
Nonparametric Statistics, 2002, Vol. 14(5), pp. 555–568

ON DETECTING CHANGE IN LIKELIHOOD
RATIO ORDERING

C. XIONGa,* and HAMMOU EL BARMIb

aDivision of Biostatistics, Washington University in St. Louis, St. Louis, MO 63110, USA;
bDepartment of Statistics, Kansas State University, Manhattan, KS 66506, USA

(Received October 2000; In final form December 2001)

This article studies the problem of testing and locating changepoints in likelihood ratios of two multinomial
probability vectors. We propose a binary search procedure to detect the changepoints in the sequence of the
ratios of probabilities and obtain the maximum likelihood estimators of two multinomial probability vectors
under the assumption that the probability ratio sequence has a changepoint. We also give a strongly consistent
estimator for the changepoint location. An information theoretic approach is used to test the equality of two
discrete probability distributions against the alternative that their ratios have a changepoint. Approximate critical
values of the test statistics are provided by simulation for several choices of model parameters. Finally, we
examine a real life data set pertaining to average daily insulin dose from the Boston Collaborative Drug
Surveillance Program and locate the changepoints in the probability ratios.
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1 INTRODUCTION

Stochastic ordering of distributions is a very important concept in the theory and application

of statistical inference. There are many different types of stochastic ordering in the literature.

Shaked and Shanthikumar [24] provided a comprehensive source for the theory of stochastic

ordering and its applications. Robertson et al. [20] gave a systematic and excellent treatment

to the general order restricted statistical inference. One of the important types of stochastic

ordering is the likelihood ratio ordering. If two distributions F and G possess density func-

tions (or mass functions) f and g, respectively, then F dominates G in the sense of likelihood

ratio ordering if f ðxÞ=gðxÞ is nondecreasing in x. This ordering is closely related to the usual

stochastic ordering defined by Lehmann [18]. Keilson and Sumita [14] and Ross [21] have

studied many of the properties of the likelihood ratio ordering and pointed out many of

its applications in stochastic scheduling, closed queueing network, biology and reliability

problems.

We restrict our attention to the case of two multinomial probability vectors. Let p ¼

ðp1; p2; . . . ; plÞ and q ¼ ðq1; q2; . . . ; qlÞ be two multinomial probability distributions with
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pi > 0; qi > 0; i ¼ 1; 2; . . . ; l. Dykstra et al. [9] studied the likelihood ratio test of the equal-

ity of the two multinomial probability vectors against the alternative that they are likelihood

ratio ordered. They showed that the limiting distribution of the test statistic is of Chi-bar

square type and provided the expression of the weighting values. When the null hypothesis

of the equality of the two probability vectors is rejected, it is of interest to locate the chan-

gepoints in the ratios of the probabilities. To be specific, let H0: p1=q1 ¼ p2=q2 ¼ � � � ¼ pl=ql
and Ha: p1=q1 � p2=q2 � � � � � pl=ql. Assume that H0 is rejected, the problem we consider

here is that of estimating the changepoints in the sequence ðp1=q1; p2=q2; . . . ; pl=qlÞ. We pro-

vide strongly consistent estimators of the changepoints and use an information theoretic

approach to test H0 against the alternative that there are some changepoints in the ratios

of probabilities.

The problem of detecting changepoints from the sequence p1=q1 � p2=q2 � � � � � pl=ql is

of interest in several aspects. First, these changepoints not only give the configuration of the

probability ratios under likelihood ratio ordering, but also provide important information on

the comparison of two probability vectors. For example, if k1 is the first changepoint, then

p1=q1 ¼ p2=q2 ¼ � � � ¼ pk1
=qk1

< 1, hence, pi < qi for i � k1. Likewise, if ks is the final

changepoint, then pksþ1=qksþ1 ¼ pksþ2=qksþ2 ¼ � � � ¼ pl=ql > 1, i.e., pi > qi for i > ks.

Second, in a 2 by l two-way classification contingency table, if we assume that p and q

are the conditional probability distribution of the column classification variable on row 1

and row 2, respectively, then pi=qi � piþ1=qiþ1 holds if and only if the local odds ratio

ðpiqiþ1Þ=ðqipiþ1Þ � 1. Therefore, the changepoints from the probability ratios provide the

information where the local odds ratios are strictly less than 1. Third, in a competing-risks

model studied by Dykstra et al. [10], the probability ratios correspond to the ratios between

two cause-specific hazard rates. Thus, the changepoints from the probability ratios present

information on the comparison between cause-specific hazard rates.

