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A Bayesian Time Series Model of Multiple 
Structural Changes in Level, Trend, and Variance 

Jiahui WANG 
Data Analysis Products Division, MathSoft, Inc., Seattle, WA 98109 (jwang@statsci.com) 

Eric ZIVOT 
Department of Economics, University of Washington, Seattle, WA 98195 (ezivot@u.washington.edu) 

We consider a deterministically trending dynamic time series model in which multiple structural 
changes in level, trend, and error variance are modeled explicitly and the number, but not the tim- 
ing, of the changes is known. Estimation of the model is made possible by the use of the Gibbs 
sampler. The determination of the number of structural breaks and the form of structural change 
is considered as a problem of model selection, and we compare the use of marginal likelihoods, 
posterior odds ratios, and Schwarz's Bayesian model-selection criterion to select the most appro- 
priate model from the data. We evaluate the efficacy of the Bayesian approach using a small Monte 
Carlo experiment. As empirical examples, we investigate structural changes in the U.S. ex post real 
interest rate and in a long time series of U.S. real gross domestic product. 

KEY WORDS: BIC; Gibbs sampler; Multiple structural changes; Posterior odds ratio. 

Since the publication of the influential articles by Rap- 
poport and Reichlin (1989) and Perron (1989), which pro- 
vided evidence that many macroeconomic time series might 
best be modeled as stationary around a broken trend, the de- 
tection of structural change in the trend function of a time 
series has captured the attention of econometricians and 
applied researchers. Much of the subsequent research has 
focused on testing the unit-root hypothesis in the presence 
of one-time structural change when the date of structural 
change may or may not be known. Contributions in this area 
include Christiano (1992), Banerjee, Lumsdaine, and Stock 
(1992), Zivot and Andrews (1992), Perron (1997), and Per- 
ron and Vogelsang (1998). Perron (1994) and Maddala and 
Kim (1996a) provided useful summaries. In related work, 
Vogelsang (1997) developed tests for a change in trend that 
are robust to whether the data are I(0) or I(1), thereby ex- 
tending the results of Andrews (1993) to some models with 
trending data. Empirically, the unit-root hypothesis has been 
rejected in favor of a broken-trend model with one change 
for numerous series. Most notably, using various techniques 
and tests, the unit-root hypothesis has been rejected for 
many international output series by Banerjee et al. (1992), 
Raj (1992), Perron (1992), De Haan and Zelhorst (1993), 
Zelhorst and De Haan (1995), Cheung and Chinn (1996), 
Ben-David and Papell (1995), and Perron (1997). Unit roots 
have been rejected in favor of a single-trend break model 
for several inflation series by Evans and Lewis (1995) and 
Culver and Papell (1997), for real exchange rates by Edison 
and Fisher (1991), Perron and Vogelsang (1992), and Cul- 
ver and Papell (1995), and for real interest rates by Perron 
(1990). Overall, there is a large body of evidence to suggest 
that the trend function of many macroeconomic time series 
can be modeled as deterministic with at least one structural 
change. 

A natural extension of the literature on testing for unit 
roots in the presence of structural change involves allowing 
for more than one possible break date under the alternative 

broken-trend stationary model. Indeed, for many macro- 
economic time series for which the possibility of structural 
change is entertained, the assumption of at most one break 
date is unrealistic and restrictive. For example, trend breaks 
are often motivated by "big events" like wars, oil-price 
shocks, financial crises, or changes in political or institu- 
tional regimes, and most long-time series contain several 
such events. To this end, Lumsdaine and Papell (1997) ex- 
tended the Zivot-Andrews (1992) testing procedure to al- 
low for up to two possible endogenous breaks, and they 
found more evidence against the unit-root hypothesis than 
Zivot and Andrews but less than Perron (1997). Ben-David, 
Lumsdaine, and Papell (1997) found further evidence for 
at least two structural breaks for three quarters of the per 
capita real gross domestic product (GDP) series collected 
by Maddison (1995). In addition, Papell (1998) found ev- 
idence of multiple breaks in numerous European real ex- 
change rates, Kanas (1998) found evidence for up to six 
breaks in Exchange Rate Mechanism exchange rates, and 
Garcia and Perron (1996) found evidence for two breaks 
in U.S. real interest rates. Indeed, there is a growing body 
of results that support trend-stationary models with mul- 
tiple breaks for many macroeconomic and financial time 
series. 

In addition to changes in level and trend, changes in vari- 
ance are often found in economic and financial data. For ex- 
ample, Schwert (1990) found that the stock-market volatil- 
ity was higher during and after the 1987 crash, compared 
with other periods. Inclin (1993), Inclin and Tiao (1994), 
and Chen and Gupta (1997) detected multiple changes in 
variance for various series of stock returns. Lamoureux 
and Lastrapes (1990) suggested that the empirical persis- 
tence of volatility captured by generalized autoregressive 
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conditional heteroscedasticity models might be caused by 
structural changes in variance, and this view was supported 
by Wilson, Aggarwal, and Inclan (1996) and Fong (1997). 
Engel and Hakkio (1996) found that European Monetary 
System exchange rates have higher volatility during the pe- 
riods of alignment, and Kim and Engel (1999) found mul- 
tiple changes in variance in real exchange rates associated 
with historically significant monetary events. Finally, Kim 
and Nelson (1999) found evidence of variance changes in 
postwar business cycles. 

Much of the evidence for multiple structural breaks in 
macroeconomic and financial time series has come from 
the results of unit-root tests that allow for structural change, 
statistical tests for a single break, or tests for parameter con- 
stancy and not from statistical techniques that are designed 
to estimate multiple-break models. If interest is in determin- 
ing the number and/or type of breaks, efficiently estimating 
break dates, or constructing confidence intervals for specific 
breaks, then methods specifically designed for estimating 
and testing models with multiple structural change are re- 
quired. Broadly, multiple structural-change models can be 
categorized into time-varying parameter models, exogenous 
multiple-break models, endogenous switching models (e.g., 
Markov switching models or self-exciting threshold mod- 
els), and outlier models. In this article, we focus on a model 
of exogenous multiple breaks in level, trend, and variance 
of a dynamic time series. 

There is a large existing literature on models that al- 
low for multiple structural changes and for classical and 
Bayesian methods for analyzing these models. Some re- 
cent surveys were given by Zacks (1983), Broemeling and 
Tsurumi (1987), Krishnaiah and Miao (1988), Maddala and 
Kim (1996b), and Cs6rg6 and Horvath (1997). Most of the 
methods described in these works, however, do not apply 
to dynamic time series models. 

