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Abstract: The paper presents an analytical 
method using the Bayesian inference framework 
for the identification of time-series discontinuities, 
i.e. changepoints, in impulsive Laplacian noise. 
Exact expressions for the posterior density of the 
changepoint positions and the associated Bayesian 
model evidence are given for DC step changes. 
The performance of the analytical approach is 
compared to that predicted by a Gaussian 
assumption to the noise statistics and Markov 
chain Monte Carlo methods. 

1 Introduction 

The detection and location estimate of changepoints 
(parametric discontinuities) in data are of considerable 
interest to a variety of data analysis areas. One example 
is the analysis of well log data, which conveys geophysics 
information about rock structure. A changepoint in such 
data normally indicates a boundary between two differ- 
ent rock strata. Other applications can be found in areas 
such as medicine, edge detection in image processing and 
so on. 

Recent work on changepoint detection has been 
largely dependent on the assumption that noise can be 
modelled as normally (Gaussian) and independently dis- 
tributed. One can justifiably expect the distribution of the 
observations to be approximately Gaussian on the 
grounds that the noise arises from a multitude of inde- 
pendent sources which yields a central limit tendency. 
However, there are cases where the overall noise distribu- 
tion is determined by a dominant non-Gaussian source. 
In these circumstances the central limit theorem, which 
describes an asymptotic property, no longer provides jus- 
tifications for the use of a Gaussian assumption. One 
category of non-Gaussian noise frequently encountered 
in practice is impulsive noise, which can be characterised 
by a distribution that tends to have a less pronounced 
‘shoulder’ and a heavier ‘tail’. The Laplace probability 
density function (PDF) can be adopted to model the 
impulsive or burst-type of noise, namely, 
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The simple exponential behaviour of the Laplacian PDF 
(rather than the quadratic exponential of the Gaussian 
PDF) means high amplitudes having correspondingly 
higher probabilities, a characteristic of the impulse type 
of noise. The Laplace distribution can be viewed as a 
special member of a family of symmetric distributions 
clustered about the normal [l]. They can be written in 
the general form 

- m < y < + m  (2) 

where it can be easily seen that when /I = 0, the distribu- 
tion is normal. When = 1, the distribution is Laplacian. 
When p-+ - 1 ,  it can be shown that the distribution 
tends to the rectangular distribution. If p is employed as 
a measure of nonnormality, the Laplace distribution will 
thus appear to be as discrepant from the Gaussian dis- 
tribution as the rectangular distribution. 

Practical cases abound in which the additive noise is 
more appropriately modelled as Laplacian. The Laplace 
distribution can be used as a model for the distributions 
of clicks that degrade audio signals and noises such as 
scratches or dropouts that corrupt images. The well log 
data mentioned earlier can also be very impulsive and 
consequently sometimes it is more appropriate to assume 
the corrupting noise distribution to be Laplacian. In all 
those cases, the use of Laplacian statistics is more robust 
than the Gaussian. One difficulty with the analysis of 
those data contaminated by Laplace distributed noise, as 
opposed to Gaussian noise, is that posterior distributions 
are generally not expressible in terms of simple mathe- 
matically tractable functions of the observations. 

2 Single changepoint detection 

Consider the case of single changepoint detection. 
Suppose that there are N samples of data d corrupted by 
Laplace noise e, i.e. 

(3) 

where m denotes the position of the changepoint and pl 
and p2 are signal levels prior to and after the change- 
point, respectively. Bayes’ theorem states that the prob- 
ability distribution for m posterior to the data d is 
proportional to the product of the distribution for rn 
prior to the data and the likelihood for d given m. 
Assuming that these N observations are independently 
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drawn, the likelihood function is 

(4) 
As little is known a priori in relation to the parameters, a 
noninformative prior has to he adopted to characterise 
this state of ignorance. For m, which, barring it occurring 
at two ends, can only take on values between 2 and 
N - 1, a locally uniform prior is assigned. pl and p 2  are 
supposed a priori to take on any arbitrary real values and 
hence they should be assigned a uniform prior over the 
entire range. I ,  without loss of generality, is assumed to 
be positive only, in which case, following Jeffreys [Z], its 
noninformative prior is represented by its logarithm 
being uniformly distributed. Further assume that all these 
four parameters are judged a priori to be distributed 
independently with each other, then 

u(m - 2) - u(rn - ( N  1)) u ( i )  
(5) N-2  I 4 PI> 112) 

Here u(x) denotes the unit step function. Using Bayes' 
theorem, one can therefore express the joint posterior dis- 
tribution as 

P h  i, PI. fiz I4 
cc u(I)[u(m - 2) - u(m - (N - I))] 

From the Bayesian perspective, the overall inferences 
which can be made about m from the observation data d 
are summarised in its marginal posterior distribution, 
which results from integrating out the nuisance param- 
eters 2, pl, p z  from the joint distribution. That is 

(7) 
Consider the following integral 

The presence of the absolute value sign in the formula 
obviously has made an otherwise easy integration very 
diffcult. To circumvent this a novel solution is devised 
which divides the integration interval of pl into a series 
of subintervals in accordance with the magnitude of the 
data samples {di}. The integral is to be re-evaluated on 
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these subintervals separately and subsequently summed 
up. First, let dl !& {di}, for 1 < i < m and d2 4 (dm+,}. 
for 1 < j < N - m. Moreover, dl  and d2 are subject to 
the constraint such that their respective entries are 
arranged in an ascending fashion, 

dl i  < d l i + l  for any i E [I, m - I ]  

and 

d2, < d2,+ 

n A N - m  (10) 

for any j E [l. n - 11 (9) 
where 

It is readily observed from the definitions that data 
vectors dl  and d2 are functions of m and the com- 
bination of the two represents just the re-ordered version 
of the original data vector d. Although the value of rn is 
yet to be estimated, a value can be tentatively assigned to 
it which then yields a corresponding pair of dl  and d2. 
The posterior density for m can thus be evaluated at this 
particular value. The algorithm works by exhaustively 
evaluating the posterior density at all possible values of 
m. The optimal estimate of m is the one that results in the 
maximum value of the posterior density. 

Following the definitions of dl, the integral of pl can 
be rewritten as 

. . .  

I 

where 

exp [ - ( ,f dli)/ -11 exp (m dl, , ,-I)  

( m / 4  
- , = 1  - 



When pl falls into any of the intermediate regions 
Cdli, d l i+i l ,  

Hence, 

x [exp {(2i - rn)dli+J-A} 
- exp {(2i - m)dl/-A)}] 
(2i - m/A) 

i E [l, m- 11 (18) 

One important point worthy of note is that for m even, 
the value of the expression I dli  - p1 I is constant 
inside [dl,,, , dlmi2+ J. In consequence, the above 
formula for gi is invalid when i = m/2, since the denomin- 
ator vanishes. It can however be modified to the follow- 
ing expression 

gmj2 = exp [( dl, - Ydl,)/-l,] 
r = m / Z + l  r = l  

x (dlm/2+1 - dlmi2) (19) 

Similarly, the integral with respect to p2 can be expressed 
as 

where 

- exp ((2j - n) d2j/-1}] 
( 3  - n)/l, 

j E [I ,  n - 11 (22) 

With pl and pz having been integrated out, the marginal 
posterior distribution for m is shown to be 

P(m I 4 a [u(m - 2) - u(m - ( N  - 1)11 
m 

dl, i = o  ‘=O 
1 

a [u(m - 2) - u(m - (N - l))] 

Consider the integration term inside the double summa- 
tion. Rearranging the integrand gives rise to a gamma 
integral form, i.e. if 

m 1 
c ~ ~ ’ ~  dl, - 1 dl, + d2, - 1 d2, 

r = i + l  r = l  s = j + l  r = l  

+ (2i - m)dli+ ,(2j - r1)d2~+ 

j 

c$) g i dl, - i d l ,  + d2, - x d 2 ,  
r = i + l  r = l  s=j+l s = l  

+ (2i - m)dli+,(2j - n)d2j 

m 

c!;) dl ,  - 2 dl ,  + 2 d2, - 2 d2, 
r = l  s = j + l  s = l  r = i + l  

+ (2i - m)dli2j - n)d2j+l 

m j 

r = i + l  r = l  s = j + l  s = l  
~ $ 4 ’  g 1 dl, - 2 dl ,  + 1 d2, - d2, 

+ (2i - m)dl42j - 

then 

- j‘ (2i - mM2j - n) exp {[c!;)]/-l} dl, 

- io exp { [c$)]/ - A} d l  (2i - mW2j - n) 

Finally, one arrives at the following expression for the 
posterior density of m, which is a function of m and d 
only 

p(m I d) a [u(m - 2) - u(m - (N - l))] 
r ( N  - 2){[c$)]”-’ - [c!;)]”-’ 
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3 Multiple changepoint detection 

The method developed in the previous Section can be 
easily extended to the problem of multiple changepoint 
detection. Suppose that it is known a priori that there are 
altogether T changepoints in a data vector d of length N, 
denoted by ml, m2, ..., m,. The problem can be formu- 
lated by the following model: 

[ p l + e i  l < i < m l  

( p T + ’  + e i  m,+ 1 < i < N  

Applying the same definition of dl  and d2, one can 
segment d into T + 1 subvectors: d’, d2,  ..., dT, dT+’ .  
And the entries of each subvectors are sorted in 
ascending order. Although the precise values of the set of 
changepoints are not available, a provisional set of 
changepoint values can be assigned. The resultant 
optimal estimate is the set that leads to MAP. The 
posterior distribution for the multiple changepoint is 
given by 

Aml, mz , . . . , mT Id) cc Vimi}) 9 m2fi  , _ ,  N : ~ T  

i i = l  i z = l  i r + l = l  

where V({m,}) is a function that determines the range of 
the values on which a set of T changepoints can possibly 
take. For example, when T = 2, V ( { m i } )  takes the follow- 
ing form 

v({mil) = { u h  - 2) - uCml - ( N  - 211) 

x { m 2  - (m,  + 111 - urmz - ( N  - 3111 

(33) 
Following the definitions of the last Section, one can 

Likewise, the integrand term inside the multisummation 
can be manipulated to a form with which use can be 
made of the gamma integral formulas. Summing all the 
integration results then amounts to the posterior density 
for a particular set of changepoints. Since the number of 
possible changepoint configurations are finite given N, 
the optimal set is the one among all the candidate 
changepoints that gives the maximum posterior density 
value. 

If the corrupting noise is Gaussian, it is useful to for- 
mulate the changepoint problem by adopting a general 
matrix form. For instance, one can use the following to 
formulate the double-changepoint problem. 

dl 

d m  

d m i  + 

d m ,  
d m 2  + 

d N  
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(35) 

Define G to be the matrix whose elements are chosen to 
be either 0 or 1 according to the changepoint positions. If 
the matrix G is of size N x M and the noise is assumed 
to be zero-mean Gaussian, ORuanaidh and Fitzgerald 
[4] show that 

d{mJ Id) cc 
[dTd - ~ T G ( G T c ) -  ~ G T & J - N + M ) / ~  

(36) 

In some cases, the precise number of changepoints 
present in the data may not be available a priori. It has to 
be inferred as well as the associated locations. For the 
sake of simplicity, consider the scenario where there are 
conceivably either TI or T, of changepoints in the data. 
Let M ,  and M, denote the two models which assume TI 
and T, number of changepoints, respectively. Bayesian 
inference favours whichever model has a greater posterior 
probability, i.e. 

JCdet (GTG)I 

(37) 

From Bayes’ rule, this can be rewritten as 

ddl M1)dM’) 2 ddl M2)dMZ) (38) 

The term p(dl M i )  is frequently referred to as the Bayesian 
evidence of the ith model, and it can be calculated by 

TI  

P(dl Mi) = do,,, ’ ’ .  1 mi, Id, Mi) L 
x P(w;,, . . . , ai, I Mi)  dwi,, . . . , d o ,  (39) 

where ai denotes the parameter space of the ith model. 
The product term under the multi-integration sign is 
exactly the form which the previous treatment took as 
the joint posterior density. Nevertheless, the posterior 
densities obtained previously cannot be applied directly 
in this context without some necessary modifications. 
The reason is that in the foregoing analysis, improper 
unnormalised priors were used for the parameters. It has 
been widely appreciated that in any model comparison, 
the Bayesian evidence evaluation depends significantly on 
the prior distributions specified for parameters of each 
model. If competing linear models are of different dimen- 
sionality, the use of improper uninformative priors can 
mislead one to support the model with highest dimen- 
sion. The fact that such a dependence can be rather strik- 
ing is well illustrated by the phenomenon referred to as 
the Lindley Paradox [SI. 