The classic change point problem is to estimate the time point where a sequence of random

variables changes the distribution. The problem of changepoint has been studied by many

authors. Chernoff and Zacks [8] proposed an estimator to estimate the current mean of a

normal distribution which is subject to changes in time. Kander and Zacks [15] provided

test procedures for possible changes in parameters of distributions. Scariano and Watkins

[22] presented three classes of change-point estimators and gave their asymptotic properties.

Pettitt [19] considered a nonnormalized version of Wilcoxon statistics for the detection of

change points. Antoch and Hušková [3] proposed a class of change-point estimators and stu-

died the limiting distributions of the estimators and their bootstrap versions. Zacks [29, 30]

and Brodsky and Darkhovsky [4] surveyed the recent developments in nonparametric and

Bayesian approaches to change-point detection. Chatterjee and Bandyopadhyay [6] provided

a specific testing procedure for testing a possible change-point in time from a sequence of

distributions. Sen [23] incorporated a time-dependent coefficients model in the formulation

of change-point models in survival analysis and presented the relevant statistical methodol-

ogy. Siegmund [25] gave a confidence set estimation of a change-point when observations are

from an exponential family. Haccou et al. [13] studied the likelihood ratio test for a change-

point for exponentially distributed random variables and derived the explicit asymptotic null-

distribution of the test statistic. Gardner [11] and Chen and Gupta [7] proposed procedures to

search for changepoints in terms of the location and variance parameters in a Gaussian

model. Giraitis et al. [12] studied the hypothesis test of a change-point when the observations

are correlated. Lavielle and Ludeña [17] used some maximal inequalities for quadratic forms

and studied the detection of multiple change-points in the spectrum of a second-order

stationary random process. Zacks [31, 32] developed a sequential testing procedure for

testing reliability systems having a random number of change points in their hazard rate

functions. Anruka [2] used an information criterion to detect the correct configuration of a
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sequence of order-constrained parameters from a sequence of distributions. Xiong and

Milliken [28] proposed a testing procedure to detect the correct configuration of two

stochastically ordered multinomial probability vectors.

Although the problem of changepoint has been studied by many authors, we are not aware

of any estimates and tests in the literature specifically designed to detect the changepoints

in the sequence of probability ratios. In this article we address this estimation and testing

problem for two multinomial distributions.

More generally, we define the following hypotheses:

H0:
p1

q1

¼
p2

q2

¼ � � � ¼
pl

ql
;

H1 � H0:
p1

q1

¼ � � � ¼
pk1

qk1

6¼
pk1þ1

qk1þ1

¼ � � � ¼
pks
qks

6¼
pksþ1

qksþ1

¼ � � � ¼
pl

ql
;

H2 � H0:
p1

q1

¼ � � � ¼
pk1

qk1

<
pk1þ1

qk1þ1

¼ � � � ¼
pks
qks

<
pksþ1

qksþ1

¼ � � � ¼
pl

ql
;

where s is the unknown number of changepoints and k1 < k2 < � � � < ks are unknown posi-

tions of the changepoints.

Vostrikova [27] proposed a method, known as binary segmentation procedure, to detect the

number of changepoints in a multidimentional random process. We use the similar idea and

propose the following similar steps to find the number of changepoints and locate the posi-

tions of changepoints in the sequence of likelihood ratios.

Step 1 Test H0: p1=q1 ¼ p2=q2 ¼ � � � ¼ pl=ql against H1 � H0: p1=q1 ¼ � � � ¼ pk1
=qk1

6¼

pk1þ1=qk1þ1 ¼ � � � ¼ pl=ql. Notice that k1 is the only changepoint in the alternative hypothesis.

If H0 is accepted, then there is no changepoint. Otherwise, estimate k1 and go to Step 2.