Recently, general consistency and asymptotic distribution 
results have been derived for the classical estimation of dy- 
namic linear models with multiple exogenous breaks using 
the least squares principle by Bai (1997a,b) and Bai and 
Perron (1998). [Related work for nondynamic models was 
given by Liu, Wu, and Zidek (1997).] These methods, al- 
though quite general, are not straightforward to apply in 
practice, and the bulk of the results is not applicable to 
trending data without substantial modification. In addition, 
their methods ignore possible structural change in the error 
variance. Instead of modifying the classical methods of Bai 
and Perron (1998) for trending data and variance changes, 
we take a different approach based on Bayesian methods. 
The advantage of the Bayesian approach to the analysis 
of structural-change models has long been acknowledged. 
For example, Raftery (1994) remarked that Bayesian anal- 
ysis in the context of structural-change models is techni- 
cally simpler than classical methods, allows finite-sample 
inferences that are optimal given the framework, and allows 
for nonnested model comparisons. Furthermore, inference 
from the Bayesian approach is the same for nontrending 
and trending data. Finally, in the context of economic time 
series data, a researcher may or may not have some prior 

knowledge about the timing, form, and maximum number 
of structural changes, and a Bayesian approach can explic- 
itly take this knowledge or lack of knowledge into consid- 
eration. 

In this article, we start with a deterministically trend- 
ing dynamic time series model in which multiple structural 
changes in level, trend, and error variance are modeled ex- 
plicitly and the number but not the timing of the changes 
is known. Our model is an extension of the models used 
by Carlin, Gelfand, and Smith (1992), Inclan (1993), and 
Stephens (1994) to the case of deterministically trending 
dynamic models with heteroscedasticity. As in the work of 
Carlin et al. (1992) and Stephens (1994), estimation of the 
model is made possible by the use of the Gibbs sampler. 
We consider the determination of the number of structural 
breaks and the form of the breaks as a problem of model 
selection and we compare the use of marginal likelihoods, 
posterior odds ratios, and Schwarz's Bayes information cri- 
terion (BIC) model-selection criterion to select the most ap- 
propriate model from the data. 

The remainder of the article is organized as follows. In 
Section 1, we present the time series model of multiple 
structural changes and establish some notation. In Section 
2, we describe Bayesian inference using the Gibbs sam- 
pler in the multiple-break model. We present the condi- 
tional densities required for the Gibbs sampling algorithm, 
we review how to obtain estimates of posterior moments 
of the parameters using the output of the Gibbs sampler, 
and we discuss the issue of model selection. In Section 
3, we evaluate the efficacy of the Bayesian approach us- 
ing a small Monte Carlo experiment. In Section 4, we give 
some empirical applications of our methods. We first in- 
vestigate structural changes in the U.S. ex post real interest 
rate, and then we consider structural changes in a long- 
time series of U.S. real GDP. Section 5 contains our con- 
cluding remarks and suggestions for future work. Regard- 
ing notation, we use f(.) to denote a probability density 
or mass function, fo(.) to denote a prior density or mass 
function, and f(. .) to denote a conditional density (mass) 
function. 

1. A TIME SERIES MODEL WITH MULTIPLE 
STRUCTURAL CHANGES 

Our approach to modeling multiple structural changes is 
based on extending the single-break switching-regression 
models used by Ferreira (1977), Chin Choy and Broemel- 
ing (1980), Smith (1980), Booth and Smith (1982), Holbert 
(1982), Broemeling and Tsurumi (1987), Zivot and Phillips 
(1995), and DeJong (1996) to allow for multiple breaks in 
the regression parameters as well as in the variances of the 
errors. The model is a segmented deterministically trending 
and heteroscedastic autoregressive model 

Yt = at + b t + • Yt - -?- -- + r -r ?t-+ SUt, (1) 

for t = 1, 2,..., T, where ut 2t iid N(0, 1) and 2t denotes 
the information set at time t. We assume that the parameters 
at, bt, and st are subject to m < T structural changes, m 
initially known, with break dates k,,..., kin, 1 < kl < k2 < 
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S.. < km , T, so that the observations can be separated into 
m+ 1 regimes. Let k = (kI, k2, ...I, km)' denote the vec- 
tor of break dates. For each regime i (i = 1, 2, ..., m + 1), 
the parameters at, bt, and st are given by at = ai, bt = fi, 
and st = ri > 0 for k-1_l < t < ki with ko = 1 and 
km+i = T + 1. The model (1) is a partial structural-change 
model because the autoregressive parameters are assumed 
to be constant across regimes. (The model can be modified 
without much difficulty to allow the autoregressive parame- 
ters to change as well. Moreover, under certain restrictions 
on at and bt, the trend function can become kinked at the 
break dates. Our parameterization does not impose these 
kinds of restrictions a priori, but the model can be rewrit- 
ten to incorporate them.) 

The model (1) nests many types of multiple-structural- 
change models of interest for empirical work using eco- 
nomic time series. For example, if the roots of the autore- 
gressive polynomial O(z) = 1 - 01z - .- 

- -,zr = 0 lie 
outside the complex unit circle and there are changes only 
in at, then (1) reduces to an innovation-outlier level-shift 
model; if the roots of O(z) = 0 lie outside the unit cir- 
cle and there are only changes in bt, then (1) becomes an 
innovation-outlier broken-trend model; and if there are only 
changes in st, then (1) becomes a groupwise heteroscedas- 
tic model. In spite of the apparent complexity of the model, 
it can be rewritten in the form of a standard linear regres- 
sion model with groupwise heteroscedasticity. Let IA de- 
note an indicator variable such that IA is equal to 1 if the 
event A is true and 0 otherwise. Then (1) can be rewritten 
as 

m+1 r 

Yt = I~ki1:5t<kij(a i + Ot) + 1: :yt-r4 + stut, 
i=1 j=1 

or, more succinctly, as 

yt = x'B + stut, (2) 

where 

I{ko!t<ki } 

I{km <t<km+l} 

t" I{ko:t<ki} 

Xt - 

t ?{km?t<km+} 

Yt-1 

Yt-r 

and B = (ai,...,am+l, /31,...,/m+1, 1, .,q#r)'. Let 

S 

= (u1, •2,..., m+l)' and define 6 = (B', o',k')' as 
the vector of unknown parameters of (2), Yo as the vector 
of r initial values of yt, and Y = (yl,..., YT)' as the vector 
of observed data. Given the normality of the errors ut, the 
likelihood function of (2) takes the form 

L(OIY, Yo) lc st exp -• (s -] 
B)2 

(3) t=l t=l 

= IS- exp 
(Y - XB)'S-2(Y - XB) (4) 

where S is a diagonal matrix with (s1,..., ST) on the diag- 
onal and X is a T x (2m + 2 + r) matrix with tth row given 
by x'. For notational brevity, hereafter the conditioning on 
Yo will be suppressed. 

