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Testing and estimating for change in long
memory parameter
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We consider a long memory time series where the long-memory parameter H appears to change with
time. We are interested in detecting and estimating the change-point and studying the asymptotic
properties of the estimator and the test statistic. We apply the method to two practical data series to
investigate the presence of change in H . Simulations and data examples confirm the validity of the
test and estimation.
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1. Introduction

Let {εj , −∞ < j < ∞} be a sequence of independent identically distributed random variables
with mean zero, finite variance τ 2. We consider a long memory linear process xt

xt = µ +
∞∑

j=0

ajεt−j ,

∞∑
j=0

a2
j < ∞, t = 0, ±1, . . . ,

which has mean µ, lag-j -autocovariance γj and spectrum f (λ) = (2π)−1 ∑∞
j=−∞ γj cos jλ

which satisfies the following condition,

f (λ) ∼ L(λ−1)λ1−2H as λ → 0+,
1

2
< H < 1, (1)

where ∼ indicates asymptotic equivalence and L(·) is a slowly varying function at infinity.
H is often called long-memory parameter, it characterizes the long-term dependent structure

of the sequence xt . As pointed out in Beran and Terrin [1] and Ray and Tsay [2], for some
long memory time series, H seems to vary over time and even small changes of H would
have a strong impact on the statistical inference for such long memory process. It is practically
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important to decide whether H has changed or not over the whole observational period and
to estimate the time of change, if H indeed changed with time.

Beran and Terrin [1] proposed an approach based on the comparison of Whittle estimator to
the detection of a change in H , but their asymptotic results are incorrect. Horváth and Shao [3]
obtained the correct limit distribution of their test statistics. Horváth [4] suggested another
test based on quadratic forms of Whittle estimator of H . Ray and Tsay [2] used a Bayesian
method for detecting changes in H , which is also likelihood-based in the Gaussian setting.

Whittle estimator is based on the periodogram at all frequencies. However, in some situa-
tions, it is difficult or unnecessary to model the whole spectral space and a misspecified model
may lead to inconsistent, biased estimates of H and then result in failure to detect structural
changes, see, e.g. refs. [1, 2, 5]. Therefore a semiparametric estimate of H which relies mainly
on low periodogram ordinates is preferable. The semiparametric estimate also has some com-
putational advantage over Whittle estimates in models such as fractional ARIMA (FARIMA)
model, see ref. [6].

In this article, we suggest a method based on the comparison of a semi-parametric estimate
introduced by Robinson [6] for testing the no-change null hypothesis H0 against the alternative
that H changes somewhere in the observed time period. The test statistic and its asymptotic
distribution are given in section 2. If H0 is rejected, we need to know the time of change. In
section 2, we also describe the estimator of the change-point and its weak consistency. We
apply the method to investigate the change in persistence of two data series, the yearly Nile
river minima and the VBR data in section 3. The proofs of the theorems are presented in
Appendix A.

2. Main results

Our change-point problem can be formulated as

f (λ) =
{

f1(λ) ∼ L(λ−1)λ1−2H , for the process xi, 1 ≤ i ≤ k∗,
f2(λ) ∼ L(λ−1)λ1−2H ′

, for the process xi, k∗ < i ≤ n,

as λ → 0+, where H �= H ′. The null hypothesis is

H0: k∗ ≥ n.

Let

F(λ) =
∫ λ

0
f (t) dt.

First we assume that H0 holds. Then assumption (1) and Yong [7, p. 20] imply

F(λ) ∼ L(λ−1)

2 − 2H
λ2−2H as λ → 0+. (2)

This yields, for any 0 < q < 1,

F(λq)

F (λ)
∼ q2−2H as λ → 0+.
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Hence, in order to estimate H , we should first estimate F(λ). Robinson [6] provided an
estimator of F(λ) which is invariant to the mean µ and also leads itself to more direct
computation,

F̂n(λ) = 2π

n

nλ/2π∑
j=1

In(λj ),

where λj = 2πj/n and

In(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

xte
itλ

∣∣∣∣∣
2

.

Then, Robinson [6] suggested the consistent estimator of H ,

Ĥmq,n = 1 − log{F̂n(λmq)/F̂n(λm)}
2 log q

, 1 ≤ m < n.