Step 2 From the two subsequences, fp1=q1; . . . ; pk1
=qk1

g and fpk1þ1=qk1þ1; . . . ; pl=qlg,
detect a changepoint by using the method in Step 1, respectively. (when k1 ¼ 1 or l � 1, only

one subsequence should be considered). In doing so, one should condition on the appropriate

sub-sample space of the two multinomial distributions. For example, when l � 1 > k1 > 1, to

detect a changepoint from the subsequence fp1=q1; . . . ; pk1
=qk1

g, one should test

H0:
p1qðk1Þ

q1pðk1Þ

¼
p2qðk1Þ

q2pðk1Þ

¼ � � � ¼
pk1

qðk1Þ

qk1
pðk1Þ

against

H1 � H0:
p1qðk1Þ

q1pðk1Þ

¼ � � � ¼
pk2

qðk1Þ

qk2
pðk1Þ

6¼
pk2þ1qðk1Þ

qk2þ1pðk1Þ

� � � ¼
pk1

qðk1Þ

qk1
pðk1Þ

with unknown position 1 � k2 < k1, where pðk1Þ ¼
Pk1

i¼1 pi and qðk1Þ ¼
Pk1

i¼1 qi.

Step 3 The above process continues until there exists no more changepoint in any of the

subsequences.

When the likelihood ratio ordering is assumed between p ¼ ðp1; p2; . . . ;PlÞ and q ¼ ðq1; q2;
. . . ; qlÞ, to detect the changepoints, one should then test H0: p1=q1 ¼ p2=q2 ¼ � � � ¼ pl=ql
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against H2 � H0: p1=q1 ¼ � � � ¼ pkl=qkl < pk1þ1=qk1þ1 ¼ � � � ¼ pk2
=qk2

� � � < pksþ1=qksþ1 ¼

� � � ¼ pl=ql. Similar three steps as above can be used to find the number of changepoints and

to locate these changepoints.

When data are used to perform the proposed sequential process, the overall significance

level for the entire process is always less than the minimum of the significance levels

from all the test steps used in the sequential process. To be more specific, let s

ð1 � s � l � 1Þ be the (random) number of changepoints detected by the sequential process.

Assume that the rejection region for testing H0 against Hi; i ¼ 1; 2, from the tth step in the

sequential process is Rt; 1 � t � l � 1. The whole rejection region for detecting all s chan-

gepoints in the entire process is Rs ¼ ð\s
t¼1R

tÞ \ ðRsþ1Þ
0. Therefore, the overall significance

level is

PðRsjH0Þ � min
1�t�s

PðRtjH0Þ:

The above three-step process reduces the problem of detecting many changepoints into the

problem of detecting a single changepoint in the probability ratio sequence. Therefore, in

this article, we should be focusing on testing the following hypothesis: (we still use the

same notations H0, H1 and H2)

H0:
p1

q1

¼
p2

q2

¼ � � � ¼
pl

ql
;

H1 � H0:
p1

q1

¼ � � � ¼
pk0

qk0

6¼
pk0þ1

qk0þ1

¼ � � � ¼
pl

ql
;

H2 � H0:
p1

q1

¼ � � � ¼
pk0

qk0

<
pk0þ1

qk0þ1

¼ � � � ¼
pl

ql
:

where k0 is the unknown position of the changepoint.

Our approach is based on the information criterion introduced by Akaike [1], which is also

closely related to the likelihood principle. In fact, our approach is also similar to that of

Anruka [2] and Xiong and Milliken [28]. But there are differences between our approach

and that of Anruka [2] and Xiong and Milliken [28]. While Anruka [2] searched for a dif-

ferent bias correction term of information criterion which incorporates the simple order con-

straint among model parameters of the exponential family, this article looks for the

asymptotically unbiased Akaike information criterion up to a certain order. On the other

hand, although Xiong and Milliken [28] considered similar asymptotically unbiased

Akaike information criterion, this paper deals with the constraint of likelihood ratio ordering

which is much stronger than the usual stochastic ordering that they considered. We point out

that other approaches such as Schwartz’s Bayesian Information Criterion and Hannan=Quinn

Information Criterion can also be used to tackle our problem and will pursue the research in

that direction in our future work. In Section 2, we derive the maximum likelihood estimates

for p and q and the asymptotically unbiased information criterion up to the order ðmþ nÞ�1

under H0;H1 � H0 and H2 � H0 when k0 is assumed known. In Section 3 we give an

estimate for k0 under Hi � H0 ði ¼ 1; 2Þ and prove the strong consistency of the estimator.

