user-defined changepoints can be calculated
together with respective confidence intervals. In this way, the effect of different
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•←70% concentration, 0.61516 µM

•←50% concentration, 0.78006 µM

•←30% concentration, 1.0065 µM

•←10% concentration, 1.7673 µM

•←Significant changepoint, 0.37963 µM

Fig. 4. Dose-response data (+) and estimated response curve (—) with pointwise 95%
confidence interval (- -) from 4-parameter logistic model. Data: Response rate = cell
survival = 1 - cell kill of DU145 tumor cells, concentration refers to 4-HPR on a semilog
scale.

Table 2. Estimates of regression parameters and changepoints with 95% confidence
intervals from 4-parameter logistic modelling of real data in Fig.4. Inf refers to infinity
and sig. to significant.

Parameter or changepoint Estimate 95% confidence interval

Parameter a 100.6533 [93.6089 . . . 107.6976]
Parameter b 3.6986 [2.0429 . . . 5.3543]
Parameter c = half-life concentration in µM 0.7500 [0.6265 . . . 0.8735]
Parameter d 6.1924 [0.3387 . . . 12.0461]
70% concentration in µM 0.6152 [0.5105 . . . 0.7211]
30% concentration in µM 1.0065 [0.8511 . . . 1.2078]
10% concentration in µM 1.7673 [1.2078 . . . Inf]
Significant changepoint in µM 0.3796 [0.0010 . . . 0.5224]
Speed of decrease at sig. changepoint in %/µM -63.513
Deceleration at sig. changepoint in %/(µM)2 -359.1965
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tumor cell lines and retinoids can be compared for a number of trials. Special
attention has to be drawn to numerical issues as badly-scaled problems may
occure. The success of the underlying nonlinear regression procedure depends
heavily on the well-scaling of the data.

A demo version of the software tool ”titration” can be downloaded as ZIP-file
from the first author’s homepage at http://www.imse.med.tu-muenchen.de/
persons/wagenpfeil/index.html. Please consider the readme first.txt file. In
order to run the program, MATLAB 5.0 Release 10 or lower, has to be installed.
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