In this article, we use this semiparametric estimator to construct the test statistic

φn,q(t, λm) = n1/2t (1 − t)2 log q(Ĥmq,[nt] − Ĥ ∗
mq,n−[nt])F̂[nt](λm),

where

Ĥmq,k = 1 − log{F̂k(λmq)/F̂k(λm)}
2 log q

, Ĥ ∗
mq,n−k = 1 − log{F̂ ∗

n−k(λmq)/F̂ ∗
n−k(λm)}

2 log q
,

here F̂k(λm) (respectively, F̂ ∗
n−k(λm)) is the estimator of F(λm) based on observations

x1, . . . , xk (respectively, on observations xk+1, . . . , xn), i.e.

F̂k(λm) = 2π

n

m∑
j=1

Ik(λj ), F̂ ∗
n−k(λm) = 2π

n

m∑
j=1

I ∗
n−k(λj ),

where

Ik(λ) = 1

2πk

∣∣∣∣∣
k∑

t=1

xt eitλ

∣∣∣∣∣
2

, I ∗
n−k(λ) = 1

2π(n − k)

∣∣∣∣∣
n∑

t=k+1

xt eitλ

∣∣∣∣∣
2

.

Assume the following assumption holds:

1/m + m/n → 0, as n → ∞. (3)

Let

bk(m) = 1

n

m∑
j=1

eikλj , ck(m) = akb0(m) + 2
k∑

l=1

ak−lbl(m),

and

σ 2
m = (Eε4

0 − τ 4)

 ∞∑
j=0

aj cj (m)

2

+ τ 4
∞∑
l=1

 ∞∑
j=0

{aj cj+l(m) + cj (m)aj+l}
2

.

THEOREM 2.1 Let H0, assumptions (1) and (3) hold, and assume that 1/2 < H < 3/4 and
E|ε0|4+r < ∞ for some r > 0. Then we have, for any 0 < q < 1,

φn,q(t, λm)
D−→ σ(1 − q2H−1)B(t)
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in D[0, 1] as n → ∞, where ‘
D−→’ stands for convergence in distribution, σ 2 = limm→∞ σ 2

m

and {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

Let

ψmq,n(k) = (1 − q2H−1)−1φn,q(k/n, λm).

COROLLARY 2.1 Under conditions of Theorem 2.1 we have, as n → ∞,

max
1≤k<n

|ψmq,n(k)| D−→ σ sup
0<t<1

|B(t)|.

Now Corollary 2.1 solves our test problem. We reject H0 for large values of
max1≤k<n |ψmq,n(k)|. Quantiles can be obtained from the distribution of sup0<t<1 |B(t)|
[cf. Theorem 1.5.1 of ref. 8]. The limit of φn,q(t, λm) for 3/4 < H < 1 remains to be
derived. It is likely to be a non-Gaussian process which can be represented by a multiple
Wiener–Itô–Dobrushin integral [cf. refs. 9, 10].

In practice, we may have to fix m and replace H and σ by using any consistent estimates.
However, σ is somewhat difficult to determine because of the complicated terms in σ 2

m. We
provide the approximate critical values for the test with different values of H and q in section 3.

We continue with the estimation of the change-point k∗. The estimator of k∗ is defined by

k̂mq = min

{
k: |ψmq,n(k)| = max

1≤i<n
|ψmq,n(i)|

}
.

One more assumption is needed to show the weak consistency of k̂mq .

k∗ = [nθ ] for some 0 < θ < 1. (4)

THEOREM 2.2 Assume that the alternative and the assumptions (1), (3) and (4) hold, then we
have, for any 0 < q < 1,

k̂mq/n
P−→ θ

as n → ∞, where ‘
P−→’ denotes convergence in probability.

3. Numerical examples

All simulations and statistical computations in this section have been done by using SPLUS
functions.

As pointed out in section 2, it is not easy to get the critical values for our test due to
the appearance of the constant σ . We suggest to use the simulated sampling distributions of
max1≤k<n |ψmq,n(k)|, because they asymptotically approach the limit distribution according
to Corollary 2.1.

The output shown in table 1 displays quantiles of the simulated distributions of
max1≤k<n |ψmq,n(k)| for each of five values of H, H = 0.6 (0.1) 0.9 and three values of
q, q = 0.25 (0.25) 0.75. The results are obtained from 10,000 simulations based on m = n0.5,
m = n0.45 and m = n0.55. The simulated 10,000 sequences of length 10,000 follow the
FARIMA(0, H − 0.5, 0) model. Then, we can decide whether H0 is true or not by comparing
the test statistic max1≤k<n |ψmq,n(k)| against the approximate critical values in table 1. As
expected, the critical values increase in H for the same value of m, but they are very stable
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Table 1. Simulated 10%-, 5%- and
1%-critical values for our test.