We also test H0 against Hi � H0; ði ¼ 1; 2Þ, in Section 3 and give approximate critical values

for the test statistics under H0 through a simulation study for selected model parameters. In

Section 4, we demonstrate our testing and estimation procedures using a real data set origin-

ally studied by Dykstra et al. [9] pertaining to average daily insulin dose for patients with and

without hypoglycemia.
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2 MLE AND ASYMPTOTICALLY UNBIASED INFORMATION CRITERION

WITH KNOWN k0

2.1 Maximum Likelihood Estimates

Throughout Section 2.1 we assume that k0 is known. We assume that a random sample of size

m and a random sample of size n are independently taken from multinomial distributions

with probability vectors p ¼ ðp1; p2; . . . ; plÞ and q ¼ ðq1; q2; . . . ; qlÞ, respectively. Let

ðm1;m2; . . . ;mlÞ and ðn1; n2; . . . ; nlÞ be the corresponding observed frequencies. The likeli-

hood as a function of p and q is

Lðp; qÞ /
Yl
i¼1

p
mi

i q
ni
i :

The MLEs of p and q under H0 are given by p̂pð0Þ and q̂qð0Þ when bpipið0Þ ¼ bqiqið0Þ ¼
ðmi þ niÞ=ðmþ nÞ; i ¼ 1; 2; . . . ; l. To find the MLEs under H1, we introduce the same para-

metrization as in Dykstra et al. [9]. Let yi ¼ mpi=ðmpi þ nqiÞ and fi ¼ mpi þ nqi for

i ¼ 1; 2; . . . l, so that pi ¼ yifi=m and qi ¼ fið1 � yiÞ=n. The restrictions on the new para-

meters are 0 � yi � 1, fi � 0,
Pl

i¼1 fi ¼ mþ n and
Pl

i¼1 yifi ¼ m. In terms of the new

parameters, the likelihood function Lðp; qÞ is proportional to

y
mðk0 Þ

1 ð1 � y1Þ
nðk0 Þy

m�mðk0 Þ

l ð1 � ylÞ
n�nðk0 Þ

Yl
i¼1

fmiþni
i

where mðk0Þ ¼
Pk0

i¼1 mi and nðk0Þ ¼
Pk0

i¼1 ni.

Note that the likelihood function factors into two parts, the first part involving only y1 and

yl and the other only f0
is. The two parts can be maximized independently and we get

bfifi
ð1Þ

¼ mi þ ni;by1y1
ð1Þ

¼
mðk0Þ

mðk0Þ þ nðk0Þ

;

bylyl ð1Þ ¼ m� mðk0Þ

m� mðk0Þ þ n� nðk0Þ

:

Thus, the MLEs of p and q under H1 are given by p̂pð1Þ and q̂qð1Þ when

bpipið1Þ ¼ ðmi þ niÞmðk0Þ

mðmðk0Þ þ nðk0ÞÞ
; for i � k0;

bpipið1Þ ¼ ðmi þ niÞðm� mðk0ÞÞ

mðm� mðk0Þ þ n� nðk0ÞÞ
; for i > k0;

bqiqið1Þ ¼ ðmi þ niÞnðk0Þ

nðmðk0Þ þ nðk0ÞÞ
; for i � k0;

bqiqið1Þ ¼ ðmi þ niÞðn� nðk0ÞÞ

nðmþ n� mðk0Þ � nðk0ÞÞ
; for i > k0:

Notice that H2 is equivalent to y1 � yl. In order to find the MLEs under H2 with known k0,

we need to maximize y
mðk0 Þ

1 ð1 � y1Þ
nðk0 Þy

m�mðk0 Þ

l ð1 � ylÞ
n�n0 in Lðp; qÞ subject to y1 � yl.
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This is the bioassay problem discussed by Robertson et al. [20] (page 32), and the solution

ðby1y1
ð2Þ;bylyl ð2ÞÞ is given by

ðby1y1
ð2Þ;bylylð2ÞÞ ¼

mðk0Þ

mðk0Þ þ nðk0Þ

;
m� mðk0Þ

mþ n� mðk0Þ � nðk0Þ

� �
; if

mðk0Þ

m
�

nðk0Þ

n

m

mþ n
;

m

mþ n

� �
; otherwise

8>><>>:
Thus, the MLEs of p and q under H2 are given by p̂pð2Þ and q̂qð2Þ when

ðbpipið2Þ;bqiqið2ÞÞ ¼ ðbpipið1Þ;bqiqið1ÞÞ; if
mðk0Þ

m
�

nðk0Þ

n
ðbpipið0Þ;bqiqið0ÞÞ; otherwise

(

for i ¼ 1; 2; . . . ; l.

