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Changepoint Alternatives to the NOAEL

R. Webster WEST and Ralph L. KODELL

The onset-of-trend changepoint model is applied to the dose—response setting encoun-
tered in regulatory toxicology experiments with continuous responses. Ar investigation
of the least squares criterion over each of the dose intervals provides insights into the
distribution of the changepoint estimate for small dose group sample sizes and a simple
computational procedure for finding this estimate. A new accessible proof of the consis-
tency of this estimate as dose group size increases is developed. For normally distributed
data. an asymptotic procedure is developed for constructing a lower confidence limit on
the changepoint. The performance of the changepoint estimate and the lower confidence
limit are compared directly to the no-observed-adverse-etfect-level (NOAEL) via a large
simulbation study and an example dataset. The lower confidence limit on the changepoint is
shown to be a better regulatory quantity than the NOAEL from a statistical perspective.

Key Words: Onsct of trend; Profile likelihood.

1. INTRODUCTION

Dose-response toxicily studies involving rodents are used to study substances that
are potentially dangerous to humans. After observing the responses of rodents exposed to
various doses of the substance over some time frame, researchers must use this information
to identify a potentially safe dosage for humans. Frequently, researchers compute the no-
observed-adverse-effect-level (NOAEL) which is the experimental dose level just below the
lowest dose level with responses that are significantly different from control. The goal of the
NOAEL approach is to identify the largest no eftect level for the toxin. The NOAEL is then
divided by safety factors when identifying a safe dose for humans. The use of the NOAEL in
regulatory toxicology has come under criticism (Kimmel and Gaylor 1988). Leisenring and
Ryan (1992) discussed several undesirable properties of the NOAEL including its inverse
relationship to sample size, its being limited to only discrete experimental doses and its
failure to use any information from the dose—response relationship.

In this article, « changepoint dose—response model is developed as an alternative to the
NOAEL for the case of continuous responses with constant variance. Related work includes

R. Webster West is Associate Professor, Depurtment of Statistics, University of South Caroling, Columbia, 5C
29208. Ralph L.. Kodell is Director, Division of Biometry and Risk Assessment. National Center for Toxicological
Research., Jefferson, AR 72079,

2003 American Statistical Association and the International Biometric Society
Journal of Agricultural, Biological. und Environmental Statistics, Volwne 10, Number 2, Pages 197-211
DO O 98710857 1T05X46325

197




IW N |

A e

-Hm”hﬂm

*

198 R. W, WesT anp R. L. KoDELL

the cstimation of thresholds for quantal endpoints in toxicology (Cox 1987; Ulm 1999,
Carroll, Roeder, and Wasserman 1999} and the estimation of changepoints for continuous
endpoints (Julious 2001; Hirotsu and Marumo 2002; Chen 1998). For the medel to be
developed, the changepoint is the largest dose level that has the same mean response as
control, so the changepoint is exactly what the NOAEL is trying to estimate. A least squares
procedure for estimating the changepoint will be developed which uses dose-response
information. The asymptotic properties of the least squares procedure are used to show the
consistency of the estimate and to develop an asymptotic lower confidenice limit on the
changepoint for normally distributed data. This new methodology will be compared to the
NOAEL for real and simulated data as it is evaluated from a regulatory perspective.

2. THE CHANGEPOINT DOSE-RESPONSE MODEL

Seber and Wild (1989) provided an extensive background in nonlinear regression mod-
els, and Feder (1975a, 1975b) provided a general introduction to segmented regression
models. The models developed herem are more specific to the toxicological setting. Sup-
pose n subjects are exposed to a toxin at each of g different dose levels. Let X;; be a
continuous random variable which denotes the response of the jth subject, 5 = 1....,n,
exposed to dose d;, i = 1,....g. [t will be assumed that d,, ..., «, represents un ordered

sequence of dose values, d) < > < --- < dg. The formulation of the onset of trend model

in this dose—response setting 18

o+ € d; < d*
X, - b t 2.1
/ { af + Bd, + ey di > d (2.1)

where ¢; represents a sequence of independent and identically distributed random variables
with mean zero and variance a°. The model above allows for a jump in the mean response
at the changepoint, d*. From a biological perspective, this seems unrcasonable for most
settings encountered in toxicological experiments, so it will be assumed that the mean of
the model is continuous at the changepoint. This leads to the relationship, o* — v — 3%,

or

7 A — . 2.2)

The changepoint model then has only three free parameters as formulated above.

2.1 ESTIMATING d* BY LEAST SQUARES

Least squares estimates of d*. o, ", and 3 must minimize

S e = > i(x,,,fa)u > i(x,;j—m*—;m)z
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subject 10 {2.2). Clearly, S is not a differentiable function of d* because this quantity is
involved in the indices of the above summations, For fixed d*, least sguares estimates of o
and /3 can be obtained by substituting <« — (3™ for v and then setting the partial derivatives
of 5 with respect to «r and /1 equal to 0. This yields
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s0 that the minimum value of the least squares criterion as a function solely of the change-

point can be expressed as
Q) = § (d*, a(a*),a(d*)) . (2.3)

[t is clear that &(d*) and ;’?(ri") are continuous on each dose interval, [dy, di1), kb =
I,...,q9 — 2. Likewise, (2 is clearly continuous on any such dose interval. As At | 0,
&y — Af) and 3(dy — At converge to G{dy ) and 3{dy), respectively, and Q) (dy, — A#)
converges to () (dy). Therefore, € is a continuous function of d* over the entire dose range.

A profile plot of () versus d* provides some interesting insights into the least squares
estimation procedure. Such a plot is shown in Figure | for the aconiazide data anatyzed by
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Kodell and West (1993). These data represent the body weight gain (or loss) in grams for
Fischer 344 rats treated with various doses of aconiazide over a 14-day period. For these data,
there are 5 dose levels, 0, 100, 200, 500, and 750 mg/kg body weight with 10 animals per dose
group. The complete dataset is available online at http://lib.stat.cmu.edu/jasadata/fine-b.dat.
The vertical dashed lines in the plot are drawn from the curve to the horizontal axis at each
dose value to emphasize the behavior of the function over each dose interval. A minimum
value of the function over the first dose interval, [0, 100), does not exist. A minimum
value over the second dose interval, [100, 200), is located at approximately 160 mg/kg
body weight. The overall minimum value occurs in the third dose interval, [200, 5003,
corresponding to a changepoint estimate of approximately 350 mg/kg body weight. Note
that a changepoint in the last dose interval is not identifiable.

Although a profile search over the full range of the dose values could be used (o estimate
d”, the value of 4™ that minimizes () on each dose interval can be obtained in closed form
if a minimum value exists on the interval. To find the minimum value over the kth dose
interval, [d),, dz.4 | ), one must first minimize the adjusted least squares criterion,

kK n q i
Si(e, 0,3y = ZZ(X” —a) + Z Z(Xij R — ;’M.,—)z,

i=1 j=1 i—k41 31

which reflects this assumption about the location of the changepoint.
Let &y, 47, and ﬁ;ﬁ denote the parameter values that minimize S;. Because Sy, is clearly
a differentiable function of these parameters forany £ = 0,. . ., g - 2. standard techniques

can be used to show

. 1 -
¥ f = HXI:ZX” (24)
=l 5=
('55;: = Xk+1 — {};‘-rfj‘urh (25)
and
g n ~
_ Z . ((ir,' - (),,;_._])X,]
B o= S , (2.6)
noy. {di — diyr)?
1=k+1
where
I’ mn g
D O T and I, = =EA
kil nlg — k) an Gt g—k

The least squares estimation procedure in this case uses the responses at doses less than or
equal to dy, to estimate the mean level prior to the changepoint, and the responses at doses
greater than d;. to estimate the linear trend after the changepoint.
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Figure 2. Fitted changepoint model for the aconiazide data.

Clearly, Sy, 1s a convex function with a unigue minimum value at the parameter estimates
given above. There is no guarantee, however, that the changepoint estimate defined by the
constraint in (2.2) will be in the kth dose interval at this minimum value. Let the resulting
estimate of d* be defined by

s ey — A

dy, = 3 (2.7
If cf}; < dy, then () is an increasing function of d* on [dy. dy4 ), and the minimum value
of ¢} on this interval must occur at dy.. Likewise, if (;’; > dgyy, then € is a decreasing
function on [dy, dy 1}, which will not have a minimum value on this half open interval. As
discussed earlier in reference to Figure I, this occurs for the first dose interval for which df
was found to be 124.6 mg/kg body weight which is not in [0,100). Let the minimum value
of @ over [dy, dj.+ ) be defined by (0, if 2 minimum exists. The overall minimum value of
(2 over the dose range, [do, d,_1), can then be found by simply comparing @y, ..., (.2
This greatly reduces the number of calculations required with a profiling technique. The
least squares estimate of the changepoint, d*, is the dose value, ff};, corresponding to this
minimam value. For the aconiazide data, d* was found to be (f* = 351.437 mg/kg body
weight. A plot of the fitted changepoint model for these data is shown in Figure 2,