α

m q 0.1 0.05 0.01

H = 0.6
n0.45 0.25 0.963 1.061 1.165

0.5 0.964 1.060 1.164
0.75 0.962 1.059 1.163

n0.5 0.25 0.899 1.027 1.113
0.5 0.900 1.028 1.112
0.75 0.898 1.025 1.110

n0.55 0.25 0.875 1.013 1.120
0.5 0.874 1.014 1.119
0.75 0.876 1.012 1.122

H = 0.7
n0.45 0.25 1.026 1.108 1.219

0.5 1.024 1.109 1.217
0.75 1.025 1.108 1.220

n0.5 0.25 1.007 1.085 1.208
0.5 1.008 1.085 1.207
0.75 1.006 1.083 1.209

n0.55 0.25 1.002 1.061 1.210
0.5 0.988 1.060 1.212
0.75 0.985 1.092 1.213

H = 0.8
n0.45 0.25 1.099 1.215 1.323

0.5 1.095 1.209 1.328
0.75 1.096 1.211 1.320

n0.5 0.25 1.027 1.184 1.304
0.5 1.023 1.187 1.304
0.75 1.028 1.188 1.301

n0.55 0.25 1.020 1.191 1.273
0.5 1.021 1.190 1.272
0.75 1.018 1.191 1.270

H = 0.9
n0.45 0.25 1.193 1.268 1.394

0.5 1.190 1.269 1.391
0.75 1.189 1.267 1.393

n0.5 0.25 1.108 1.224 1.317
0.5 1.107 1.223 1.315
0.75 1.105 1.221 1.312

n0.55 0.25 1.039 1.219 1.327
0.5 1.035 1.218 1.325
0.75 1.037 1.220 1.327

in q. This is because the limit random variable σ sup0<t<1 |B(t)| in Corollary 2.1 does not
depend on q, but the constant σ increases as H increases. In the following simulations, we
focus on q = 0.5 and remove q in all of the notations.

As an illustration and a check on our method, we first conduct a small simulation study
using series containing a change in long-memory parameter. Secondly, we give the practical
application of our method to the Nile river data and the VBR data (the logarithm of the number
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Figure 1. Simulated FARIMA(0, H − 1/2, 0) model with n = 1000, k∗ = 500, H = 0.6 and H ′ = 0.85.

of ATM cells per frame for a certain video scene), which are widely believed to exhibit long-
range dependence. Historically, the analysis of the Nile river data led to the discovery of the
Hurst effect. A characterization of the dependence structure of the VBR data is very useful
for the assessment of the capacity a communication network has to have in order to guarantee
reliable transmission [see, e.g. ref. 11].

We generate two FARIMA(0, H − 1/2, 0) time series with H = 0.6 and H = 0.85, respec-
tively. Then, we combine these data into one series of length n = 1000 with change in the
long-memory parameter of size 0.25 at k∗ = 250, 500 and 750, respectively. For such sim-
ulated time series, we use the estimator k̂m to detect the change-points. The long memory

Table 2. Estimation results for the simulated FARIMA series.

m Ĥm,n k̂m ψm,n(k̂m) Ĥ
m,k̂m

Ĥ ∗
m,n−k̂m

k∗ = 250
n0.45 0.748 300 1.611 0.653 0.861
n0.5 0.765 261 1.549 0.566 0.829
n0.55 0.776 259 1.533 0.579 0.821

k∗ = 500
n0.45 0.728 519 1.477 0.542 0.867
n0.5 0.731 508 2.160 0.597 0.854
n0.55 0.747 510 1.661 0.561 0.875

k∗ = 750
n0.45 0.819 709 1.521 0.623 0.908
n0.5 0.823 739 1.837 0.631 0.846
n0.55 0.833 743 2.320 0.626 0.795
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parameter H for the whole series should be estimated by its consistent estimator Ĥm,n. The
series for k∗ = 500 is plotted in figure 1.