2.2 Asymptotically Unbiased Information Criterion

Akaike [1] proposed the Akaike information criterion (AIC) to select and differentiate statis-

tical models. When two competing model M0 and M1 are available, the decision to accept M0

or M1 is made based on the principle of minimum information criterion. In his derivation

for AIC, Akaike [1] used log LðŷyÞ as an estimate of J ¼ EŷyEY ðlog f ðY jŷyÞÞ, where f ðY jy0Þ

is the probability density or mass function of a future sample Y, ŷy is the MLE of the

model parameter y0 (may be a vector) from a random sample X with likelihood function

LðyÞ, Y is of the same size and distribution as X, and X and Yare independent. The expectation

Eŷy is taken under the distribution of X. In fact, Akaike information criterion (AIC) is closely

related with the Kullback–Leibler’s discrimination information [16] defined as

D ¼ E log
f ðY jy0Þ

f ðY jŷyÞ

 !
¼ Eðlog f ðY jy0ÞÞ � J :

The Kullback–Leibler’s information D has the property that it is always nonnegative and

equals to 0 if and only if ŷy ¼ y0 almost surely. Therefore, the best estimator for y0 based

on the Kullback–Leibler’s information is the one which minimizes D. Since the first term

in D is an unknown constant, the minimum of D means the minimum of �J . Since �2J

has to be estimated and �2 log LðŷyÞ is not an unbiased estimator of �2J , Akaike used a cor-

rection term for the asymptotic bias and defined the Akaike information criterion as

AIC ¼ �2 log LðŷyÞ þ 2g;

where g is the number of free parameters (or the dimension) in the model. Since AIC is still

not an unbiased estimator of �2J , Sugiura [26] proposed unbiased and asymptotically

unbiased estimators of �2J up to a certain order and provided finite corrections of AIC

for several important model selection problems. We now give the asymptotically unbiased

version of AIC up to the order ðmþ nÞ�1 under H0, H1 � H0 and H2 � H0 when

k0 is known. Let ðm0
1;m

0
2; . . . ;m

0
lÞ and ðn01; n

0
2; . . . ; n

0
lÞ be the frequencies of two future

samples from p and q, respectively. Assume that ðm0
1;m

0
2; . . . ;m

0
lÞ and ðn01; n

0
2; . . . ; n

0
lÞ are
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independent of m ¼ ðm1;m2; . . . ;mlÞ and n ¼ ðn1; n2; . . . ; nlÞ. Suppose that
Pl

i¼1 mi ¼Pl
i¼1 m

0
i ¼ m;

Pl
i¼1 ni ¼

Pl
i¼1 n

0
i ¼ n; limm;n!1 n=m > 0, and let Cðm; nÞ ¼ m!n!=

ðm1!m2! � � � ml!n1!n2! � � � nl!Þ. Sugiura [26] pointed out that if X has a binomial distribution

bðk; pÞ, then

E
X � kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpð1 � pÞ

p" #2

¼ 1;

E
X � kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpð1 � pÞ

p" #3

¼
1 � 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpð1 � pÞ

p ;

E
X � kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpð1 � pÞ

p" #4

¼ 3 �
6

k
þ

1

kpð1 � pÞ
:

Thus, under H0,

J ¼ Eðp̂pð0Þ;q̂qð0ÞÞEðm0;n0ÞðlogCðm0; n0Þ þ
Xl
i¼1

ðm0
i þ n0iÞ logbqiqið0ÞÞ

¼ Eðp̂pð0Þ;q̂qð0ÞÞ½log Lðp̂pð0Þ; q̂qð0ÞÞ þ ðmþ nÞ
Xl
i¼1

ðqi �bqiqið0ÞÞ logbqiqið0Þ�
¼ Eðp̂pð0Þ;q̂qð0ÞÞ

(
log Lðp̂pð0Þ; q̂qð0ÞÞ � ðmþ nÞ

�

"Xl
i¼1

ðbqiqið0Þ � qiÞ
2

qi
�
Xl
i¼1

ðbqiqið0Þ � qiÞ
3

2q2
i

þ
Xl
i¼1

ðbqiqið0Þ � qiÞ
4

3q3
i

#)
þ Oðmþ nÞ�3=2

¼ Eðp̂pð0Þ;q̂qð0ÞÞ log Lðp̂pð0Þ; q̂qð0ÞÞ � ðl � 1Þ �
Xl
i¼1

1 � qi

2qiðmþ nÞ
þ Oðmþ nÞ�3=2:

Therefore, the asymptotically corrected AIC up to the order ðmþ nÞ�1 under H0 is

AIC0 � �2 log Lðp̂pð0Þ; q̂qð0ÞÞ þ 2ðl � 1Þ þ
Xl
i¼1

1 � qi

qiðmþ nÞ
:

Note that AIC0 ¼ AIC þ
Pl

i¼1ð1 � qiÞ=½qiðmþ nÞ�, where AIC is the classic Akaike infor-

mation criterion. The estimated asymptotically unbiased AIC0 up to the order ðmþ nÞ�1

can be obtained after replacing qi by its MLE q
ð0Þ
i .

Next, we find the asymptotically unbiased version of AIC under H1 � H0 with known k0.

Again let ðm0
1;m

0
2; . . . ;m

0
lÞ and ðn01; n

0
2; . . . ; n

0
lÞ be the frequencies of two future samples from
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p and q independent of ðm1;m2; . . . ;mlÞ and ðn1; n2; . . . ; nlÞ, respectively. Suppose thatP
mi ¼

P
m0

i ¼ m and
P

ni ¼
P

n0i ¼ n. Under H1 � H0,

J ¼ Eðp̂pð1Þ;q̂qð1ÞÞEðm0;n0ÞðlogCðm0; n0Þ þ
Xl
i¼1

ðm0
i log bpipið1Þ þ n0i log bqiqið1ÞÞÞ

¼ Eðp̂pð1Þ;q̂qð1ÞÞ

(
log Lðp̂pð1Þ; q̂qð1ÞÞ þ

Xk0

i¼1

ðmpi � miÞ log
mðk0Þn

mnðk0Þ

� �

þ
Xl

i¼k0þ1

ðmpi � miÞ log
m� mðk0Þ

n� nðk0Þ

� �

þ
Xk0

i¼1

ðmpi þ nqi � mi � niÞ log
nðk0Þðmi þ niÞ

mðk0Þ þ nðk0Þ

� �

þ
Xl

i¼k0þ1

ðmpi þ nqi � mi � niÞ log ðn� nðk0ÞÞðmi þ niÞ
� �

�
Xl

i¼k0þ1

ðmpi þ nqi � mi � niÞ log ðmþ n� mðk0Þ � nðk0ÞÞ

)

¼ Eðp̂pð1Þ;q̂qð1ÞÞ log Lðp̂pð1Þ; q̂qð1ÞÞ � 2 �
Xl
i¼1

mpið1 � piÞ þ nqið1 � qiÞ

mpi þ nqi

þ
ðmþ nÞmpðk0Þð1 � pðk0ÞÞ

ðmpðk0Þ þ nqðk0ÞÞðmþ n� mpðk0Þ � nqðk0ÞÞ

þ
ðmþ nÞnqðk0Þð1 � qðk0ÞÞ

ðmpðk0Þ þ nqðk0ÞÞðmþ n� mpðk0Þ � nqðk0ÞÞ

þ
2qðk0Þ � 1

2nqðk0Þð1 � qðk0ÞÞ
þ

2pðk0Þ � 1

2mpðk0Þð1 � pðk0ÞÞ

� ½mpðk0Þð1 � pðk0ÞÞð1 � 2pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞð1 � 2qðk0ÞÞ�

�
1

2ðmþ n� mpðk0Þ � nqðk0ÞÞ
2
þ

1

2ðmpðk0Þ þ nqðk0ÞÞ
2

( )

þ
Xl
i¼1

mpið1 � piÞð1 � 2piÞ þ nqið1 � qiÞð1 � 2qiÞ

2ðmpi þ nqiÞ
2

þ
½mpðk0Þð1 � pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞ�

2

ðmpðk0Þ þ nqðk0ÞÞ
3

þ
½mpðk0Þð1 � pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞ�

2

ðmþ n� mpðk0Þ � nqðk0ÞÞ
3

�
Xl
i¼1

½mpið1 � piÞ þ nqið1 � qiÞ�
2

ðmpi þ nqiÞ
3

þ Oðmþ nÞ�3=2:

Thus, the asymptotically corrected AIC under H1 � H0 up to the order ðmþ nÞ�1 is

AIC1ðk0Þ ¼ AICðk0Þ � 2

(
2qðk0Þ � 1

2nqðk0Þð1 � qðk0ÞÞ
þ

2pðk0Þ � 1

2mpðk0Þð1 � pðk0ÞÞ

� ½mpðk0Þð1 � pðk0ÞÞð1 � 2pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞð1 � 2qðk0ÞÞ�
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�
1

2ðmþ n� mpðk0Þ � nqðk0ÞÞ
2
þ

1

2ðmpðk0Þ þ nqðk0ÞÞ
2

( )

þ
Xl
i¼1

mpið1 � piÞð1 � 2piÞ þ nqið1 � qiÞð1 � 2qiÞ

2ðmpi þ nqiÞ
2

þ
½mpðk0Þð1 � pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞ�

2

ðmpðk0Þ þ nqðk0ÞÞ
3

þ
½mpðk0Þð1 � pðk0ÞÞ þ nqðk0Þð1 � qðk0ÞÞ�

2

ðmþ n� mpðk0Þ � nqðk0ÞÞ
3

�
Xl
i¼1

½mpið1 � piÞ þ nqið1 � qiÞ�
2

ðmpi þ nqiÞ
3

)
;

where AICðk0Þ ¼ �2 log Lðp̂pð1Þ; q̂qð1ÞÞ þ 2l is the classic Akaike information criterion with

changepoint k0. Notice that the MLEs ðp̂pð2Þ; q̂qð2ÞÞ of p and q under H2 � H0 are exactly

the same as the MLEs ðp̂pð1Þ; q̂qð1ÞÞ under H1 � H0 when mðk0Þ=m � nðk0Þ=n. SincePk0

i¼1 pi <
Pk0

i¼1 qi under H2 � H0, the strong law of large numbers assures that

mðk0Þ=m � nðk0Þ=n almost surely when m and n are large. Thus, the asymptotically corrected

AIC under H2 � H0, denoted AIC2ðk0Þ, has the same form as AIC1ðk0Þ, except that

�2 log Lðp̂pð1Þ; q̂qð1ÞÞ should be changed to �2 log Lðp̂pð2Þ; q̂qð2ÞÞ in the formula of AIC1ðk0Þ.

Again, in practice, ðp̂pðiÞ; q̂qðiÞÞ should be used for the unknown parameters p and q in the com-

putation of AICiðk0Þ; i ¼ 1; 2.

3 INFERENCES

When the changepoint k0 is known, testing H0 vs. H1 � H0 (or H2 � H0Þ is a relatively easy

task as the asymptotic distribution of likelihood ratio test statistics is well known. We state

these results in the following theorem.

THEOREM 1 When H0 is true; for any t > 0;

lim
m;n!1

Pð2 log Lðp̂pð1Þ; q̂qð1ÞÞ � 2 log Lðp̂pð0Þ; q̂qð0ÞÞ � tÞ ¼ Pðw2ð1Þ � tÞ ð1Þ

lim
m;n!1

Pð2 log Lðp̂pð2Þ; q̂qð2ÞÞ � 2 log Lðp̂pð0Þ; q̂qð0ÞÞ � tÞ ¼
1

2
Pðw2ð1Þ � tÞ ð2Þ

Proof Equation (1) is from the classical asymptotic theory. To prove (2), we realize that

there is only one inequality constraint in the hypothesis H2 and apply Theorem 3.1 from

Dykstra et al. [9] to obtain (2).

When the changepoint k0 in H1 � H0 (or H2 � H0) is unknown, we use the information

criterion to test H0 against H1 � H0 (or H2 � H0) and to estimate k0. Let AIC0 be the infor-

mation criterion under H0, and let AIC1ðkÞ and AIC2ðkÞ be the information criterion

under H1 � H0 and H2 � H0 when the changepoint is k, respectively. According to the

principle of minimum information criterion, we should fail to reject H0 if AIC0 �

min1�k�l�1 AICiðkÞ; i ¼ 1; 2. Hence, H0 should be rejected when there is at least one k

such that AICiðkÞ < AIC0ðkÞ; i ¼ 1; 2. When H0 is rejected, we appeal to the principle of
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information criterion again and estimate the real position of the changepoint k0 in

Hi � H0; i ¼ 1; 2, by bkiki such that

AICið
bkikiÞ ¼ min

1�k�l�1
AICiðkÞ: ð3Þ

The following theorem gives the consistency of bkiki.
THEOREM 2 Suppose that H1 � H0 ðor H2 � H0Þ is the correct model with the correct

changepoint at position k0; and limm;n!1 n=ðmþ nÞ ¼ l with 0 < l < 1. If bk1k1 ðbk2k2Þ is defined

by ð3Þ; then bk1k1 ðor bk2k2Þ is a strongly consistent estimator of k0.