To overcome this difficulty, instead of assuming the 
signal levels { p i }  to be uniformly distributed over the 
entire real range, one can assume their distributions to be 
uniform over some finite ranges. There is however no 
need for 2 s  prior to be normalised. Since it is used in all 
the model formulations, the impact of its prior on the 
different model evidences is equal. Thus as far as the 
comparison of different model evidences is concerned, the 
prior specifications of common parameters are irrevelent. 

In the light of the discrete nature of the changepoint 
location parameters, the evidence expression, after 
integrating out all the other continuous parameters, is 
given by 

where S(MJ represents the size of the ith model’s discrete 
changepoint parameter space, which is the number of 
total distinct candidate changepoint positions. 
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4 Simulation results 

The performance of the proposed algorithm has been 
examined in comparison with methods based on a 
Gaussian assumption and Markov chain Monte Carlo 
algorithms, namely, the Gibbs sampler and the Metro- 
polis algorithm [3, 41. When the noise level is low, the 
differences between these methods are not appreciable, all 
of which can correctly estimate changepoint positions on 
simulated data. The advantage of the analytical approach 
manifests itself when the impulsiveness of the underlying 
noise gets severe. Consider the data shown in Fig. 1, 

0 '  

-40-d 60 80 100 
0 20 40 

Single changepoint data I 
time 

Fig. 1 

where the dotted line represents the signal component 
and the corrupting noise has a Laplacian distribution 
with A. set at 10. It can be seen from Fig. 2 that under 

r 
E 
a 

I 

chongepoint position. m 

Fig. 2 Data I :  Posterior density for single changepoint in data I using 
analytical Laplacian approach compared with that using Gaussian 
assumption 
__ analytical Laplacian 
. . . . . . . Gaussian assumption 

such an intensively impulsive noisy environment, a 
Gaussian approximation no longer serves any use. It is 
particularly vulnerable to outliers occurring towards the 
two ends of a data record, as can be indicated by the 
resultant posterior density which shows that the Gauss- 
ian assumption misinterprets a noise outlier close to the 
end of the data as a signal step change. 

Fig. 3 shows the histogram approximation to the pos- 
terior density p(m) using the Gibbs sampler and Metro- 
polis algorithm. Given the starting point (mCp), wiz), . . . , 
col"'), the Gibbs algorithm iterates the following loop: 

changepoint position. m 

Fig. 3 
Monte Carlo methods 

Data I ' histogram plot ofposterior density using Markov chain 

The vectors W O ,  col, ..., on, ... are a realisation of a 
Markov chain and converge geometrically to p(ol, . . . , 
col 1 d), as n -. CO [SI. Furthermore, U!'), mi", . . . , m~"'. . . . 
converge to doc I dj as m + 00. So far as the changepoint 
problem is concerned, four simulations are performed per 
iteration corresponding to the four individual parameters 
I., pl, p2, m. The Metropolis algorithm, which constructs 
a Markov chain whose equilibrium distribution is the 
one from which samples are intended to be drawn, is 
employed to generate samples from four conditional dis- 
tributions. As the constructed chain is typically driven by 
a random walk process, its rate of convergence tends to 
be slow. The resultant histogram, to a striking extent, 
matches almost identically with the PDF profile resulting 
from the analytical approach. The amount of computing 
power required for the Monte Carlo algorithms to attain 
such a degree of accuracy, however exceeds that for the 
analytical approach by at least a factor of 50. 