2. BAYESIAN INFERENCE 

In a Bayesian context, inference on the unknown param- 
eters 0 is made from the joint posterior distribution of 9, 
which, by Bayes's theorem, is given by 

f(09Y) = f (Y)O) (O) L(OlY)fo(O). f(Y) 

That is, given a prior specification fo (0), our knowledge of 
0 is updated using information in the likelihood function 
L(O1Y). If we are interested in a specific element of 0, say 
Oi, then we require the marginal posterior of O, which is 
found by integrating the joint posterior with respect to the 
remaining elements of 0. Except for very simple problems 
with a few parameters, the evaluation of the joint posterior 
and the computation of marginal posteriors is not analyti- 
cally tractable. Additionally, brute-force numerical integra- 
tion is not a practical option as well. Recent advances in 
Markov-chain Monte Carlo techniques, however, have al- 
lowed fast and efficient methods for the evaluation of high- 
dimensional integrals in the context of Bayesian analysis, 
and we use these methods for our model. 

2.1 Prior Specification 
With regard to the specification of the prior for the pa- 

rameters in the multiple-break context, we follow Inclan 
(1993) and Stephens (1994) and make the following as- 
sumptions regarding the general form of the prior fo(O). 
We assume that k, B, and a are mutually independent and 
that the elements of a are independent. Hence, the joint 
prior is of the form 

m+1 

fo(O) = fo(k)fo(B) 17 fo(a2). (5) 
i=1 

We specify proper priors for the blocks of parameters in (5). 
Regarding the location of the break dates, we adopt a diffuse 
prior such that fo(k) is discrete uniform over all ordered 
subsequences of (2, 3,..., T) of length m. This prior speci- 
fication was also used by Inclhin (1993) and Stephens (1994) 
and is common in the multiple-break literature. For the re- 
gression parameters B, we use the natural conjugate multi- 
variate normal prior N(Bo, ZB), where Bo denotes the prior 
mean and EB denotes the prior covariance matrix. Prior ig- 
norance about the values of B, for example, can be captured 
by specifying EB as a diagonal matrix with large diago- 
nal elements. Similarly, we use the natural conjugate in- 
verted gamma prior IG(vo, Ao) for the regime-specific vari- 
ances a: 

fo( ) OC (2)(Vo) exp a , i = 1,..., m+ 1. 
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2.2 The Gibbs-Sampler Algorithm 
Given our prior specifications for the elements of 0 and 

the likelihood function (4), the posterior distribution of 0, 
m+1 

f(01Y) oc fo(k)fo(B) J fo(U2)L(IY), (6) 
i=-1 

is not of a standard form, and analysis based on numeri- 
cal or Monte Carlo integration techniques is extremely dif- 
ficult. Sample draws from this posterior, however, can be 
generated in a straightforward manner using the Gibbs sam- 
pler. [The Gibbs sampler has been used extensively in statis- 
tics and econometrics in recent years. For an introduction 
to Gibbs sampling and related Markov-chain Monte Carlo 
methods, see Casella and George (1992), Tanner (1993), 
Gelman, Carlin, Stern, and Rubin (1995), Chib and Green- 
berg (1996), and Gamerman (1997).] The idea of the Gibbs 
sampler is simple. Although the joint posterior distribution 
of the multivariate random vector 0, f(01Y), may be un- 
known, samples of 0 can still be generated if the draws from 
the full conditional posterior distributions f(0i Y, [0 - -i]), 
where [0 - Oi] denotes the elements of the vector 0 except 
Oi, can be easily generated. By iteratively generating sam- 
ples from the complete set of conditional distributions, the 
draws of the random variables from these distributions form 
a Markov chain and, under mild conditions, will converge 
to draws from the joint posterior distribution f(06Y). In 
addition, the draws of a particular element of 0 will con- 
verge to draws from the marginal posterior distribution of 
that element. [For proofs of the convergence of the Gibbs 
sampler, see Liu, Wong, and Kong (1994, 1995), Roberts 
and Smith (1994), and Tierney (1994).] It turns out that, 
for the multiple-break model we consider, the conditional 
posterior distributions necessary for the Gibbs-sampler al- 
gorithm are all of standard form and samples are easy to 
generate. Our algorithm is similar to the Stephens (1994) 
method modified to handle lagged dependent data, partial 
structural change, and groupwise heteroscedasticity. 

We now specify the conditional posteriors required for 
the Gibbs-sampling algorithm. Let ni denote the number of 
observations in regime i, Y' denote the ni x 1 vector of yt 
values in regime i, and Xi denote the ni x (2m + 2 + r) ma- 
trix of x' values in regime i. Consider first the conditional 
posterior of ki, i = 1,...,m. Given that 1 = k0 < *-.. < 
k_1 < ki < k+ < .i < km+i = T and the form of the 
joint prior (5), the sample space of the conditional posterior 
of kti only depends on the neighboring break dates ki_1 and 
ki+1. It follows that, for ki E [kic_, ki+i], 

f(kiJY, [0 - ki]) c< f (ki Y, k,_1, ki+l, B, a), (7) 

for i = 1,..., m, which is proportional to the likelihood 
function for 0 evaluated with a break at ki only using data 
between k_1 and kI+1. The probabilities associated with 
each kI e [ki••1, ki+i] are easily computed and, hence, sam- 
ple draws of ki from f(ki Y, [6 - ki]) can be generated as 
multinomial random variables with number of bins equal to 
the number of dates between ki_1 and k++ and probabili- 
ties proportional to the likelihood function. 

Next, consider the conditional posterior of B. Given the 
normal prior for B and the form of (4), it is readily verified 
that 

BiY, [o - B] N(IB(EZ1Bo + X'S-2Y), 'IB), (8) 

where "B = (ECg +X'S-2X)-1. Thus, sample draws of B 
can be generated as a multivariate normal random vector. 

