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Detection and estimation of abrupt changes in input or state

P. F. WESTON+1 and J. P. NORTON¢

Disturbances which may be represented as step changes in the state of a linear,
discrete-time, dynamical system are considered. A test for detection of such dis-
turbances is presented. It employs variables computed in fixed-interval optimal
smoothing. Several interpretations of the test are offered. The optimal estimate
of the state change is shown to be one of the quantities forming the test statistic.
Examples show the simplicity and effectiveness of the technique.

1. Introduction

The problem considered is detection of one or more abrupt changes in the state
of a linear, dynamical system described by a discrete-time, state-space model. Detec-
tion of impulses in the input can be handled as an augmented-state version of the
problem, integrating the output then moving the integration to the model input.
Further state augmentation allows many other simple variations in input to be
treated in the same way. Abruptly changing parameters described by a state-space
mode] (random-walk models or their generalizations, Norton 1975, 1976, Young
1984) are also covered. The approach presented here, based on fixed-interval optimal
smoothing (Bierman 1977, Maybeck 1982), scans a set of input—output records for
evidence of change at any point.

The control and signal-processing literature (Willsky 1976, Isermann 1984,
Basseville 1988, Basseville and Benveniste 1986, Gertler 1988, Frank 1990) has
mainly considered online change detection, with speed of detection a prime concern.
Offline location of changes is also important, e.g. finding the origin of a plant or feed
disturbance in a process plant, or a pollutant discharge into the environment, or
reconstructing a sharp aircraft or missile manoeuvre. Offline processing allows the
observation record to be fully exploited by fixed-interval optimal smoothing when
looking for changes; substitution of fixed-lag smoothing would allow online use of
the technique, at some cost in efficiency.

Detection of changes in level, slope, parameters or variance has a long history in
the time-series literature. Statistical detection tests have sometimes been used (Tsay
1988) but not with optimal smoothing, where instead the more informal practice of
variance intervention, increasing the variance of increments at a suspected change, is
employed; Young (1984, 1994) and Young and Ng (1989) review the development of
the approach. The technique presented here may be regarded as generalizing and
formalizing that practice, but distinctively does not assume prior knowledge of the
timing, size, direction or probability of change as often required elsewhere (e.g.
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Isermann 1984, Basseville 1988, Jun 1989). It relies only on detecting behaviour
inconsistent with the probabilistic specification of the forcing and observation
noise (zero mean, white, of known covariance). The discrepancy between the for-
ward state estimate from earlier observations and the backward estimate from later
observations is tested, rather than the innovations sequence as is more usual (Willsky
and Jones 1976). The technique has some similarity to that presented by Niedzwiecki
(1994) for estimating abruptly time-varying parameters in a linear model, discussed
in §5.

Section 2 gives a test for the presence of a step in state, derived from analysis of
the difference between the forward and backward state estimates. It is shown how
the test may be implemented using quantities available from the modified Bryson—
Frazier smoothing algorithm. (Appendix 1 picks out the necessary items of fixed-
interval optimal smoothing.) Section 2 also develops alternative interpretations of
the test. Section 3 discusses how the step size and direction may be estimated. Section
4 gives some numerical examples and considers practical issues arising from them.
The scope of the approach is examined further in § 5, which also draws conclusions.

2. Hypothesis test for change in state
The system is modelled by

Xpp1 = Pexy + Lpwye
N

1
yk:Hkxk+Vk k=1,2,..., ()

with xeR", weR, yeR", E[w]=0 Ew =0 and cov(w)= 0
cov (v;) = Ry. An initial state estimate %, and its covariance PS are also specified.
For simplicity, there is assumed to be no deterministic forcing or correlation between
wy and v, although both can be accommodated. Robustness in the face of error in
@, or Hy is not considered. The forwards (filtered) estimate of x;, based on fcg and

the observations y;, j = 1,2,...,k, is denoted by %%, its prediction from the previous
YisJ Y Xk p

estimate by fci and their respective covariances by Pﬂ,P,fcl Correspondingly, the
estimate based on later observations y;, j=k,k+1,...,N is denoted by %P, its
postdiction from that based on y;, j=k+1,k+2,. N by %0 and their covar-
iances by Pk, Pk
The change—detection statistic will compare xk with xk, it yields the probability
that the difference ,
B = % — i )

is consistent with its covariance as computed from the specified Qys, R;s and PO
Under the null hypothe51s (forcmg and observation noise white, with zero means and
specified covariances), xk and xk are unbiased, E[§;] is zero and, as also xk and xk
are mutually uncorrelated,