The data shown in Fig. 4 is noisier than that in Fig. 1. 
Whereas the signal element remains the same in both 

40 
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* o  
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0 20 LO 60 8C 1OC 
time 

Single changepaint data 2 Fig. 4 

cases, the noise distribution in Fig. 4 has become more 
Leptokurtic and disagrees more with a Gaussian assump- 
tion than that in Fig. 1. With reference to Fig. 5, it can be 
seen that the Gaussian approximation assignes maximum 
weights to the two end points, implicitly conveying the 
message of the absence of changepoints in the given data 
record. The analytical approach, despite failing to locate 
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the exact changepoint position, nonetheless still assignes 
considerable weight to the true changepoint. And its 
PDF profile matches well, in terms of both the multiple 

changepoint position, m 
Fig. 5 
ical Laplacian approach compared with that using Gaussian assumption 
~ analytical Laplacian 
. . . . . . . 

Data 2: posterior density for single changepoint using analyt- 

Gaussian assumption 

60 80 100 
chongepoint position, rn chongepoint position, rn 

Fig. 6 
Monte Carlo methods 

Data 2:  histogram plot of posterior density using Markov chain 

1 

0 20 40 60 80  100 
time 

-201 ’ ’ 

Fig. 7 Double changepoint data 

modes’ locations and curvatures, with the histogram 
obtained using the Monte Carlo method in Fig. 6. The 
Markov chain Monte Carlo method outperforms the 
other two in this extremely noisy case, albeit at the 
expense of computing power. The performance advantage 
achieved by it, however, is believed attributable to 
nothing fundamental other than the favourable random- 
ness occasionally resulted from the stochastic relaxation 
type of algorithm. Given a sufficiently long period of 
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time, the histogram is expected to ultimately converge to 
the same result as is given by analytical approach. 

Double-changepoint data is plotted in Fig. 7. The cor- 
responding 3D posterior densities using a Gaussian 
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Fig. 8 Posterior density using Gaussian assumption 
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Fig. 9 Posterior density using analytical Loplacian approach 

x lo-286 

Fig. 10 
points 

Data I :  posterior density under assumption of two change- 

approximation and the analytical Laplacian approach 
are shown in Figs. 8 and 9, respectively, where once again 
the robustness of the analytical method against noise 
impulses at the endpoints is evidently demonstrated. 

The formulas derived in the last Section to compute 
the Bayesian model evidence has been applied to the 
single-changepoint data shown in Fig. 1. Here it is sup- 
posed that there are just two possible models which fit 
the data, model A having a single changepoint and model 
B having two changepoints. Differentiation between these 
two cases is made by comparing their associated model 
evidences. Fig. 10 plots the posterior density under the 
assumption of two changepoints. 

Assume that all the signal-level parameters are uni- 
formly distributed in [ - 1O00, 10001. Their normalised 
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prior density can then be expressed as 

(41) 
U(& + 1000) - U(Pi - 1000) 

2000 

The ratio of the two evidences is calculated to be 

dPi) = 

= 0.0103 (42) 
One can then deduce from the above calculations that 
model A is more plausible, which is in accordance with 
the fact. 

5 Conclusion 

This paper addresses the issue of changepoint detection 
in an impulsive noisy environment, where the presence of 
a large number of outliers renders the Gaussian assump- 
tion for the noise distribution inadequate of providing 
robust estimates. Markov chain Monte Carlo methods, 
such as the Metropolis algorithm and Gibbs sampler, are 
often employed in those cases to accommodate the 
mathematical intractability posed by the use of non- 
Gaussian statistical descriptions of the additive noise. 
Nevertheless, due to the inherent random-walk nature of 
those methods, tremendous computing power is required 
and moreover convergence is difficult to monitor in the 
discrete changepoint parameter space. Sampling from 
nonGaussian densities and parameter initialisations are 
also issues that are difficult to tackle. 

To fmd an accurate and yet relatively parsimonious 
solution, an analytical approach to detecting signal 
changepoints in the presence of additive Laplacian noise 
has been proposed. It is demonstrated that at least in the 
context of DC step changes, by rearranging data samples 
with regard to their magnitude, purely analytical expres- 
sions for posterior density of changepoint locations and 
Bayesian model evidences are obtainable. This method 
can be extended to other symmetrical exponential dis- 
tributions whose mathematical expressions involve absol- 
ute value signs and whose departure from normality is 
not as great as the Laplacian. Simulation results have 
displayed superior performance of t h s  method over con- 
ventional methods, such as one which assumes that the 
noise distribution is Gaussian. 
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