The testing and estimating results are reported in table 2. In addition to the k̂m that is
based on m = n0.5, which is commonly used for estimating long-memory parameter, we also
calculate the k̂m’s based on m = n0.45 and n0.55 to check the sensitivity of our estimator to the
choice of m. Plots of the ψm,n(k)’s with k∗ = 500, 1 ≤ k < n, m = n0.45, n0.5, n0.55 are given
in figure 2. The plots for k∗ = 250 and 750 are similar, so we left them out. By checking the
critical values in table 1, we should reject H0 for all the three time series.

Figure 2. The graphs of ψm,n(k) with m = n0.45, n0.5, n0.55 for the simulated FARIMA series in figure 1.
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Table 2 and figure 2 give a positive support to our change-point detection and estimation
scheme. We also note that the estimates k̂m and Ĥm,k̂m

, Ĥ ∗
m,n−k̂m

are qualitatively the same

across different choices of m. But the estimates corresponding to m = n0.45 have larger biases
than the other two.

The series of the Nile river data and the VBR data are plotted in figure 3. A FARIMA(0,
H − 1/2, 0) model with H = 0.837 turns out to be a good model for the Nile river data [12].
Table 3 and figure 4 report the results of applying our method. Our results indicate that H0

Figure 3. (a) Yearly minimum water level at the Roda gauge for the year 622–1274. (b) VBR data: logarithm of
the number of ATM cells per frame. The data sets can be found in the Appendix of ref. [11].

Table 3. Estimation results for the Nile river data.

m Ĥm,n k̂m ψm,n(k̂m) Ĥ
m,k̂m

Ĥ ∗
m,n−k̂m

n0.45 0.825 249 0.142 0.979 0.987
n0.5 0.826 39 0.125 0.964 0.948
n0.55 0.836 50 0.144 0.960 0.946
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Figure 4. The graphs of ψm,n(k) with m = n0.45, n0.5, n0.55 for the Nile river data.

should be accepted. The values of ψm,n(k) are very small and there are not much differences
among the ψm,n(k)’s, the k̂m’s are very unstable in m and the estimated size of the change
in H is very small. This suggests that, for the Nile river data, H remains constant during the
whole observational period. The estimators Ĥm,n are stable in m, lying between 0.825 and
0.836. However, Ray and Tsay [2] showed that there is a change in the value of H around the
100th observation for the Nile river data. This leads us to conjecture that our method may not
be efficient for detecting the changes at the beginning or the end of the data.

As pointed out in chapter 1 of ref. [11], the dependent structure of the VBR data is much
more complicated than that of the Nile river data. A closer look at figure 3(b) suggests that the
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Table 4. Estimation results for the VBR data.

m Ĥm,n k̂m ψm,n(k̂m) Ĥ
m,k̂m

Ĥ ∗
m,n−k̂m

n0.45 0.811 301 1.333 0.988 0.907
n0.5 0.813 251 1.933 0.987 0.882
n0.55 0.828 245 1.565 0.981 0.892

Figure 5. The graphs of ψm,n(k) with m = n0.45, n0.5, n0.55 for the VBR data.
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value of H for the first 300 or so observations might be different from that for the subsequent
data. Table 4 reports the change-point estimators of the VBR data by applying our estima-
tion procedure for different choices of m. Figure 5 shows the graphs of the ψm,n(k)’s. The
results confirm the visual impression in figure 3(b). We conclude that, based on m = n0.5, the
long-memory parameter H of the VBR data changes at the 251th observation. For the first
251 observations, the estimated H is 0.987, thereafter the long-memory parameter reduces
approximately to 0.882.
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Appendix A

Proof of Theorem 2.1 By the definition of φn,q(t, λm), we have

φn,q(t, λm) = n1/2t (1 − t)F̂[nt](λm)

{
log

{
F̂ ∗

n−[nt](λmq)

F̂[nt](λmq)

}
− log

{
F̂ ∗

n−[nt](λm)

F̂[nt](λm)

}}
.