Finally, consider the conditional posterior ao,i = 
1,..., m. Given the inverted gamma prior for ao and the 
form of (3), it can be verified that 

a2 Y, [_ - a3] r IG(vi, Ai), i - 1,..., m, (9) 

where vi = vo + ni/2 and Ai -= A + (Yi - XiB)'(Yi2 
XiB)/2. Thus, sample draws of ao can be generated as 
inverted-gamma random variables. 

Given the full set of conditional distributions (7), (8), and 
(9), we now summarize the Gibbs-sampling algorithm for 
generating sample draws from the joint posterior (6) (Gauss 
code implementing the Gibbs-sampling algorithm is avail- 
able on request): 

* Step 1: Specify starting values 0(0) and set the itera- 
tion number j = 1, where 0(0) - (k(o)', B(o)', (0)')'. 

* Step 2: Generate a draw for the first break date 
k1 as a multinomial random variable on the sample 
space [kJ- 1), kj-l)] from the conditional posterior 
f(kj)Y, k(j-l) kUj-1), B(/-1) Or0i-1)). S1 0 2 

* Step i (i = 3,...,m + 1): Generate a draw of 

the (i - 1)th break date (j) from the conditional 

posterior f(ki1Y, (i- ,kki ,B -1) (j-1)) as 
a multinomial random variable on the sample space 

* Step m + 2: Generate a draw of B(j) from the condi- 
tional posterior f(B(j) IY, k(j), a(j-1)) given in (8) as 
a multivariate normal random vector. 

* Step m + 3: Generate a draw of (au)(i) from the con- 
ditional posterior f((a2)(J)1Y, k(), B()) given in (9) 
as an inverted-gamma random variable. 

* Step m + 4: Set j = j + 1 and go to step 2. 

There does not appear to be an agreed-on method 
to determine convergence of the Gibbs sampler. (A 
comprehensive listing of convergence diagnostics for 
Markov-chain Monte Carlo methods can be found at 
http://www.ensae.fr/crest/statistique/robert/McDiag.) A 
common informal graphical technique involves plotting O8j 
or some function of j). Convergence is indicated if the 
trajectory exhibits the same qualitative behavior through 
iterations after an initial burn-in period. Similarly, the tra- 
jectory of ergodic averages can be evaluated and plotted 
and an asymptotic behavior over many successive iterations 
suggests convergence. For the examples in the Monte Carlo 
study in Section 3, informal graphical diagnostics suggest 
that convergence is achieved after an initial burn-in of about 
300 iterations. 

We note that convergence of the Gibbs sampler is im- 
proved if highly correlated parameters can be sampled 
jointly. In the preceding algorithm, the break dates ki,i - 
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1,..., m, are likely to be highly correlated because the con- 
ditional posterior of ki depends on ki-1 and ki+l. This 
suggests that monitoring the autocorrelations in the Gibbs 
draws of the break dates may be helpful for ascertaining 
convergence of the sampler. In our algorithm, the ki are 
sampled individually for computational convenience, and 
this approach works well for our examples. It is possi- 
ble to sample the break dates jointly, but the number of 
computations required for the Gibbs-sampling algorithm 
quickly becomes prohibitive as the number of break dates 
increases. 

2.3 Estimation of Posterior Moments 

In practice there are two main ways to obtain N sample 
draws from the joint posterior f(0IY) based on output from 
the Gibbs sampler. This first method, suggested by Gelfand 
and Smith (1990), is to save a sample draw after the con- 
vergence of the sampler has occurred, say after 1 iterations, 
then restart the sampler and obtain another draw after con- 
vergence is achieved. This process is repeated a total of 
N times to obtain N sample draws from f(01Y), and IN 
total iterations are required. Draws obtained this way are 
independent if the chains are initialized independently. The 
second method, advocated by Geyer (1992), uses one long 
iteration of the Gibbs sampler. With this method, the sam- 
pler is iterated N more times after convergence for a total 
of 1 + N iterations. The N samples drawn this way are cor- 
related but are stationary and ergodic. [Some authors prefer 
to take every qth draw after the convergence has occurred, 
which is described as "thinning the chain" to obtain ap- 
proximately independent draws. The usual ways of picking 
q are ad hoc, however, and the impact of thinning the chain 
may be undesirable, as argued by Geyer (1992).] We use 
the second method for computational savings. 

With a single iteration of the Gibbs sampler, under the 
conditions of convergence, the N sample draws of any ele- 
ment Oi of 0 are correlated observations from a stationary 
and ergodic process whose distribution is given by the pos- 
terior marginal distribution of 0i. Let t(Oi) denote a real- 
valued function of O that is integrable with respect to the 
posterior marginal distribution of Bi. Then, given the post- 
convergent N sample draws (0}1), 0 2),. .. ,N)) from the 
Gibbs sampler, by the ergodic theorem the posterior mean 
of t(Oi) can be consistently estimated by 

E[t(1)] 
= i t(O )). (10) 

j=1 

Furthermore, if t(0i)2 is integrable with respect to the pos- 
terior distribution of O, then the asymptotic variance of 

V/(E[t(Oi)] - E[t(Oi)]) can be consistently estimated us- 
ing the Newey-West estimator 

M= MN + 1 J () 

where yij is the jth-order sample autocovariance of t(O%) 
from the N Gibbs draws and MN is a truncation param- 

eter such that as N -+ oc, MN --+ 00, and MN/N -+ 0. 

Typically, MN = 4(N/100)1/4 

2.4 Model Selection 

In a Bayesian context, competing hypotheses or models 
are compared using the posterior probabilities of the mod- 
els [Stephens (1994) did not consider model-selection issues 
in multiple-break models.] An advantage of using poste- 
rior probabilities is that the competing models need not be 
nested. Let Mi and Mj denote two competing models, and 
let Pr(Mi) and Pr(M3) denote the prior probabilities asso- 
ciated with these models. The comparison of the competing 
models Mi and Mj after observing the data Y is summa- 
rized by the posterior odds ratio 

Pr(Mi IY) Pr(Mi) f(YIM) 
POR3y = Pr(MjlY) Pr(Mj) f(YlMj)' 

where f(YIMi) and f(YIMlj) denote the marginal likeli- 
hoods of models i and j, respectively. The first term in 
PORij is the prior odds ratio, and the second term is the 
Bayes factor, Bij, or ratio of marginal likelihoods. If each 
hypothesis is deemed equally likely, then the prior odds is 
unity and PORij reduces to the Bayes factor. 

Regardless of the value of the prior odds of model Mi 
versus Mj, the Bayes factor is the ratio of the posterior odds 
to its prior odds and so provides useful evidence for evaluat- 
ing the plausibility of one model versus another. Kass and 
Raftery (1995) provided a rule of thumb for interpreting 
the magnitude of a Bayes factor using the transformation 
2 In Bij to put it on the same scale as the likelihood ratio. 
This rule of thumb is reproduced in Table 1. 

The computation of the marginal likelihoods under com- 
peting models is required for the construction of Bayes fac- 
tors and posterior odds and proper priors are required for 
the parameters of the competing model to avoid ambigu- 
ities. Let 0 denote the parameter vector associated with a 
particular model M and fo () the prior over these param- 
eters. Then the marginal likelihood is defined as 

f(YIM) = L( OY) fo(O) dO, 

which is just the integrating constant for the joint poste- 
rior under model M. Given that the prior fo () is proper, 
the marginal likelihood can be interpreted as the expec- 
tation of the likelihood with respect to the prior; that is, 
f(YIM) = Efo [L(0IY)]. In general, this expectation can be 
consistently estimated using Monte Carlo integration with 
importance sampling, 

Table 1. Evaluating Bayes Factors 

2 In Bii Bi Evidence against Ho 

0 to 2 1 to 3 Not worth more than a bare mention 
2 to 6 3 to 20 Positive 
6 to 10 20 to 150 Strong 
>10 >150 Very strong 
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EN l L(OIY)wk 
f(Y M) = Efo [L(OIY)] = 1 

Ekl =1 
w 

k 
(12) N >7=1 Wk 

where wk = fo(Ok)/q(Ok), k = 1,..., N, are the impor- 
tance weights and q(O) is the importance function (see 
Gelfand and Dey 1994). Newton and Raftery (1994) sug- 
gested using the posterior density f(01Y) as the importance 
function because samples from f(01Y) arise directly from 
the Gibbs sampler. In this case, (12) simplifies considerably 
and reduces to the harmonic mean of the likelihood 

S11 
N L(O(k)lY) ' 

where 8(k), k = 1,..., N, are sample draws from the Gibbs 
sampler. [Kass and Raftery (1995) noted that, although the 
harmonic mean is almost surely consistent, it does not sat- 
isfy a central limit theorem and may exhibit unstable be- 
havior. They argued, however, that it often gives results that 
are accurate enough for interpretation on the log scale of 
Table 1. Chib (1995) described an alternative method for 
calculating the marginal likelihood using the output of the 
Gibbs sampler.] 

2.5 Determining the Number of Structural Breaks 

The discussion of the multiple-break model thus far has 
assumed that the number of breaks is known to be m. In 
practice, the number of breaks is generally not known. In 
the case of an unknown number of breaks, the determina- 
tion of the number of breaks can be treated as a model- 
selection problem and model choice can be made using 
Bayes factors or posterior odds. 

Inclain (1993) considered the use of posterior odds to de- 
termine the number of changes in variance of a time se- 
ries, and we consider an extension of her methodology to 
our setup. Let Mi denote the model with m = i breaks, 
and let Pr(Mi) denote the prior probability. Inclan de- 
termined the priors over the different models by sup- 
posing that at each point in time the probability of ob- 
serving a break is described by an independent Bernoulli 
process with probability p E [0, 1] of observing a break. 
[Under this assumption, all possible locations for the 
break dates kI < k2 < ... < km are equally proba- 
ble with fo(k/m) = 1/T-1Cm.] Then the total number of 
breaks, m, follows a binomial (T - 1, p) distribution from 
which it can be deduced that Pr(Mi) =T_1 Ci pi(1 - 
p)T-l-i. Accordingly, the prior odds for a model with i 
breaks versus a model with j breaks (i > j) is given 
by 

Pr(j)PMi) ( p ? - -__ 

Pr(M3) 1 -p i! (T- 1 - i)! 

If it is thought a priori that breaks are not very likely to 
occur, then a sensible choice is to set p = 1/T. In this 
case, the prior odds of one break versus zero breaks is 
unity. 

Inclin also considered treating p as a hyperparameter of 
the model and specified a beta prior with parameters a and 

b. With this specification, the prior odds for a model with 
j breaks versus a model with j - 1 breaks is shown in the 
appendix to be 

Pr(Mj) T-j+1 a+j-1 

Pr(MjI) j b + T-j 

[There is an error in the derivation of the prior odds under 
a beta prior for p in the appendix of Inclan (1993).] If it is 
thought that p takes a small value a priori, then a = 1 or 2 
and b = T are sensible prior parameters. 

An alternative approach to determine the number of 
breaks is to follow Yao (1988) and Liu et al. (1997) and 
use the Schwarz BIC defined as 

BIC(m) = -2In L(OMLEIY) q n(T), 

where L(OMLEIY) denotes the likelihood function (3) eval- 
uated at OMLE and q denotes the total number of estimated 
parameters in a model with m breaks. [Lubrano (1995) used 
the Schwarz criterion to select models in a Bayesian anal- 
ysis of cointegration with possible structural breaks.] The 
Schwarz criterion indicates that the model with the high- 
est posterior probability is the one that minimizes the BIC 
and BIC(j)- BIC(i) can be viewed as a rough approxima- 
tion to 2 nBij (see Kass and Raftery 1995). Yao (1988) 
showed that minimizing BIC(m) is a consistent criterion 
for determining the number of structural changes in a nor- 
mal sequence of random variables with an unknown number 
of shifts in mean, and Liu et al. (1997) extended his result 
to segmented regression models with exogenous regressors. 
Instead of using 0MLE, we compute BIC(m) using the poste- 
rior modes of ki for i = 1,..., m and the posterior means of 
the remaining parameters based on the output of the Gibbs 
sampler. 

3. APPLICATION TO SIMULATED DATA 

To examine the performance of our Gibbs-sampling al- 
gorithm, we conduct a small Monte Carlo study of the 
approach. We consider two designs. Design I represents a 
structural-change model in the trend, and design II repre- 
sents a structural-change model in the mean and variance. In 
both designs, there are two breaks. These two types of mod- 
els are common in empirical analyses of structural change 
in macroeconomic and financial time series. For example, 
modeling of trending series like GDP or per capita GDP 
typically follows design I as shown by Ben-David and Pa- 
pell (1995) and Ben-David et al. (1997), but modeling of 
exchange rates and interest rates usually follows design II 
as shown by Perron and Vogelsang (1992) and Garcia and 
Perron (1996). 