The above discussion indicates that the changepoint estimate follows a mixture dis-
tribution where d* = (f{:. with some probability py. The small sample behavior of this
distribution will be explored in more detail via a simulation study discussed in Section 4.
The next section discusses the asymptotic behavior of the changepoint estimate.

2.2  THe CONSISTENCY OF d°

The consistency of d* is not guaranteed by standard asymptotic theory since the least
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squares criterion in this case is not a “smooth” function of . This section provides a unique
tractable proof of the consistency of d* that uses the interval-wise aspects of the estimation
procedure discussed earlier.

The variances of ¢y, /i, and ;’?;,. clearly converge to (} as the dose group size, 1, goes
to infinity. Each of these random variables then converges in probability to their respective
expected values. These expected values, however, depend on the true location of d*. For
the remainder of this discussion, it will be assumed that the true value of «* is contained in
the mth dose interval, [d, .y, 1) -

For & < . observations at doses greater than d,,, are contaminated with observations
which do not follow the appropriate regression model. Therefore, for & < m, d;, £ o, but
(vj, and .. will not converge in probability to o* and /3, respectively. For i < m,

(e — By + (g — m) (0" + Bepgy) !

ap b = Bdper > apld—d). (28)
9= A =i+
and
R "
S Do Z aie(d; — d*), (2.9)
r=rm+|
where
(f,‘ - J.’a'—y—l
TS T - .
> (di = di}?
ik

Using the above results, Appendix A establishes the fact that r?.}:, converges in probability to
a value that is greater than ¢, for & < +n. Applying the results of Section 2.1, this implies
that asymptotically (2 will be a decreasing function over [d;, d,,) since (2, will not exist
for k < .

Likewise, for & > in, observations at doses less than d,,, are contaminated with obser-
vations that do not have mean cv. Therefore, for & > m, a7 > and 35, 2 3. but év, will
not converge in probability to . For & > i,

3

mee + (k—m)a* +3 > d;

(,\1 ﬁ) i=m+1
15
k

Appendix B establishes the fact that rjf: converges in probability to a value less than dy, for
k > r. Applying the resulls [rom Section 2.1 again, this implies that asymptotically () will
be an increasing function over {d,,, + 1, d, ).

Let +7» denote the dose interval containing the least squares estimator of the changepoint
sothat d* = {?.Th . The above arguments combined with the continuity of () show that . .
This implies that d* -+ J*

H

. The estimates of ¢,,,, &, and 3,, converge in probability to cx,

o and 4, respectively, so d* L5 *. Thus, it has been shown that d* L d*  In other words,

i

asymptotically the estimate corresponding to the true interval containing the changepoint
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is selected with probability one by the least squares criterion, and this estimate is itself a
consistent estimator of the true changepoint.

3. LOWER CONFIDENCE LIMITS FOR d*

Although a point estimate of the changepoint is certainly important, a lower confidence
limit is more useful from a regulatory perspective. In this section, an asymptotic {1 —p)100%
confidence interval for d* will be developed. The results from the previous section are not
dependent on the data having a particular distribution, but in this section, the assumption
of normality will be made. Let

T = Gipy — Gy — Omd™. (3.1)

Because the mnth dose interval contains the true changepoint, it is straightforward to show
that 7;,, has a Normal distribution with F{T,,,) = 0 and

. Loy — d*)?
T P~y (3.2)
nm(g — m) 4 3 5
nooy. (dy = dpgr)?
i—m+1

The variance of T, can be estimated by replacing o in the above expression with its
unbiased eslimator

2

b P 4 -
(X, - r.rm) + 3 (X,i‘]- - Ok - d,nd.,-)
2 i=1 i=m+I
8 = = ]
"

(3.3

gn—3

One can then easily formulate a ratio which has a f-distribution with gn — 3 degrees of
{reedom.