Theorem 1 of Robinson [6] asserts that, for any t ∈ (0, 1),

F̂[nt](λm)/F (λm)
P−→ 1, F̂[nt](λmq)/F (λmq)

P−→ 1

as n → ∞. Then using equation (2) and Taylor expansion, we obtain

φn,q(t, λm) = n1/2t (1 − t)(1 + oP (1)){F̂[nt](λm) − F̂ ∗
n−[nt](λm)

− q2H−2(F̂[nt](λmq) − F̂ ∗
n−[nt](λmq))} (A1)
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Theorem 1 and Proposition 2 of Robinson [6] imply that

E(F̂[nt](λm)) ∼ F(λm), E(F̂ ∗
n−[nt](λm)) ∼ F(λm)

for any 0 < t < 1 as n → ∞. Moreover, we note that equation (1) implies

ak ∼ L1(k)kH−3/2 as k → ∞
for some L1 slowly varying at infinity. And Lemma 7 of Robinson [6] yields that, for any
0 < η < 3/2 − 2H , as n → ∞,

|bk(m)| = O(kη−1)

uniformly in k such that k > 2/m. Hence we have, as n → ∞,

|ck(m)| = O(L1(k)kH−3/2) + O(L1(k)kH−3/2+ηβ(η, H − 1/2)),

= O(L1(k)kH−3/2+η) as k → ∞,
(A2)

where β(η, H − 1/2) = ∫ 1
0 xη−1(1 − x)H−3/2 dx is the beta-function.

Now the conditions of Theorem 1.2 of Horváth and Shao [3] are satisfied, then we can
define a sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that, as n → ∞,

sup
0<t<1

|n1/2t (1 − t)(F̂[nt](λm) − F̂ ∗
n−[nt](λm)) − σmBn(t)| = OP (n−1/2) (A3)

and

sup
0<t<1

|n1/2t (1 − t)(F̂[nt](λmq) − F̂ ∗
n−[nt](λmq)) − σmqBn(t)| = OP (n−1/2). (A4)

On the other hand, it is easy to check that, when 0 < [mq] ≤ [m/2], for every k = 0, 1, 2, . . . ,

bk(m) = {1 + exp(ik2π [mq]/n) + · · · + exp(ik2π [mq](m/[mq] − 1))}bk(mq)

∼ q−1bk(mq)

as n → ∞. In a similar way, when m > [mq] > [m/2],

bk(m) ∼ m

[mq] − [m/2] (bk(mq) − bk(m/2))

∼ q−1bk(mq)

Then we get

σ 2
m ∼ q−2σ 2

mq

as n → ∞. This, together with (A1), (A3) and (A4), implies that

sup
0<t<1

|φn,q(t, λm) − σm(1 − q2H−1)Bn(t)| = OP (n−1/2).

It follows from equation (A2) that the limit of σ 2
m exists as m → ∞, then let σ 2 = limm→∞, σ 2

m

we get

sup
0<t<1

|φn,q(t, λm) − σ(1 − q2H−1)Bn(t)| = oP (1).

This completes the proof. �
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Proof of Theorem 2.2 Let

Fi(λ) =
∫ λ

0
fi(t) dt, i = 1, 2.

By Theorem 1 of Robinson [6], we arrive at

nt (1 − t)F̂[nt](λm) = nt (1 − t)F1(λm) + oP (nt (1 − t)F1(λm))

and

nt (1 − t)F̂ ∗
n−[nt](λm) = nt (θ − t)F1(λm) + nt (1 − θ)F2(λm)

+ oP (nt (θ − t)F1(λm)) + oP (nt (1 − θ)F2(λm))

for any 0 < t ≤ θ as n → ∞.
Thus, if 1 ≤ k ≤ k∗, by equation (A1), we have

n1/2φn,q(k/n, λm) = k

n
(n − k∗){F1(λm) − F2(λm) − q2H−2{F1(λmq) − F2(λmq)}}

+ oP

(
k

n
(n − k∗){F1(λm) − F2(λm) − q2H−2{F1(λmq) − F2(λmq)}}

)
.

This implies that, as n → ∞,

max
1≤k≤k∗

n−1/2

F1(λm) − F2(λm) − q2H−2{F1(λmq) − F2(λmq)}φn,q(k/n, λm)
P−→ θ(1 − θ). (A5)

Let 0 < ε < θ , similar arguments give

max
1≤k≤k∗−nε

n−1/2

F1(λm) − F2(λm) − q2H−2{F1(λmq) − F2(λmq)}φn,q(k/n, λm)

P−→(θ − ε)(1 − θ). (A6)

Equations (A5) and (A6) yield that

lim
n→∞ P {k̂mq < k∗ − nε} = 0

for all ε > 0. In a similar fashion, we obtain,

lim
n→∞ P {k̂mq > k∗ + nε} = 0

for all ε > 0. This implies the result of Theorem 2.2. �






