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SUMMARY

We consider the testing and estimation of thresholds in heteroscedastic threshold auto-
regressive models with an unknown number of thresholds. A test statistic based on empiri-
cal wavelet coefficients 1s proposed. The asymptotic distribution of the test statistic is
cstablished and consistent estimators of the thresholds and the number of thresholds are
given. A Monte Carlo study and a real example are used to assess the performance of our
method.
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I. INTRODUCTION

The threshold autoregressive, TAR. model introduced by Tong (1978) is a nonlinear time
scrics model that is able to describe sudden changes over time. The most important
parameters of the TAR model are the thresholds since they determine its nonlinear struc-
ture. The thresholds divide the model into different regimes, in each of which the skeleton
function s lincar. Hence, if the thresholds arc known, it is relatively easy to estimate other
parameters such as regression coeflicients. However it is not easy to estimate the thresholds
because their number is usually unknown, and they are themselves changepoints of the
skeleton function.

Chan & Tong (1986) gave an cstimator for the threshold in the case of known time
delay with onc threshold. In a University of Chicago technical report, K. S. Chan used
the conditional least squares method to obtain strongly consistent estimators of the thresh-
olds and of time delay with a known number of thresholds. Tsay (1989) estimated the
thresholds and time delay by arranged autoregression. Geweke & Terui (1993) and Chen
& Lee (1995) used a Bayesian approach to identify the threshold and time delay.
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Recently many statisticians have been interested in wavelets, for example to detect
aberrants such as jumps or cusps in regression functions; see for example Donoho et al.
(1995), Wang (1995) and an Australian National University technical report by
M. H. Neumann. Noting that the thresholds are nothing but the jumps or cusps of the
skeleton function in a TAR model, Li & Xie (1999) successfully applied the wavelet method
to identify the thresholds and time delay. However. their method has a drawback in
practice because distributional results for the test statistics werce not obtained. The critical
values were constructed by repeated simulations and intuition. In this paper, we first use
the kernel method to estimate the wavelet cocflicients and then construct the test statistics.
Asymptotic distributions of the statistics are derived. and critical values are obtained.
Lastly. by Li & Xie’s (1999) p-division of a sct. consistent estimators of the thresholds
and the number of thresholds are given.

Section 2 presents a test procedure for thresholds based on wavelets and proposes
wavelet estimators for the thresholds and the number of thresholds. Monte Carlo simu-
lations for our test statistic and an empirical example are reported in § 3 and proofs arc
collected in the Appendix.

2. MAIN RESULTS
2-1. The SETAR model

The TaAr model we address in this paper is the self-exciting threshold autoregressive,
SETAR. model with heteroscedasticity:

rtl
PR " 1“ . - - , .
N= ) ( + X hhx, ,,,> T R e NS R (2-1)
=1 m=1
where (¢, for t=1,2...., are independently identically distributed random variables
with mean zero and variance 1, /o= —> and /,,, = x. It 1s assumed that p,<p, for
[=1.2...., r+ 1. where p is a known integer and d <p, and a< /i, </, <...<s,<bh.

where « and b are (wo known constants. We make the following assumptions on {x,} and
the noise {¢, 1.

Assumption 1. The |x,| are geometrically crgodic.
Assumption 2. The probability density function f of (x,. x5, ....: x,)" is bounded away
from zero and infinity on [«, b]":
MU (X X X ) SM, (X, XL x,)' e [a, b]",
where M > () 1s a constant. Furthermore, f(x;. x5, ... .. \,) is continuously differentiable.
Assumption 3. The ¢} arc independently identically distributed with E(g,)=0 and
var(e,) = 1.
Let A" =0 when s>p, (I=1,2..... r+ 1). Then model (2-1) can be written as
rtl
=) ( hih 4 Z hibx, > Gy ) e X )e (2:2)
=1 m=1

and is called a self-exciting heteroscedastic threshold autoregressive model with order p,
denoted by SETAR(d, 12 p,....p), where {4;} are called thresholds and d is the time delay.
If o 1s constant, then model (2-2) is the common SsETAR model. Here we study the more
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general SETAR model with heteroscedasticity. Li & Li (1996) studied the TAR model
incorporating heteroscedasticity. There have been many discussions of the estimation of
the time delay d. Hence, we assume that d is known in the following discussion.

Let

r+1
Ty xy X,) = Z <bm+ 2 by x m> Ay (Xe—g)-
=1

m=1

Then model (2-2) is written as

Xo= T, g Xp_p) ol Xy = p)éy.
[t follows from Li & Xie (1999) that 4, is a threshold of SETAR(d. r; p, . . ., p), if and only
if cither
(1) X = (N Xy A Ny v,)' is a jump point of T, that is there cxists a
point \}{' =(l1..... (PR I t,- )" in R” such that
T(x§'—0) + T(x{ +0),
or

(it) x*" is a cusp point of T.
Propertics (i) and (ii) imply that therc exists at least one s (1 <s<p) such that
W — b P 0. Then, for almost all 7 e [a. 5]7 ", it holds that

L /AR DB 1L SR U b,

R A P B R L + by 4+ b+ + by, .

We take such fixed 7€ [a. 517" in the following discussion. Then

T(ty..... fooy o Xolyge oo, l,-)
is a one-variable function of the variable x. It is casily deduced from (i) and (ii)
that, il 7, is a threshold of SETAR(d.rip.. ... p). 1t is a jump or cusp point of
T | FII  S !, 1). Hence. we can use methods developed for the detection of

Jumps and cusps to identify the thresholds.

2.2, Empirical wavelet coefficients

For T(t,...., T OO P {,.1). with x € [a. b]. its wavelet coefficient is

T(t,,.... Ty v Xalyge ... L PR (X) dx, (2:3)

where

X —d
e (x Z (h—a) “i;, <l\;fc(1 + n>

(Li & Xie. 1999). in which ), (x)=2"2)(2/x — k) and y(x). compactly supported on
[—A. A] with A> 1, 1s of bounded variation on [ —A4. A], and y(x)=0for xe[—1, 1].
Furthermore,

A A A
[ W(xydy =0, ( Xy(x)dx =0, f YAx) dx < 7%, (2:4)
1 1 -4

o . Y

and ‘11 Wix)dx 0, ” X(x) dx % 0.
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Simple computation shows that, when « + k2 /(b — a) is near the threshold 4, f5;, has
relatively large absolute values, while it decays fast to zero as soon as a + k2 /(b — a) shifts
away from /;. Thercfore f3;, exhibits high peaks near /;. based on which we can construct
a statistic for testing and estimating the thresholds.

Suppose that x, (1 <r < n) are sampled from model (2-2). Let

I(s.0)= {/\'2

> . - - T Ty ) — -
'\l’l:('\l ]..\[,2 ...... AN i p)' t(\)—(ll ..... [ll"l"\”ld""‘t[)’l

gd} =102, 20— 1,

ik
a+?(b—a)4s

)T

for fixed j. Then the estimator of f3;,. called the empirical wavelet coeflicient, is defined
by

b T H g~ 7'» A
W'}.k: J per(.\_)l‘l-—p+1kh'~\171 {(-\)l»\[dx, (2:5)

Wy
.k n [ P!
1:,7+1K1,1-\1 | — Hx)

where K, () = K(y,/mWK(y,/h)... K(y,/h) with K(.) being a kernel function and J=
(VieVau. .o v,). In practice, one often assumes that K(.) is a symmetric probability density
with finite support [ —¢. ¢]. and h = h, is a sequence of bandwidths with h -0 and nh — 7.
The estimator W, of f3;, is intuitively very appealing. Note that
Tif(\): = E:-\‘1|~\~“{ [ f(\):s
so that T(.) is the conditional mean of x,, given X, ;. Hence, we can use the kernel method
to estimate T{i(x)} by

Il=p~1
N H - > v
LI:prlKh:»\I*Iﬁr(-\)

The empirical wavelet coefficient W is obtained if we replace T4i(x)} in (2:3) with T{i(x)!.

. Y K — )y
Tiiv)) = nN- 1 ’,l~
§

2:3. Asymprotic distribution
THEOREM 1. Suppose that Assumptions 1-3 hold. If j satisfies

nh? !

lim T T e

H— 7

then. as n tends to infinity,
(1) for kellz.27(h—u),

SR YW — = N0, T

in distribution. for l=1.2,..., p. where

A
=2 b1 j pix) dx
1

X [b:)’”' L Y P (L AL LIRS | PR

k ‘
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A
+ 273 h — )Y — B ( xy(x)dx, (2:6)
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7 o Pt f4 - atix)]
2(y) = { J K(v) dy} J VA Ao

where [(.) is the joint probability density function of (X, 1, X;— 5.+ oy X, )5
Gi) for k ¢ U 11, 277%(b — a)}.

Jmh? =YW, - N{O, (1),
in distribution, where t.=a+ z(b —a), k/2’ >z for 0 <z < 1.
We consider testing if 7, is a threshold; that is we test
Hy: b =p""Y(i=1.2,....,r+1)
VTSUS

H, :at least one i) £ plii+ 1.

We know from (2:6) that, under H,. 7, =0 for all k e I;, and, under H,, |7, =27 %72

where ¢ is a positive constant. Then we construct the statistic

o Jmhr W,
L= (27)
sy

COROLLARY 1. Assume that the conditions of Theorem 1 hold. Then, under H,,
T = N(0. 1),
in distribution, for all k e I,. Under H,.
Ty — 7.
in probability, for ke I, 2 (b —a)}.

It follows from Corollary 1 that, if » denotes the size of the test, we reject H if
[T71>® (1 —%/2), where @ is the standard normal distribution, and that this is a
consistent test.

2:4. Data-driven test

The test statistic T;; contains the probability density function f(y, y,..... y,) of
(X, 1o N, e v, ,)" and the conditional variance o*(yy, ¥,,...,¥,). In practice, these
are usually unknown and we need to cstimate them in order to apply the above testing
procedure.

The probability density function f( v, v5.. ... v,) can be estimated easily by the kernel
method:

\ o
SOy )= > KulXy = Vi X — 8,),
nh” =

which is a consistent cstimator of f under mild conditions. Although it is not easy to
estimate the conditional variance 6(yy. v5.....»,) there has been extensive related dis-
cussions, especially for p=1. Here we suggest an estimator based on Truong & Stone
(1992, 1994).

Note that
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Then the estimator of o2 is given by

7—'1)4— 1 Kh("\jlfl - j’){‘;l - T(X.I* 1 )}2
Z;'fp+1 K,,(.{‘[,l _?) |

where Ky (¥ van .o, 0) = KO /MK (va/hy o K (v, /h), with K(y) =31 (x). In (2:8),

T{(.) is still unknown. We can estimate it by replacing the parameters with their consistent

estimators. Under mild conditions, 6% is a consistent estimator of o=. Hence, we can obtain

consistent estimators of both f(y,,y,.....¥,) and o*(y. y,. ..., v,). Then a consistent
estimator of t3(x) is given by

2(v) {Jn K2 )1}"If1 ) doe SN
2(y) = Avydy YAX)YdX = T——.
(X ‘. v)dy By ¢ T

Replacing t2(x) with £2(x) in (2-7), we obtain the data-driven test statistic

G Vi Voo .. V)=

v _ N W,
o (7

THEOREM 2. Assume that the conditions of Theorem 1 hold. Then, under H,.
Y= N(O. 1),
in distribution, for all k € I,. Under H |,
Iy — .

in probability, for ke I{1,. 2 (h — ).

2-5. Estimation of thresholds

Li & Xic (1999) proposed a wavelet method for cstimating the thresholds but they did
not obtain the asymptotic distributions of the test statistics. Here we derive the asymptotic
distribution of the empirical wavelet coefticient, which leads to consistent estimators of
the thresholds.

Let /¥ = a+ k27(b — a). It follows from Corollary | and the proof of Theorem 1 that,
for all 2§ such that ke Uj_ 117, 27(b —a)}. /(nh" ™ "YW, /#(75) is distributed as N(0, 1)
asymptotically. Let ¢, =@ (1 —2/2). Under the confidence level 1 — =, we consider the
set

EC) = kWl = cotZE)nh? ™) 2 ke Iy

This E(j) can be divided into ¢ parts by p-division (Li & Xie, 1999) with p=
2 — )

=1

Let

g, 1 E(j)is not emply. k

fu: f . (,) . Py /i-lzfl‘l‘*l-(h_(/l)ﬂ

0. if E(j)is empty, 27
where k, satisfies

Wi = max [W;, | (I=1,2,.../).

' ke Ejp)

The following theorem is similar to Theorem 3.3 of Li & Xie (1999).
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THrorEM 3. Under the conditions of Theorem 1, when n— oc, we have the following:
(1) hm,_, . prif,=r)=1;
(i) for r>0, 2,— 2, in probability, for I =1,2, ... r.

3. NUMERICAL RESULTS
3-1. Monte Carlo results

Throughout this section, all Monte Carlo models are simulated 500 times and the
wavelet y(x) takes the following form:

S(x— 1), 1<y,
) =SB+ 1P +2(x + 1P, if —2<x< 1, (31)
0, otherwise,

as in L1 & Xie (1999). The kernel function K(x) used is the Gaussian kernel:

1
v ) — _ 2D .
Kix)= g xp=12) (3:2)
The resolution level 1s j = 6. Five hundred pairs of samples of sizes n =50, 100 and 200
are generated respectively in the following cxamples.

Tablc 1. Empirical size (%) of the test for model
(3:3), based on 500 simulations

£=(r35 .=05
o n 2=5% 2=10% 2=5% 2=10%
02 50 6-6 154 68 94
100 60 152 5-6 9-8
200 54 12-0 54 10-4
04 50 54 12:4 4-0 106
100 50 138 32 9-4
200 50 94 50 9-6
06 50 56 9-8 64 9-6
100 50 12:0 6-0 112
200 4-8 82 52 10:6

Table 1 shows the empirical sizes under the null hypothesis H,, that
X, =006x, |+ 0o, (3-3)

with ¢ taking three different values 0-2. 0-4 and 0-6, where the ¢, are independently ident-
ically distributed as N(0, 1). We sec from Table | that, with increasing sample size n,
the size of the test gets closer to the nominal value. Tables 2-4 present the powers of the
test under the alternative hypothesis respectively for the following SETAR(1,2; 1,1, 1),
SETAR(2, 2: 2, 2.2) and SETAR(S, 2: 12,12, 12) models:

X, = (X ) + 08, (34)
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where
0-6x,_,. if x, |, <035,
o) =9 —42x, ., f035<x,_, <05,
0-8x,_ . 05 <x,_q;

Ny = alXm g X 0) + 0k (3-5)
where
0-4x,_; +026x, ,, ifx, ,<035,
(a0 N _5)=902x, 0, —42x, .. f035<x,_,<05,
0-3x,_1 +06x, ,, fO5<x_,;
AV (S RV G 12)“1'0—":1« (36)
where

0-4x, | + 0268, =015y, 5. ifx,_y <035,
/(3(.\'1 1 ,\AI — 8 '\.l ]z) - 0'2.\‘, -1 4'2.\‘1 -8 + 02\’{ 12 lf 0'35 < ’\AI*B < 05,
0-3x,  +02x, g +025y, 1, ifO5<x _q.

Model (3-5) is used in Li & Xie (1999) and (3:6) is a higher-order model. It can be seen
from Tables 2 and 3 that the test becomes more powerful as the sample size increases. On
the other hand. as o increases the threshold estimate becomes less satisfactory. This may
be attributed to the contamination of the true signals by the noise as ¢ increases. Similar
results are also found in Li & Xie (1999). Furthermore. by comparing Table 3 with Table 2.
we sce that the powers of the test for model (3-5) appear less satisfactory than those for
model (3-4). This is because model (3-5) is a second-order TAR model and the dimension
affects the empirical wavelet coefficients (2-5). This is the so-called curse of dimensionality.
To assess the influence of dimensionality on our method. a SETAR model (3-6) of order 12
is included in our simulation. The results in Table 4 show some trace of the curse of
dimensionality. but the problem does not appear to be serious. Nonetheless, the method
Is seen to provide satisfactory threshold estimates even for a model of an order as high
as p=12.

Table 2. Empirical power (%) of the test for model (3-4). based on 500 simulations

x= 5% s =10%
£y =035 /=035 7y =035 sy =05
a " Power /4 Power s Power /1 Power As
02 50 810 0-34(0:06) 408 0-33(008) 872 0-33(0-00) 460 0:53(0-08)
100 946 0:35(003) 686 0-51(006) 962 0-35(0:04) 750 0:52(0:06)
200 992 036 (0-01) 932 0-51(006) 99-8  0-36(0-01) 966 051 (0:06)
04 50 822 0-34(0:05) 846 0-58(0-14) 872 0-33(006) 872 058 (0:14)
100 926 0-35(0:04) 980 0-57(0-14) 956 0-36(004) 99-4  0-57(015)
200 99-8 036 (002) 99-6 0-57(0-15) 996 036 (0:02) 1000 0-57¢0-15)
06 50 736 0-32(0:08) 856 061 (0-15) &1-:0 0-31(008) 894 061 (015)
100 924 (-34(0:06) 980 061 (016) 94-8 034 (0-06) 986  0:61(0-16)
200 97-6 036 (0-02) 998 061 (0-16) 994 0-35(003) 100-0  0:61(0-16)

+; 1s the mean estimated threshold in 500 simulations: numbers in parentheses are standard errors.

Table 3. |
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100 8
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4; 18 the mean es

Table 4. |

G n P«
02 50 9
100 9

200 9

04 50 6
100 8

200 9

0-6 50 2
100 5

200 8

4; 18 the mean es

We have cc
model used ir

where j=1,2
ences. The th

The F- and |
¢ =05 and
show that ou
Tsay’s arrang
comparable.

As an empi
their wavelet



»

{3-5)

{3:6)

¢ seen
s, On
s may
imtlar
":blc 2
“s¢ for
nsion
ulity.
fer 12
rs¢ of
ethod
- high

{0-08)
{0-06)
0-06})
10-14)
1015y
i{015)
i135)
10}
-161)

Testing and estimation of thresholds 711

Table 3. Empirical power (%) of the test for model (3-5), based on 500 simulations

x=5% 2= 10%
7, =035 72=05 4 =035 /=05

n Power /1 Power /3 Power /1 Power /z

S0 852 0-34(0:09) 396 051 (005) 87-8 034 (009} 464 051 (0:05)
100 962 037 (0:06) 760 031 (0:05) 96:8  0-:37(0-06) 810 0-51(0-05)
200 994 0:39(0:03) 944 050 (0-04) 994 0-39 (0:03) 954  0:50(0:04)

50 674 033(0:10) 560 0-58(0-12) 716 0-33(0:10) 612 058(0'12)
100 884 0:36(007) 81-8  0-58(0-13) 91-:6 036 (0-08) 86:6 O 58(0-13)
200 982 0-39(004) 982 0-56(0-13) 992 0-39(0:04) 99-0 056 (013)

50 460 0-32(010) 472 0-62(0:15) St:6 0:32(0-10) 510 0-62(015)
100 730 0:34(0-08) 732 0-62(0-15) 792 034 (0:09) 798 0-63(015)
200 93-4  0-35(0-08) 926 0-59(014) 950 0-35(0:08) 94-8 059 (0-14)

7, 1s the mean estimated threshold in 500 simulations; numbers in parentheses are standard errors,

Table 4. Empirical power (%) of the test for model (3-6), based on 500 simulations

x=5% 2= 10%
=035 Za =05 4y =035 72="05
a I Pow er /,1 Power /.3 Power Ay Power As
-2 50 92-4 033 (0:08) 362 0:52(0:03) 94-6  0-33(0:08) 41:6 0:52(0:03)
100 98-8 036 (0:03) 670 0:52(0:02) 990 0-36(0:03) 744 0:52(0:02)
200 994 0:36 (0-01) 954 0-32(0:01) 99-4 036 (0:01) 974 0-52(0:01)
04 50 600 0:35(0:05) 306 035(0:08) 672 0-35(0:06) 362 0-55(0:08)
100 838 036 (0:02) 612 0-53(0:03) 892 036 (0:02) 69-:0  0-53(004)
200 992 036 (001 924  0-52(0:02) 99-8  0-36(002) 954 053(0:02)
06 50 292 0-33(007) 182 0-58(0-11) 370 034 (0:07) 250 0-58(0'11)
100 SO 036 (0:04) 336 0-56(0-10) 61:0  036(004) 420 056 (0-10)
200 800 036 (0:02) 642 054 (0-:07) 862 036(002) 74-8  0-54 (0-07)

7; 15 the mean estimated threshold in 500 simulations; numbers in parentheses are standard errors.

We have compared our method with the arranged autoregression of Tsay (1989). The
model used in Tsay (1989) is given by

05 + Z ¢ vy 4 al Fier S ¥—g <Fj,
i=1
where j=1.2,... k. d is a positive integer and (¢!} is a sequence of martingale differ-
ences. The thresholds are

=L =<y < L= L

The F- and Portmanteau tests were used in Tsay (1989). In our simulation p=d =1,
$7 =05 and two scts of the other ¢ values are used. The simulated results in Table 5
show that our method is generally more capable of capturing the correct size than is
Tsay’s arranged autoregression. In terms of the power. our method and that of Tsay’s are
comparable.

A real example
As an empirical illustration, we apply the wavelet-based test to the Sunspots data. Using
their wavelet approach, Li & Xie (1999) came to the same conclusion as Tong (1983,
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Table 5. Comparison of empirical powers (%) for wavelet versus arranged autoregression
models, based on 500 simulations
n= 100 n=>50
7= 1% x="5% 1= 1% x1=15%
e W r P W F P w FooP W F P
P =19 =05¢F =1.r =1 ol=1.a3=1

--2:0 1000 1000 100-0 1000 1000 100-0 100-0 1000 90-7 100-0 1000 977

— 10 962 1000 928 99-1 1000 978 887 917 584 959 988 784
—0-5 866 830 589 95-0 94-3 79-0 430 416 154 70-6 672 478
0 07 87 121 390 237 250 70 35 74 298 120 170
05 0 06 10 57 26 39 1409 20 69 38 S7
P =0.¢" =05 ¢ =0.r,=006i=1 3= 1
—20 791 74-0 94-5 822 856 99-5 754 41-8 456 773 612 760
—1-0 66:6 672 539 785 804 820 49-1 357 167 666 539 414
05 469 535 246 696 70-1 519 310 251 7-1 575 42:6 232
0 229 229 56 519 374 19-5 7-1 93 27 268 207 95
05 1-0 1-9 23 59 59 7-2 0-6 [-8 16 52 59 78

W, wavelet: F. F-statistic; P. Portmanteau test.

p. 320) that there was only one threshold between 1749 and 1924. They reached their
conclusion by observing high peaks on the wavelet graph, which is to a certain extent
subjective. Here we apply our wavelet testing method. We make the transformation x, =
(w2 —1)/10. as did Li & Xie (1999). From Tong (1983) and Li & Xie (1999) we know
that the time delay can be taken as d =8, and n=176. With a =025, b=12, p=11.
2=(0-5,0-5,0:6,07, 055, 0-4, 0-45, 0-65, 0:75, 0-5)" (Li & Xie, 1999). and the wavelet and
kernel functions respectively given in (3-1) and (3-2). we calculate Wi forkel;at j=17,
and find that only at k = 63, where /(nh” " ")|W,,|/t(~F) = 2:00, do we obtain a result that
1s significant at the 5% level. Therefore the threshold is estimated to be 14-4, which is
close to that of Tong (1983, p. 230) and Li & Xie (1999).
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APPENDIX
Technical detuails

Lemma Al Suppose that Assumption 1 is satisfied. Then, for sufficiently large B. as n— .

pl'{ sup
wAE b

a

n

- N
nh? |~
I=p+1

K%, = %) — f(2)] > B(nh,) " log} n} -0.

See Masry (1996) for the proof.

LimMA A2 (Volkonskii & Pozanor, 1959). Let V.. .., Vs be random variables measurable with

respect to the a-algebras Fh, ... T respectively with | <i, <j,<...<j, <n i —j=w=I
£ i\ i A 1< Jm +1— N1

and V] <1, fo

where FP =7

Proof of The

t
o |

+

= /))j.k

where

Note that

Then simple co

Pie=277

+2

for k¢ Uj_ T{a

As in Lemma
Y. Zhou, it can

It follows from
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ad [V;1 <1 for j=1,2..... m. Then
IE< 1 V}> — Z EV; 6(m — 1)x(w),
i=1

h

where 7 = 71V, u <i< b denotes the a- ﬁeld generated by Vo, Vs oo V.

Proof of Theorem 1. Now W, can be written as

b N .
po 1 Kl oy = TR ) — THH(x)}]
W, = PEOT LN dx + f PP(x) Zi- B — dx
IJ‘ £ v Z[ < p =1 Kht\l —i(x)]

b < 3 v N N
() pPr(x Z;I pet KXo — X))ol )y
W
i

=B+ W4 W (A1)

where

b
B = j YRS () T () d,

b n o . 17(v))
Wi _ j /pcr(\)zlf,lem\z P O[T =) — T Jx
h H -
! I —= p+11\hl\[*1*[(\)=
b S T TR P .
Wil = [ per(x) e Rl 2 i)io ('\’,")5" dx.
Ja = [7‘l[\hi\ ‘T(,\');
Note that
A A
[ W(x)dx =0, J NP (x)dx =
J— A {
Then simple computations show that, for all ke I'/,.27(h — a)l,

1
fix= ”\«'malf Px) dx [héf‘“b:£'+<ba"“h'l“>r1+...+(b&’f" b )ta-
I
] k
+ (1 — b u+ ib—ayp +(BYID—b e,
+ ... +(h,lyl‘ - b;w“)’pl]

1
+ 2 93h — a3 py e — by J Xpix) dx: (A2)
!

for /\¢U 711,/, = /2(,77(1):.
ik

As in Lemma A.2 of a Hong Kong Polytechnic University technical report by G. M. Chen and
Y. Zhou. it can be shown that

, lo
14»’3,».’?0,,(/12]? g”). (A4)

(nhyr?

It follows from Lemma A1 that

W = Wil + 0, ( n2- 2 08 (A'5)
S (nh)yr2
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where
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H

Kyi% -, —f(x)}

1
:‘(AI)_‘~—‘ Z an Zulf nl(f(\[*l)‘l rn[* l//pﬂ ﬁr—d'\"

Obviously E(Z,,)=0 and var(Z,,)= E(Z},) = EiT2,67(3,

nh” S,

=pt1

varance of Z,, as

where

var(Z, ;)= h""'05,) + o(h? 1),

. ¢ , p—1 A th( ’)
()= {J( K=(yv) [I'y\} J\.‘ / “(x) dx m

VTR MY 1
NaL /;T+ 1

l";,_[. (AG)

T(2)

where V,, = Z, /""" "21(4,). Obviously. E(V, ;) =0 and var(V, )= 1+ o(1).
In what follows. we shall show that

l n
— Y b= N 1), (A7)

\””I’p*l

in dislribulion Let S, =2, b, For convenience. let the subscript [ of V, ; start from 1. Partition

the set f1.2.....
Let

i mto 24, + 1 subscts with large block size u =u, and small block size v=v,.

T
d=dn=1 N

We define the random variables

fr+ vy~ (L4 D v) "
Y [/;Li* o= Z LHI (0 l < q— 1 )* Lqg T Z I/rLi‘
=l vy o1 i=Hu+tv)y+u+1 i=glutyy+1

Then

q 1
Su: Z \I+ Z “I+H[ Sn, JrS”:‘FS"}.

=0 =0

According to Theorem 18.4.1 of Ibragimov & Linnik (1971), for (A7) to hold, it is sufficient to

prove that

1 |
- E(S2)—=0. —r(s;‘)ao (A-8)
n 2
ElexplitS,) H Etexp(it{)} | =0, {A9)
{=0
Z E(7)— 1. (A-10)
”I 0
- Z ELGIS > e yn =0, (A-11)
Nz

Now we shall show that {A-8)-(A-11) hold. We first choose the block size. Take the large block

_ )4, Trivial computations yield the

size u, and the

where «(.) 1s th
Note that E(V,
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size u, and the small block size v, to satisfy

v, i, u,logn

150, e 0, Y Es

u, i (n277)
"
— 2{v, ) >0, (A-12)
i,

where x(.) is the x-mixing cocflicient of {x,|. which is ensured by the geometric ergodicity of !x,}.
Note that E(V,; ¥, ;) =0 for i % [. Then straightforward computations show that
gv

i 1 1
—E(S;)y="—-0. —E(S5;)=={n—qlu+v); >0
n > n S

Thus (A-8) holds. By Lemma A2 with V,=exp(ir(;} and i, ., — j,=v, + 1. we have that

g 1 1

47
1 expticg)— 11

L i=0 im0

E < 16g,2(v, + 1),

E:exp(ir;}):}

which tends to zero by (A-12). Hence (A-9) holds.

It 1s straightforward to show that var(J;) = var((,) =u,!1 + o(1)}, which implies that
[ ‘171 ~ e Y (!Hlln
=Y ECH =T o) -
n =, ]
.1, — 00 lcading to (A-10).
Finally. it remains to establish (A-11). Since

for v

PN Ny -2 /
max 51 < C27 ", Jlogn
O isg—1

for some posttive constant C. which implies that the set ||| = ¢n! 1s empty, therefore
=1 N 2

max  EIGHG = aygm) =0
Tuisg—1

as n— -~ and (A-11) follows. Expression (A-7) holds by Theorem 18.4.1 of lbragimov & Linnik
(1971). and (2-4) and (2:6) follow from (A-1). (A-2)(A-5) and (A-6).

Corollary 1 follows directly from Theorem 1. and thus we omit its proof. Note that (/) is a
consistent estimator of t(/;). Theorem 2 is the direct result of Theorem 1. The proof of Theorem 3
is similar to that of Theorem 3.3 of Li & Xie (1999).
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