The results of the previous section also guarantee that the asymptotie distribution of T,
will be the same as that for 7},,. Asymptotically, one can find a lower confidence fimit on *
by applying an inverse regression procedure using Ty,. The (1 — p)100% lower confidence
limit, ri}“‘_,, ,» 18 defined as the smallest root of

il z,”l - d* 2
T2 = t,(gn — 3, | —1—— + (s, — ') (3.4)
; nihig — m) g 5 ,
Tt Z (d.' - drh-H )_
i=ri+ |

where #,{gn — 3) represents the pth quantile of a {-distribution with gn — 3 degrees of
freedom. Using this procedure with the aconiazide data yielded a 95% lower confidence
limit on * of 242.69 mg/kg body weight. The small sample coverage probability ol the
lower confidence limit is studied in the simulation study outlined in the next section.
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4. SIMULATION STUDY

A simulation study was conducted with three main goals in mind. The first goal was
to examine the performance of the changepoint methodology developed herein for small
samples, The second goal was to examine the relative performance of the changepoint pro-
cedure to the NOAEL approach. Lastly, the siudy was designed to study the performance
of both appreaches under different parameterizations of the changepoint modgl. The key
parameters were thought to be the location of the true changepoint and the slope of the
regression model afier the changepoint. The interval-wise characteristics of the change-
point estimation procedure developed might be affected by a changepoint that falls on the
boundary of a dose interval. Also, the variance of the changepoint estimate for the interval
containing the true changepoint can be shown to be inversely proportional to 3°. Thus,
the strength of the changepoint model is greatly determined by the rate at which the mean
response changes at doses greater than o*.

The simulated mode! had the five dose values of 0, 1, 2, 3, and 4. Sample sizes of 10, 20,
and 50 per dose group were considered since these sample sizes are typically encountered in
toxicological experiments. Two locations were considered for the true changepoint, 4* = |
and d* = 1.5, the first location being on the edge of a dose interval and the second being
between experimental doses. Values of — 10, —3, and —.1 were used for 7 going from a
stronger to a weaker changepoint model. Because each value of 3 is negative, an adverse
effect is defined by a mean response lower than the control mean. For each model, ¢ was
chosen to be 3, and the value of o was adjusted according to (2.2) while the error variance
was held constant at 1.

For cach parameter configuration, 1,000 realizations of the model defined in (2.1) were
generated. For each realization the changepoint estimate, the lower confidence limit on the
changepoint and the NOAEL were computed. The first two quantities were computed using
the methoedology described in Sections 2 and 3. The NOAEL was computed by conduct-
ing multiple lower tail two sample # tests of each dose group against control at the 5%
significance level, Leisenring and Ryan (1992) used a similar approach to make pairwise
comparisons to conlrols for establishing the NOAEL for quantal data. Statistically more
sophisticated strategies can be used such as the procedures of Dunnett (1964) and Williams
(1971}, as reviewed by Tamhane. Hochberg, and Dunnett (1996). Also, improved statistical
procedures have been developed more recently [or determining the minimum effective dose
or the maximum safe dose (and, consequently, the NOAEL) (Bauer, Rohmel, Maurer, and
Hothorn 1998; Anraku 1999; Bretz and Hothorn 2000; Hothorn and Hauschke 2000; and
Tamane. Dunnett, Green, and Wetherington 2001). Although these more advanced proce-
dures correct for multiple testing, in practice, the simple procedure used here is most often
employed by toxicologists and risk assessors. Correcting for multiple testing leads 1o a
larger NOAEL while the simple procedure is more conservative. This makes the primary
comparison of interest between the NOAEL and the lower confidence limit on the change-
point, that is, the proportion of times the true changepoint is not exceeded, somewhat more
fair to the NOAEL. For the aconiazide example, the NOAEL was computed to be 200 mg/kg
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Table 1. Results of 1,000 Simulations at Each Combination of ¢, 4, and n

o 3 n o g <o NOAEL < d NOAEL < d] o5 O o5 < NOAEL<d d < NOAEL

1 —-10 10 950 1000 89 561 350
20 963 1000 71 560 369

50 960 1000 73 573 354

-3 10 962 1000 73 557 370

20 943 1000 108 528 364

50 958 1000 93 553 | 354

-1 10 955 13 6 28 966

20 948 28 5 40 955

50 943 70 17 55 928

1.5 —10 10 936 1000 1000 0 0
20 959 1000 1000 0 0

50 954 1000 1000 0 0

-3 10 956 942 803 135 62

20 953 998 994 4 2

50 951 1000 1000 0 0

-1 10 956 8 4 a0 966

20 949 17 9 36 955

50 952 33 13 60 927

body weight which is less than the lower 95% confidence limit for the changepoint given in
the previous section. Also, for the purposes of this comparison, the NOAEL was set equal
to zero in cases where it did not exist.

The stmulation results are displayed in Table 1. The first three columns in the table
denote the values of d*, 4, and n that were used for the results displayed in each row of
the table. The next two columns in the table provide the number of realizations where the
asymptotic 95% lower confidence limit (labeled d} o) and the NOAEL were below d*.
Dividing these numbers by 1,000 would provide an estimale of “coverage probability” for
each quantity where coverage is defined as the quantity being below d*. Even though the
NOAEL is an estimate and not a confidence limit its coverage probability is very important
in a regulatory setting. The remaining three columns provide the location ot the NOAEL
relative to the changepoint estimator and the lower confidence limit.

Even for the relatively small sample sizes used in the simulation study the coverage
probability for dj 4 is right on target at the nominal level of 95. The simulation results
show that the coverage probability tor the NOAEL, however, varies greatly across the
different parameter configurations; from very conservative for steeper slopes to extremely
anti-conservative for shallower slopes. When the NOAEL coverage probability is high, the
location of the NOAEL relative to the changepoint estimate and the lower confidence limitis
heavily influenced by the location of the true changepoint. When the changepoint is located
at 1, the NOAEL tends to fall between the two values when the coverage probability is high
whereas it tends to fall below the lower confidence limit when the changepoint is located
at 1.5 when the coverage probability is high. When the coverage probability is low, the
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Figure 3. Histogram of changepoint extimartes for 4% = 1. The Ieft hand column contains estimates for each dose
group size with 3 = - 1. The right hand column contains estimates for each dose group size with 3 — —10.

NOAEL is not only larger than the lower confidence limit but in most cases it is also larger
than the point estimate.

The discrete nature of the distribution of the changepoint estimate is demonstrated in
the teft column of Figure 3 for the configuration of ¢ = | and 3 = —.1. The histogram
of the values for the estimate shows clear spikes at dose values of 0, 1, 2, and 3. The large
number of zero estimates is indicative of cases where a very shallow slope is combined with
a changepoint that is close to zero. Indeed, for models that are truly linear with no change-
point, the changepoint estimate and the lower confidence limit are almost always zero. The
distribution of the changepoint estimate was much less discrete for larger (absolute) values
of the slope as shown in the right hand column of Figure 3 for the configuration of &* = 1
and 3 = —10. For the 3 = — .1 configuration, the distribution is almost uniformly dis-
tributed across the observed doses at a dose group size of 10 with only a slight shift to the
lower end of the dose range for a dose group size of 50. For the 7 = —10 configuration, the
distribution is symmetric about the true changepoint value of 1. In both configurations, as
dose group size increases, the variability in the estimate decreases. The variability, however,
decreases at a much slower rate for the smaller value of 3. The lower confidence limit for
the configuration in the left column of Figure 3 was almost always O while the NOAEL

was almost d
case stnce th
interval cont
be conservat

In the s1
appliedloat
were also co
different fea
aconiazide d
mean

This model ¢
forced to dec
model and th
model has a
The qua
withamorer
that one wou
nisspecifica
values for th
estimate and
The average
average lowe
size of 50. T
lack of fit be
linear model
remaining dc
NOAEL whe
group size of
115 forado
The me
mately a dos
than the char
is being app
the NOAEL
of 10, the che
in the overw
dire consequ
always the
of fit.
Revisiti
the presume



0 115

1.15

_

P15

es for each dose
n3=—10

is also larger

nonstrated in
ne histogram
3. The large
imbined with
i no change-
ys zero. The
olute) values
onof d* = |
siformly dis-
it shift to the
guration, the
gurations, as
ity, however,
ice limit for
the NOAEL

CHANGEPOINT ALTERNATIVES TO THE NOAEL 207

waus almost always 4. The location of the lower confidence limit is very interesting in this
case since the estimate used in its computation in many cases does not correspond to the
interval containing the true changepoint. This indicates that the lower confidence limit may
be conservative for small sample sizes.

In the situation discussed above, the changepoint approach and the NOAEL were both
applied to a true changepoint model. In a follow up simulation study, the two methodologies
were also compared for a model where the true underlying dosc response relationship had
different features. The model chosen for the study was the best fit quadritic model for the
aconiazide data displayed in Figure 2. This model is defined by the following quadratic

mean
10.24753 + .000534211d — 2.658048 x 107°d°. (4.1

This model provides a nice fit to the aconiuzide data, and in this case a researcher would be
forced to decide which dose-response modeli to use. In comparing the models, the quadratic
model and the changepoint model have the same number of parameters, but the changepoint
model has a smaller sum of square error.

The guadratic model which was simulated features a very flat response at low levels
with a more rapid change at higher doses. These features are somewhat similar to the features
that one would expect from a changepoint model. In order to study the effects of model
misspecification, 1,000 realizations of the quadratic model were simulated using the 5 dose
values for the aconiazide data with dose group sizes of 10, 20, and 50. The changepoint
estimate and its lower limit were computed for each realization along with the NOAEL.
The average changepoint estimate for each dose group size was approximately 316 with the
average lower limit increasing from 278 for a dose group size of 10 to 301 for a dose group
size of 50, The fitting procedure tor the changepoint model is forced to balance between
lack of fit before and after the changepoint. The procedure adapts in this case by fitting a
lingar model to the responses from the last two dose groups and using information from the
remaining dose groups to estimate the constant level of the changepoint model. The average
NOAEL when it existed decreased from 138 for a dose group size of 10 to 100 for a dose
group size of 50. The number of realizations when the NOAEL did not exist increased from
115 for a dose group size of 10 to 277 for a dose group size of 50.

The mean response for the quadratic model dips below the control mean at approxi-
maiely a dose of 20, so in terms of estimating this value, the NOAEL does a much better job
than the changepoint model. This should not be surprising because the changepoint model
is being applied inappropriately. The lack of dose response information works in favor of
the NOAEL in this case. It should be stated, however, that even for the small dose group size
of 10, the changepoint model would have been rejected by simply examining a residual plot
in the overwhelming majority of cases. This simulation study does demonstrate the possible
dire consequences that can be encountered by blindly fitting the changepoint model. As is
always the case in model fitting, diagnostic procedures should be used to assess goodness
of fit.

Revisiting the actual aconiazide data (Figure 2}, the 95% lower confidence limit on
the presumed changepoint was estimated to be 242.69 mg/kg, even though doses as low
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as 20 mg/kg could actually have been associated with an adverse effect according to the
best fitting quadratic model (i.e., the fitted mean response at 20 mg/kg is below the fitted
mean response at 0 mg/kg). However, this does not necessarily imply that the two models
would give dramatically different results in practice. Based on the same best fitting quadratic
model produced with these data, Kodell and West (1993) calculated 178 mg/kg as a 95%
lower confidence limit on a 19 benchmark dose for body weight loss. The 1% benchmark
dose, like the changepoint, is another quantity that has been proposed as an alternative
to the NOAEL (NRC 2000). Hence for these aconiazide data, the changepoiiit lower Hmit
(242.69), the 1% benchmark dose tower limit (178) and the NOAEL (200} are in fairly good
agreement. This close correspondence of alternative methods is reassuring in the present
application, and it addresses to some degree the issue of uncertainty in model selection,
which 1s often ignored when carrying out statistical inferences.