A = cov &, = E[6:6¢) = E[xpx2T — x}ixiT - xk T4 )Aci le( N
= E[%p3})"] - 2E[x|E[xi] + E[#; 2T = P} + P} (3)

If &, is assumed to be gaussian (usually reasonable except perhaps near the ends of

the records), the statistic T
dk = 6k A]; 6]( (4)

is a x* variate with n degrees of freedom. An upper acceptance threshold for dj is
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given directly by the lowest acceptable probability that & results by chance under the
null hypothesis. The alternative hypothesis, concerning what type of abrupt change
is possible, need not be specified. If dj fails the test, the failure is attributed to a state
change. Estimation of its direction and size is considered later.

If the Fraser—Potter implementation is used, dj can be evaluated directly from the
forward and backward estimates and their estimated covariances. However, the
modified Bryson—Frazier algorithm will ultimately provide broader insight; d; may
be expressed conveniently in terms of quantities produced by this algorithm. First
write 4; from (3) as

A = Py + Pf = PR(PL™ + PY)PY = PRPL'P (5)
As PZ does not appear in the algorithm, an alternative expression for 4; will be
found shortly, but (5) is useful in deriving é; and thence d. From (Al.4)

o = PY(PE % — PL'5L) (6)
8 = PY(P; % — PL 1%L — PPT'30) = PRP (% — 2b)
= AP (% - &) = — A (7)

where ), is defined by e o
)\kE—Pk' ()’ek—)ACk) (8)

The equation for the smoothed state estimate in the modified Bryson—Frazier algo-
rithm gives (8) directly, and

A= (PY+ P = Py - NPT+ P TR
=Py PP P! )

which is the expression for A, given by the smoothed-covariance equation. More
directly, using (7) and noting that cov ; = A; and under the null hypothesis, E[6;] is

zero, so E[\] is zero
A = E[§87] = E[MMM 4] = A(cov e + EINJEIN) Ay = MMl (10)

and so
A = Ay (11)

Alternative interpretations of dj exist. Using (4), (7), (8) and (5) in succession
do = M A = (% - 2)TPE PRPLIPL - P (e - 3)
= (% — TP (PE — PET) TP (e - 1)
= (% - $)T(PY = P (a — 3) (12)
and cov (i — &) = E[faf — 2l T — 2 5T + % 50T (13)
where
El&i0T] = E[P((PY '8 + P
= Pe(PL T (PY + E[l ED)) + PY El Bl )
= Pe(I + (P} + Py ) EDa)E[x)) = Pe+ ExED] - (14)
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SO
cov (% — & ) = Py + EPq]E[x}] — 2(P, + E[x EIXI]) + P + E[x)E[x]]
=Pl _p, (15)

Thus, (12) interprets d; as the x? test statistic for the adjustment X, — fc,fcl which
brings the information from later observations into the estimate of x;.

The change—detection test also has an enlightening interpretation in terms of Ay.
From (4), (7) and (11)

die = 68 A7 6 = AL A = MAT' N, (16)

so the text is a x° significance test for A;. This links it with Gauss—Markov or
generalized least-squares (g.1.s.) estimation. Optimal smoothing minimizes the g.s.
cost function

N-1
I (Z{ (% — Hiexe) ' R (v — Hiex)} + Y Wi O wiek + (xo — %) PG (xo - f(f)))

pay
(17)

with respect to the sequence {x;}, subject to the constraints

xk=¢k_1xk_1+Fk_1wk_1 k= 1,2,...,N (18)
It is minimized by setting to zero the gradients of the augmented cost function
N
Ly =Jx— > N{xk — Peorximy — Tioiwer } (19)
k=1

with respect to each x; (including x,), w,_; and ). The Lagrange multiplier ) in
(19) may be identified with A, defined by (8), as shown in Appendix 1. It is the
gradient of Jy with respect to the value of the right-hand side of (18). In other
words, ) shows the effect on Jy of inserting an extra step between the smoothed
estimates @_;%;_; + I'p_1W;—; and %, yielded by the model (1) and its noise speci-
fications. The change—detection statistc, interpreted as in (16), indicates how large
this gradient is, allowing for its normal statistical variation.

3. Estimation of direction and size of step in state

The optimal estimate of a step change in state between @,_;x;_; and x; will be
shown to be §; given by (7). Complete freedom in the step x; — $_;x;_; is allowed
by specifying

Tea =1, Qe = lim &1 (20)

for the forcing I'y_;w;_,. The inverse Pg_l of the predicted state-error covariance is
then zero, so from (A 1.3) Py is P,E. Hence from (A 1.4) x; is fc,tc’: observations before
the step have no influence on %, because I'y_;w;_, is utterly uncertain.

Similarly, the observations after the step have no effect on the smoothed estimate
of %p_. It can be verified through the Fraser—Potter equations that %,_; is x,fc 1 and
Pi_y is PL_|. The optimally smoothed estimate of an unconstrained change is

therefore
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therefore
. . b of b of
R — P Xpm = X — D K = X — K =6, (21)

Although Iy and Q,_; were replaced by 7 and lim_._, o1 to derive (21), 5:2 and
xi are independent of I'y_; and Qy_;, so & in (21) is as computed with the original
I, and Q_,. Thus, the optimal estimates of possible state changes are obtained,
for every point in the record, by a single optimal smoothing process using the ‘no
extra steps’ process-noise specification. (Optimization of @ and R away from the
steps is an important but separate issue; iteration may be necessary.)

With &, the optimal estimate of the state change and ) the gradient of cost Jy
with respect to that change, yet another interpretation of the change-test statistic dj

suggests itself. From (4) and (7)
dy = —A\Lé (22)

50 d, gives the reduction in Jy due to &. The test statistic thus indicates how much
the Gauss—Markov cost would be reduced (and the corresponding gaussian log-
likelihood function increased) by allowing, through (20), a free step & in state at

time k.
The view of ), as the marginal benefit of a constraint relaxation also clarifies the

rdle of A, in the change—test statistic (16). The mean-square change in cost Jy due to
a step 6 in state at time k is, under the null hypothesis,

E[(\6)%] = 6T E[NAMI8 = 67 (cov (\e) + EINJE])S (23)
As Ay is cov ();) and, under the null hypothesis, & and hence A, are zero-mean
E[(AL6)%] = 6T A6 = d(6), say (24)

Thus, with 6 = 6, d, gives the mean-square reduction in cost (under the null hypoth-
esis) due to the optimal step. More generally, 4, shows the expected influence of, and
hence weight attached to, each component of a prospective step. It is easy, for
instance, to find the step direction with most or least effect on cost. If é and the
mutually orthogonal eigenvectors my;, i = 1,2,...,n of the positive-definite 4, are
normalized to unit euclidean length ||-||, the unit-length step maximizing (mini-
mizing) the mean-square change in Jy is

§ = arg max (min) 6" 4,6 = My (25)
lis=1

where my; is the eigenvector corresponding to the largest (smallest) eigenvalue of 4.
The eigenstructure of A, thus reflects the prior potential of the observed variables for

change detection; the ellipsoidal constant-d contour
sTAs=d" (26)

shows how small a state change in any direction may be detected with the confidence

corresponding to d”.
Equations (11), (16) and (22) express a duality between &; and ). Equation (24)

has the counterpart
E[(AT8)%] = ATA A = d()) (27)

with the adjoint variables regarded as the basis for change detection. The smallest
significant size of A in any direction is given by the eigenstructure of 4;. The inverse
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relation between 4; and A, reflects the fact that a smaller change in state is detect-
able if the expected sensitivity of Jy to it is larger, and vice versa.

Finally, in view of the use of optimal smoothing by some authors for ad hoc
change detection, and the popularity of variance intervention (sharp increase in Qat
suspected steps), one might ask whether a step in state can be estimated equally well
by the optimally smoothed estimate

X — Pp1 KXoy = =Wy (28)

It cannot because, in contrast to A (or &), I'y_W;_, is influenced by Qy_; and by the
rank of I'y_,. Setting the derivative of Ly in (19) with respect to w;_; to zero then
premultiplying by I'y_;Qr_;

TeoiWemy = =T Qi Tho N (29)

Although I'y_; has full column rank r, r <n so I'y_;Qs_;I'f_; may not be of full
rank. Information would then be lost if I',_;W,_, were used instead of Mg (or &) in
change detection and estimation. Even if I'y_,;Q;_,I" Z_l is of full rank, I'j_W;_; is
restricted by the finite specified Q;_;. Moreover, the restriction smears the influence
of a state change between times k — 1 and k over adjacent sample instants, making its
detection and location harder. Plainly, a change cannot be detected as efficiently by
inspecting smoothed state estimates as by the test statistic . Heuristically increasing
O locally to loosen the restriction would merely increase sensitivity to observation
noise; to acquire the information in {&}, variance intervention would have to be
performed at every point in turn, requiring many smoothing runs.

This distinction between estimates 6, and I'y_W,_; of a state change (the former
optimal for change unrestricted by I'y_, or Q,._, the latter for the nominal I" r—1 and
Qk-1) has implications for the detection of more than one change within a record.
The optimality of &, depends on correct process-noise specfication throughout the
rest of the record. If more than one change (inconsistent with the I's and Qs) is
present, misspecified I' and Q for any one change renders § for all the others incor-
rect. If changes are close enough, this may prevent their correct detection from the
sequence of ds obtained by the initial optimal smoothing run. The simplest course is
to accept a change where d is highest, set I' to identity and Q to infinity there, repeat
optimal smoothing, examine the new sequence of ds for a second change, and con-
tinue until 4 is always below the test threshold.

4. Application of the change-detection test

The scope and practical aspects of the test are best illustrated by examples in
which the actual behaviour is known.

Example 1: Figure 1 shows time-series data used by Jun (1989) Young and Ng
(1989. Example 3) to test detection of a level change. The constant-Q; optimal-
smoothing estimates, also in Fig. 1, are uninformative. In Fig. 2, the probability
of the test statistic d; reaching its calculated value in the absence of a jump is
plotted on a log scale, with a possible threshold of 0-005 marked. It clearly
indicates the presence of a single jump at k = 70. If the forward and backward
estimates are decoupled at that point by making Qs infinite, the statistic is
brought below the threshold: Fig. 3. The behaviour just before the jump, distorted
in the constant-Qy case, Fig. 1, is now undistorted, Fig. 4. OJ
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Estimate of level - no breaks.
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Figure 2. Example 1: —log,, prob (d; exceeds computed value with no step present) against
time k, with increment variance Q, specified as constant.

Example 2: The problem is to detect two abrupt changes in the scalar input u of
a system modelled by

0-833 03 0 1
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Hypothesis test for Q - with break.
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Figure 3. Example 1: —log;, prob (d, exceeds computed value with no step present) against

time k, with increment variance Q; infinite at & = 70 and otherwise constant.

Estimate of level - one break.
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Figure 4. Example 1: optimal-smoothing estimates with break permitted at k = 70.

with constant observation-noise variance R, = 0-01. The input is modelled as a
random walk

Upy1 = Uy + wy with var (wy) = Q; = 0-01 (31)

Figure 5 shows 200 output observations and the actual output and input; the
example is designed so that the input changes at k = 80, k = 150 are not easily
inferred from the output response. In Fig. 6 the probability of d; attaining its
computed value without a state jump is plotted as before, with a threshold of
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input, Output and Observations, Ex. 2
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Figure 5. Example 2: actual input and output (interpolated) and observed output.

Hypothesis Test Probability, Example 2
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Figure 6. Example 2: —log,, prob (dj exceeds computed value with no step present) against
time k, with increment variance Q specified as constant.

0-0025 marked. Jumps at about k = 80 and k = 150, the centres of the periods over
which the threshold is exceeded, are indicated. The influences of the two equal-sized
jumps on the probability computed from {d,} differ markedly because of noise, but
both are detected. Allowing free jumps at k = 80 and k = 150 brings the correspond-
ing test statistic peaks below the threshold, with little effect elsewhere, as in Fig. 7.
The optimally smoothed input estimate, Fig. 8, is again much better close to the
jumps than that from the original constant-Q; model, Fig. 9.

5. Scope of method; conclusions

The technique presented here is suitable whenever a change can be related to a
step in an observable state variable (augmenting the state if necessary). Steps in input
(e.g. feed changes) or output (e.g. load) are readily covered, and exponential, ramp
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Hypothesis Test, Example 2, With Breaks
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Figure 7. Example 2: —log,, prob (d; exceeds computed value with no step present) against
time k, with increment variance Qj, infinite at k = 80, 150 and otherwise constant.

True and Estimated Input, Example 2, with Breaks.

05 ; : ! 1 0.5

g IR ‘ L

et .
g 0 S e e
g | |
T 05 ‘ f »# - 05
2 H
© . |
'% Ar ! i | l P
| X

i ',
2 .
E 5[ Podas
o
2
-

Legend
2 - Estimated Input [
* True Input

s

25 N 1 | ! 1 ; i 25
0 20 40 60 80 100 120 140 160 180 200
Time (Sample)

i
.
1

Figure 8. Example 2: actual input and optimal-smoothing estimates (interpolated) with
breaks permitted at k = 80, 150.

or more complicated changes may be treated as due to abrupt forcing of a known
auxiliary state-variable model.

The approach also extends to abrupt changes the well-established use of optimal
smoothing for identification of changes in parameters of linear models (Norton 1975,
1976, 1986, Young 1984), treating the parameters as state variables. Its ability to
detect and estimate simultaneous changes in a number of unknowns is essential when
a change in a physically significant parameter such as a gain or time constant affects
several parameters of a discrete-time model.

Niedzwiecki (1994) derived a parameter estimate as an optimal linear combina-
tion of estimates based on two random-walk models, each having a prior probability,
relating parameters respectively to their predecessors and successors within a
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True and Estimated Input, Example 2
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Figure 9. Example 2: actual input and optimal-smoothing estimates (interpolated) with
increment variance Q, specified as constant.

window centred at the present. The resulting algorithm, called competitive smooth-
ing, makes simplifying assumptions but requires no intervention once a window
width and values for Q have been selected. It shares with the technique presented
here its use of two filters, one operating each side of the present, and its essentially
offline nature. By switching between competing evolution models without explicit
change detection, it risks spurious steps; Niedzwiecki suggests using a ‘low-pass’
model of parameter evolution, such as an integrated random walk (Norton 1976)
to overcome this drawback.

In summary, the technique presented here offers a simple and flexible way to find
sudden changes in state, input or parameters of a linear, discrete-time model, with a
minimum of prior information and at negligible computational cost over that of
optimal smoothing.

Appendix: Fixed-interval optimal smoothing (Bryson and Ho 1969, Norton 1975,
Bierman 1977, Maybeck 1982 and their references)

The optimal smoothing problem is to compute estimates %, k = 0,1,..., N, each
based on the whole observation set {y;,j = 1,2,..., N} and on £ and PE.

The many implementations of fixed-interval optimal smoothing developed in the
1960s and 1970s differ in numerical properties (including stability, Norton 1975), in
flexibility (e.g. permitting the excitation matrix to have less than full rank), and in
ease of interpretation. The change detection technique is most easily explained by
reference to quantities in the Fraser-Potter algorithm (Fraser and Potter 1969,
Maybeck 1982) but employs quantities computed by the modified Bryson-Frazier
algorithm (Bryson and Frazier 1963, Bryson and Ho 1969, Bierman 1977).

The Fraser—Potter version combines the state estimates yielded by separate
forwards and backwards passes through the observations. The forwards pass is
standard Kalman filtering, while the backwards pass (Maybeck 1982) produces
(€ €1, En 1,EN 2, - - &} and {My, My My ,..., Mo}, from which the
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WILLSKY, A. S., and

covariance of the backwards state estimate is obtained by dotection and
eteclio

P =M (AL1) Control, 21, I(
. . Youne, P. C., 1984, F
then the state estimate itself by 1994, Time-va
b b series. Journal
X = Pré& (A12) Young, P.C., and N
There is no correlation between the errors in x,fc/ and z}; that in fc,fc is due only to the F
€rror in fc(f) and to {wg,v;,w,...,v_1,We_1}, while the error in %2 is due only to
{vwswNn_1, VN1, ..., Wk, v }. They are also unbiased, minimum-covariance estimates,

so the information matrix of their minimum-covariance linear combination X, the
optimal smoothed estimate, is the sum of their information matrices:

Pl=pPl P =P oy, (A1.3)
and (Bryson and Frazier 1963, Norton 1986)
Pi's = PL'sE + PR = PLOIR 1 g (A14)

(Alternatively, stepping past the processing of y;, the primed and unprimed quan-
tities may be reversed.)
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