In the Monte Carlo study, we concentrate on two as- 
pects of the Bayesian approach, (1) the model-selection is- 
sue when the number of structural changes is unknown and 
(2) the estimation performance when the number of struc- 
tural changes is correctly specified. For model selection, 
we compare the performance of four criteria--(1) marginal 
likelihoods using the decision rules in Table 1, (2) POR with 
p = 2/T (POR1); (3) POR with p - beta(2, T) (POR2), 
and (4) BIC. For estimation when the number of structural 
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Figure 1. A Simulated Series from Design I. 

changes is correctly specified, we report estimates from a 
single Gibbs-sampler run, as well as Monte Carlo means of 
the estimates. 

3.1 Design I: Structural Changes in Trend 

In design I, the data are generated according to 

yt = at + btt + kyt-1 + aut, t = 1, 2,..., 150, (13) 

where the notation follows Equation (1) with = .7, a = 
.05, and at = al = 1.5, bt = 31 = .01, for 0 < t < 50; at = 

C2 
= .8, bt = 32 = .02, for 50 < t < 100; and at = 

C3 
= 

1.9, bt - 03 = .01, for 101 < t < 150 so that there are two 
structural changes in the trend function with k = (51, 101)' 
and no change in variance. This data-generating process 
(DGP) is intended to mimic the behavior of GDP series in 
many industrial countries. Figure 1 gives a simulated series 
from this DGP. Notice that even though the series exhibits 
two possible structural changes, it is not completely clear 
exactly when the changes occurred. 

The Gibbs-sampling algorithm presented in Section 2 is 
employed for the estimation of models with no change in 
variance for m = 0,1, 2, and 3 break points. To repre- 
sent our prior ignorance over the parameters of the DGP, 
diffuse priors are used for B = (al, 12, 13 1, 32, /3, / )' 
and a such that Bo = 0, v0 = 1.001, A0 = .001, and EB is 
set to a diagonal matrix with elements 1,000 on the diag- 
onal. For a model with m structural change(s), the starting 
value of k is set at the m (approximate) equidistant points 
between 1 and 150. Then the starting values of B and o2 
are computed as in a standard linear model. After running 
the Gibbs sampler for 300 iterations, we save the next 2,000 
draws for inference. Finally, this procedure is replicated 100 
times. 

Table 2. Design I--Model Selection 

Criterion m = 0 (%) m= 1 (%) m = 2 (%) m= 3(%) 

POR1 0 0 56 44 
POR2 0 0 56 44 
BIC 2 0 95 3 

Table 3. Design I--Estimation Results When m = 2 

Parameter Mean SD MC Mean MC SD 

a• 1.370 .224 1.645 .231 
a2 .771 .145 .877 .147 
a3 1.826 .305 2.082 .292 
)1 .010 .002 .011 .002 
)2 .018 .003 .022 .003 
)33 .008 .002 .011 .002 

.726 .046 .671 .048 
a .051 .003 .050 .003 

Out of the 100 replications, the percentage of each model 
being chosen by a certain criterion is recorded in Table 2. 
Using Kass and Raftery's rules for evaluating Bayes fac- 
tors, there is always "very strong" evidence in favor of M2 
against M1 and M0o. Comparing M3 against M2, there is 
"strong evidence" in favor of M3 17% of the time, and 
there is "very strong" evidence in favor of M3 only 5% of 
the time. The two POR's choose the right number of struc- 
tural changes, where Mi is chosen if PORij > 1, only a 
little more than 50% of the time, whereas BIC chooses the 
right number 95% of the time. 

For M2, Table 3 reports the posterior mean estimates (un- 
der column "Mean") computed using (10) and standard de- 
viations of the estimates (under column "SD") computed 
using (11) for the series plotted in Figure 1, together with 
Monte Carlo means of the estimates and Monte Carlo stan- 
dard deviations for 100 replications. The estimates for the 
series in Figure 1 are generally close to the Monte Carlo 
statistics and to the true values. In particular, the estimated 
standard deviations are very close to Monte Carlo standard 
deviations. 

The Gibbs sampler also produces the posterior mass func- 
tions for each estimated changepoint. For the series in Fig- 
ure 1, the posterior mass functions of the changepoints 
for M2 are plotted in Figure 2. The posterior mass func- 
tions of each changepoint has a mode at the true break 
date. 

o jI. 

0 50 100 150 

Index 

Figure 2. Estimated Changepoints--An Example From Design I. 



Wang and Zivot: A Bayesian Time Series Model of Multiple Structural Changes 381 

o so50 100 150 

Index 

Figure 3. A Simulated Series From Design II. 

3.2 Design II: Structural Changes in Mean and Variance 

In design II, the data are generated according to 

yt = at + 4yt-1 + stut, for t = 1, 2,..., 150, (14) 

where the notation follows Equation (1) with q = .2, and 
at = al = .0, st = i = .05, for 0 < t < 50; at = a2 
.1, st = 2 = .10, for 50 < t K 100; and at = a3 = .0, st = 

a3 = .05, for 101 < t K 150 so that there are two structural 
changes in the mean and variance with k = (51,101)'. This 
DGP is designed to mimic the behavior of the U.S. real 
interest rates. Figure 3 plots a simulated series from this 
DGP. The center of the data seems to have a higher mean 
and variance, but it is not exactly clear when the changes 
occurred. 

The Gibbs sampler is employed for the estimation 
of models with no change in trend with m = 0,1,2, 
and 3 break points. Diffuse priors are used for B = 
(al, a2, a 3, )' and oi,i = 1,2,3, such that Bo = 
0, vo = 1.001, A0o = .001, and EB is set to a diago- 
nal matrix with elements 1,000 on the diagonal. For a 
model with m structural change(s), the starting value of 
k is set at the m (approximate) equidistant points be- 
tween 1 and 150. Then the starting values of B and 

C , i -= 1, 2, 3, are computed as in a standard linear model 
with groupwise heteroscedasticity. Again, after running the 
Gibbs sampler for 300 iterations, we save the next 2,000 
draws for inference. This procedure is also replicated 100 
times. 