5. CONCLUSIONS

Because of the recognized limitations of the NOAEL, Crump (1984) proposed the use
of a benchmark dose as an alternative where the benchmark dose was defined to be the dose
corresponding to a low level of excess risk above background in the range of | to 10%.
Although the benchmark dose approach has gained acceptance over the years as a “point
of departure” for setting exposure levels, there is still much support among toxicelogists
and risk assessors for using the NOAEL, because of its association with a presumed zero or
negligible level of risk. The changepoint methodology discussed in this article should alse
be appealing to the regulatory community for the same reason. In addition, the statistical
properties of this methodology (the consistency of estimate and the asymptotic validity of the
lower confidence limit procedure) are far superior to the NOAEL when the true underlying
model is a classic threshold model. Also, as demonstrated in the simulation study, the lower
confidence limit on the true changepoint does not necessarily lead to a more conservative
regulatory quantity than the NOAEL which is a point estimate of the true changepoint.
Combining the changepoint and benchmark dose methodologies may lead to a more unified
approach 1o toxicological risk assessment. The process would begin with the application
of the changepoint method to determine if a nonzero no effect level can be determined in
the experimental dose range. If the lower confidence limit on the changepoint is found to
be zero, the risk assessor could then apply the benchmark dose method to determine a dose
associated with an acceptable amount of risk. For a unified approach to be widely applicable,
a larger repertoire of changepoint models must be developed in this setting other than the
simple onset-of-trend model discussed herein. Models to be developed should consider
other functionai forms for the mean response before and after the true changepoint and the
effects of nonconstant variance across the dose range. In toxicology experiments, however,
the small number of dose values typically used will be problematic in terms of estimating
parameters for models which allow for more curvature in the response after the changepoint.
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APPENDIX A

Recall the assumption that the true changepoint, d*, is in the interval, [d,,, dy 11 ). For
the proof given below, it is assumed that k& < .
Using (2.10)-(2.9) with Slutsky’s theorem,

4q = 2
2 (i —din)
L g, - kA S (A.1)
) " (g - k') (frru.g(d*) - dk+ |) -
where
Z (fi(d.i - d)
foold) = =2 w—e w10
3T {d; - d)
r—=u+1
Note that
[ _ N . [ _
2: (dg 7(1;‘-+|)k (dk+1 *dqu) Z (d.L ‘*dk‘r] +rik|1 —(ik.|.|)2
i—k+] _ ket |
—k g
! >0 (di —diyr)

i=k+1
= ((Zk:+] - d‘k+l) (_fk,_r} korl) - ('?'kJrl) .

Adding and subtracting dj, |, from the right hand side of (A.1) and substituting the above
result yields

dI = ;. b1 T Chey

where

(Jk{ 1 — dk+l) (fm,_q(d*) - f.’-‘._q(dk-&-l ))

fm“g(d*) - dk‘+ |
1t will now be shown that ¢;, > 0 by carefully considering the numerator and denominator
of the above expression. The derivative of f,, , with respect to d,

(‘;\. =

(v —w) Z (di = dosr)?
i—=u+1l

f':.:.v(d) = " 7 = 0,
( 3 {d - d))
=1+

$0 fi. . 18 an increasing function of . Stnce dy. . < d* for k < m,

i

g
3oedd — dpsy) 7 Sodild - dY)
fm.g(dkl I) = ot < il = .fm.g(da)- (Az)

4 -

3No(di —diy ) i (d; —d*)

t—re+1 i=re41
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Also, because d,, < d; <d,fori=u+1,...,v,

T g
Sodd; — i) 3 did; —d7)
,fk,m(d-kJrl) - i:k;;] < (]m.+l < 1=m-5! ! == f'm.g(d*)- (A3)
STl —diy ) 3 (d, - d¥)
ikt i=m+I

Adding the cross-products of the inequalities in {A.2) and (A.3) leads to

g g
> (ii(d;.‘ - (1Ag+|) Z (l.,'(d,; - d*)
Srgldi) = ?Zkﬁ' < ?:m;1 = Jmg(d"}.
(edy —dgot) 2. (di—d)
=k+1 t=1r4 |

Also, note that rf;,.+| —dj. ;1 > 0, sothat the numerator of ¢ is positive. Using Chebyshev’s

inequality,
i g g
S di(d; — d%) ( 5 d,-) ( S {d; — d*))
fﬁn.“q(d*) _ z;'m:»] 2 i=m—+1 1g*1n+| — (iml+|.
> (di—d) (g —m) 2 (di—d)
=t | =+

Since dyyvy > diy 1o fung(d*) — dryr > 0. so that the denominator of ¢y is also positive.

APPENDIX B
Using (2.10),

;'.
md*+ Y d;

"?I £, ;‘;'m.+l
Because d* < di fork > mandd; < dpfori =m—+1,... Kk,
&
md* < md, and Z d; < (k—midy.
i=ne |

Combining the two inequalities above and dividing each side by &,

k
md” + Y d;

i=m+1

i < di.

The estimate (ﬁ' for k > m converges in probability to the expression on the left hand side
of the above inequality as n goes to infinity.
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