Out of the 100 replications, the percentage of each model 
being chosen by a certain criterion is recorded in Table 4. 
This time the two POR select the right number of changes 
less than 40% of the time, whereas BIC selects the right 
number more than 95% of the time. Using Kass and 

Table 4. Design Il--Model Selection 

Criterion m = 0 (%) m= 1 (%) m = 2 (%) m= 3(%) 

POR1 0 0 38 62 
POR2 0 0 38 62 
BIC 0 0 98 2 

Table 5. Design Il--Estimation Results When m = 2 

Parameter Mean SD MC Mean MC SD 

al .008 .008 .000 .008 
a2 .115 .019 .107 .018 
a3 .002 .007 .000 .008 

.179 .087 .175 .096 
0i .055 .007 .051 .005 

02 .103 .011 .099 .009 

03 .049 .005 .051 .005 

Raftery's (1995) rule for Bayes factors, there is always 
"very strong" evidence in favor of M2 versus M1 and Mo0. 
Comparing M3 with M2, there is "strong" evidence in favor 
of M3 in 17% of the simulations, but there is "very strong" 
evidence in only 4% of the simulations. 

For M2, Table 5 summarizes the posterior estimates for 
the series plotted in Figure 3. The estimates for the series 
in Figure 3 are generally close to Monte Carlo statistics and 
to the true values. 

For M2, the posterior mass function for each estimated 
changepoint for the series in Figure 3 is plotted in Figure 
4. For this particular series, the modes of posterior mass 
functions of the changepoints are not at the true break dates. 
The mass functions give very narrow ranges however, which 
cover the true break dates. 

4. APPLICATIONS TO EMPIRICAL DATA 

4.1 Structural Changes in U.S. Real Interest Rate 

In this section we analyze structural changes in a mea- 
sure of the U.S. real interest rate. We use the monthly data 
on inflation and the treasury-bill rate described by Mishkin 
(1990) converted to quarterly observations by extracting 
the end-of-quarter figures from the monthly data. These 
data were also analyzed by Garcia and Perron (1996) in a 
Markov switching analysis of multiple structural changes. 
A plot of the data is shown in Figure 5. Visually, there ap- 
pear to be mean changes in the early part of 1970, the early 
part of 1980, and the latter part of 1980, and the volatility 
of real interest rates appear smaller prior to 1970. To deter- 

, 

0 

0 50 100 150 
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Figure 4. Estimated Changepoints--An Example From Design II. 
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Figure 5. U.S. Real Interest Rate. 

mine the number and type of structural changes and to be 
comparable to the analysis of Garcia and Perron (1996), we 
estimate structural-change models with two autoregressive 
terms allowing for breaks in the mean and variance with 
m = 2,3, and 4 breaks. We adopt the prior distributions 
used for design II in the Monte Carlo section. After running 
the Gibbs sampler for 500 iterations, we save the next 2,000 
draws for inference. 

The log marginal likelihood and BIC values for each 
model are In f(YIm = 2) = -240.69, BIC(m = 2) = 

1,058.16;lnf(Y m = 3) = -232.26, BIC(m = 3) = 

1,053.08; and In f(Ylm = 4) = -231.15, BIC(m = 4) = 

1,077.26. 
Computing Bayes factors and evaluating them using the 

rules in Table 1 show that there is "very strong" evidence in 
favor of three versus two breaks but only weak evidence in 
favor of four versus three breaks. In addition, minimizing 
the BIC also gives the three-break model. 

The estimates of the parameters for the model with three 
structural changes are given in Table 6 and the posterior 
probability mass functions for the changepoints are shown 
in Figure 6. The posterior modes for the breaks are 1970.3, 
1980.2, and 1985.4. Interestingly, our results indicate that 
the real interest rate first dropped just after the recession of 
1970 and at about the time wage and price controls were 
implemented. The real rate rose after the huge rise in the 
real price of oil and the start of the Volker recession and 
then fell in the middle of 1986 when the real price of oil 
fell dramatically. Because the autoregressive parameters are 
essentially 0, the estimates of the intercepts represent esti- 

Table 6. Parameter Estimates for U.S. Real Interest Rate 

Parameter Mean Std. error 

1.813 .374 
-.383 .396 

ag 5.623 .954 
aq 2.439 .544 

1 .064 .114 
2 -.050 .094 
c 1.185 .172 
2 1.908 .252 
c 1.886 .361 
4 1.616 .352 

0.7 10 

0.41 

S4]o 

000 

.0.4 

-2 
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Figure 6. Posterior Probability Mass of the Changepoints. 

mates of the ex ante real interest rate. Our estimates show 
that real interest rates were slightly less than 2% prior to 
1971, not significantly different from 0% during most of the 
1970s, jumped to over 5% in the early 1980s, and dropped 
to about 2.5% afterward. In addition, our estimates show 
that the volatility of real interest rates was lower in the pre- 
1970 period. Our results for the mean shifts are qualitatively 
similar to those of Garcia and Perron, but our results for 
the variance shifts differ. The difference in results for the 
variance can be attributed to Garcia and Perron's restriction 
that both the mean and variance must change at the same 
time. 

4.2 Structural Changes in U.S. Real GDP 

We investigate the evidence of structural changes in U.S. 
real GDP using annual data over the years 1870 to 1994 
taken from Maddison (1995). The logarithm of the series is 
plotted in Figure 7. Visually, there appears to be a dip during 
the Great Depression, then faster growth during World War 
II, and after the war the growth rate appears to have gone 
back to the pre-Great-Depression trend. Ben-David et al. 
(1997) rejected the null of a unit root in this data at the 5% 
level using an extension of the Zivot and Andrews (1992) 

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 

Figure 7. US. Real GDR 
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Figure 8. Posterior Probability Mass of the Changepoint 

unit-root test that allows for two endogenous breaks in level 
and trend. 

Our visual inspection of the data suggests that there 
might be two structural changes in U.S. real GDP, one 
around 1930 and the other at the end of World War II. To 
determine the number and form of structural changes, we 
estimate three models with m = 0, 1, and 2 breaks. We fix 
the autoregressive lag at 2, which is common in the analysis 
of annual output data and also because higher-order lags are 
not significant. We adopt the prior distributions used for de- 
sign I in the Monte Carlo section. After running the Gibbs 
sampler for 300 iterations, we save the next 2,000 draws 
for inference.i 

The logarithm of the marginal likelihood and BIC for 
each model are In f (YIm = 0) = 186.55, BIC(m = 0) =* 

-698.08; In f (Ylm = 1) = 204.90, BIC(m = 1) = -732.98; 
and In f (Ylm = 2) = 204.76, BIC(m = 2) = -693.50. 

Clearly, the no-structural-change model is rejected by the 
data. Model choice based on Bayes factors and minimiz- 
ing BIC favors the m = 1 model over the m = 2 
model. 

Given m = 1, the posterior probability of the change-point. 
point is plotted in Figure 8 and the numerical moments of 
other parameters are reported in Table 7. From Figure 8, we 
migsee that the date of structural changes in U.S. real GDP, o nere 

betweearound 194730 and 1952,the other at the highest posteri orlar II. Toba- 

bilithe autoregressiv .22 at 1947. From the estimatesmon in the analysis7, 

not significantable 7. Parameter Estimates fthe prior distributions used for de-eal GDP 

forWith Change in Varianceinference. 

The logarithm of the marginal likelihood and BIC forerror 

each model are Inf(Ylm 0) 2 186.55, BIC(m 0) 
-698.08; In f(Ylm 1) = 204.90, BIC(m 1) -732.98; 

model.006 .002. 

?1 1.130 .090 

?2 -.312 .091 
ai .062 .006 
o2 .023 .003 

"0 ____, Nq ,__/ //_/ 

Figure 9. Posterior Probability Mass of the Changepoints. 

the form of structural change appears to be a decrease in 
the variance term, with no significant changes in the level 
or time trend. 

The preceding results seem to be contradictory to our 
visual inspection of the data that suggests two changes in 
trend. A model with two changes in trend, however, im- 
plicitly assumes a constant variance over time. It appears 
that allowing the variance term st to be subject to struc- 
tural changes, as well the trend parameters, affects the es- 
timation of changepoints. To confirm this conjecture, we 
also estimate a model with two structural changes in the 
level and time trend while restricting the variance term st 
to be constant over time. The posterior probabilities of the 
two changepoints are plotted in Figure 9, and the numer- 
ical moments or the remaining parameters are reported in 
Table 8. 

The two structural changepoints are estimated at 1930 
and 1945 with very high posterior probabilities. The esti- 
mates in Table 8 are consistent with our visual inspection 
of the data: The pre-Great-Depression period and the post- 
World-War-II period share the same time trend, whereas 
the period between the Great Depression and World War II 
exhibits a drop in the level and a faster growth rate. For this 
model, the logarithm of the marginal likelihood is 201.68 
and the BIC is -700.86. Hence, the data favor the one-break 
model with a change in variance over the two-break model 
with changes in trend and constant variance. 

Table 8. Parameter Estimates for U.S. Real GDP 
Without Change in Variance 

Parameter Mean Std. error 

cs .965 .224 
.2 -.253 .610 
cs .967 .258 
P1 .011 .003 
P2 .028 .007 
33 .010 .002 
41 .902 .102 
#2 -.212 .121 
a .044 .004 
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5. CONCLUSIONS 

We developed a Bayesian approach for analyzing a dy- 
namic time series model with multiple structural changes 
in level, trend, and error variance based on the Gibbs 
sampler, extending the approaches of Inclhin (1993) and 
Stephens (1994). Our initial model is based on a fixed 
number of structural breaks, and we treat the case of an 
unknown number of breaks as a model-selection prob- 
lem. Our Monte Carlo study demonstrated that, for a 
fixed number of breaks, our approach accurately locates 
the break dates and produces sharp estimates of the pa- 
rameters of the model. Additionally, our Monte Carlo 
study revealed that, when the number of breaks is un- 
known, posterior odds are quite sensitive to the prior 
probabilities of models with different numbers of breaks, 
whereas comparison of models based on Bayes fac- 
tors using Kass and Raftery's (1995) guidelines and the 
Schwarz BIC criterion accurately determined the number of 
breaks. 

For future work, we want to compare our Bayesian meth- 
ods with the classical methods of Bai and Perron (1998). 
The Bayesian approach has the advantage of producing 
exact finite-sample inference for all of the parameters of 
the model and in particular the break dates. We would 
also like to extend our univariate model to a multivari- 
ate model that can capture common break dates across se- 
ries as was done by Bai, Lumsdaine, and Stock (1998). 
We are also interested in the comparison of exogenous 
break models with endogenous break models-for exam- 
ple, Markov switching models and self-exciting thresh- 
old models. The Bayesian framework with Gibbs sampling 
makes nonnested model comparison based on marginal 
likelihoods straightforward. Additionally, we want to see 
if it is possible to adapt the methods of Chib (1998) to 
the switching linear regression framework. The advantage 
of Chib's method is that it allows all of the break dates 
to be sampled simultaneously without a large increase in 
computations and so reduces the correlation between the 
sampled break dates in the Gibbs-sampling algorithm. Fi- 
nally, we would like to apply our methods to determine 
the empirical evidence for structural changes in interna- 
tional output series and compare our results with the re- 
sults obtained by Ben-David et al. (1997) based on classical 
methods. 

APPENDIX: DERIVATION OF PRIOR ODDS FOR 
MULTIPLE-BREAK MODELS BASED ON BETA 

PRIOR FOR BREAK PROBABILITY 

Let NT denote the total number of changepoints in a 
sample of size T, and assume that the changepoints are 
iid Bernoulli random variables with probability p. Let p 
beta(a, b) with density 

pa-1 _ pb-1 
f(pa b)= a,- p 1, 

where 

B(a, b) = Fr(a)r(b) 
r(a + b) 

and F(c) is the gamma function such that F(c) = (c - 1) 
F(c - 1). Then the prior density for NT is 

1 

Pr(NT) = f (NTIp)f (p) dp 

= (TCN,)pNT(1p)T-NT 

pa-l(1 )b-1dp 
B(a, b) 

B(a + NT, b + T - NT) 
B(a, b) 

1 
pa+NT-1(1 -_ p)b+T-NT-1 

]oB(a + NT, b + T - NT) 

= (TCNT) 
B(a + NT, b + T - NT) 

B(a, b) 

1 B(a + NT, b + T - NT) 
T- NT B(NT + 1, T- NT)B(a, b)' 

where we have used the relations 

TCn T! 1 
n!(T - n)! (T - n)B(n + 1, T - n) 

and 

1 ( 
P- 

b) Pb-1dp = 1. 
Jo B(a, b) 

Then 

Pr(NT= j) T-j+1 B(a+j,b+T-j) 
Pr(NT = j - 1) T - j B(j + 1, T -j) 

B(a +j - 1,b+ T-j + 1) 
B(j, T-j +1) 

T-j+1 a+j-1 
j b+T-j 

[Received April 1999. Revised November 1999.] 
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