Proof We prove the consistency of bk1k1. The proof for the consistency of bk2k2 is very similar.

Let p1 ¼ p1=q1 ¼ � � � ¼ pk0
=qk0

and p2 ¼ pk0þ1=qk0þ1 ¼ � � � ¼ pl=ql. We proceed by con-

sidering two different situations. When k > k0, as m; n ! 1,

½AIC1ðk0Þ � AIC1ðkÞ�

ð2mÞ

¼
1

m

� �(Xk
i¼1

mi log
mðkÞ

nðkÞ

� �
�
Xk0

i¼1

mi log
mðk0Þ

nðk0Þ

� �

þ
Xl
i¼kþ1

mi log
m� mðkÞ

n� nðkÞ

� �
�

Xl
i¼k0þ1

mi log
m� mðk0Þ

n� nðk0Þ

� �

þ
Xk
i¼1

ðmi þ niÞ log
nðkÞ

mðkÞ þ nðkÞ

� �
�
Xk0

i¼1

ðmi þ niÞ log
nðk0Þ

mðk0Þ þ nðk0Þ

� �

þ
Xl
i¼kþ1

ðmi þ niÞ log
n� nðkÞ

mþ n� mðkÞ � nðkÞ

� �

�
Xl

i¼k0þ1

ðmi þ niÞ log
n� nðk0Þ

mþ n� mðk0Þ � nðk0Þ

� �)
þ O

1

m

� �
!
a:s:

pðkÞ � log
qðkÞ

pðkÞ

� �
þ 1 þ

ðl=ð1 � lÞÞqðkÞ
pðkÞ

� �
log

qðkÞ

ð1 � lÞpðkÞ þ lqðkÞ

� �� 	
� pðk0Þ log p1 � ðpðkÞ � pðk0ÞÞ log p2 þ pðk0Þ þ

lqðk0Þ

1 � l

� �
log½ð1 � lÞp1 þ l�

þ 1 þ
l

ð1 � lÞp2

� �
ðpðkÞ � pðk0ÞÞ log½ð1 � lÞp2 þ l�:

Since

� log
qðkÞ

pðkÞ

� �
þ

1 þ ðl=ð1 � lÞÞqðkÞ
pðkÞ

� �
log

qðkÞ

ð1 � lÞpðkÞ þ lqðkÞ

� �

is a convex function in qðkÞ=pðkÞ and

qðkÞ

pðkÞ
¼

pðk0Þ

pðkÞ

� �
1

p1

� �
þ 1 �

pðk0Þ

pðkÞ

� �
1

p2

� �
;
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it follows that

pðkÞ � log
qðkÞ

pðkÞ

� �
þ 1 þ

ðl=ð1 � lÞÞqðkÞ
pðkÞ

� �
log

qðkÞ

ð1 � lÞpðkÞ þ lqðkÞ

� �� 	
< pðk0Þ logðp1Þ þ ðpðkÞ � pðk0ÞÞ log p2 � pðk0Þ þ

lqðk0Þ

1 � l

� �
log½ð1 � lÞp1 þ l�

� 1 þ
l

ð1 � lÞp2

� �
½pðkÞ � pðk0Þ� log½ð1 � lÞp2 þ l�:

Thus, when k > k0, AIC1ðkÞ � AIC1ðk0Þ > 0 almost surely when m and n are sufficiently

large. So, almost surely, lim sup bk1k1 � k0. Similarly, when k < k0,

½AIC1ðk0Þ � AIC1ðkÞ�

2m
�!
a:s:

ð1 � pðkÞÞ

(
� log

1 � qðkÞ

1 � pðkÞ

� �
þ 1 þ

ðl=ð1 � lÞÞð1 � qðkÞÞ

1 � pðkÞ

� �

� log
1 � qðkÞ

ð1 � lÞð1 � pðkÞÞ þ lð1 � qðkÞÞ

� �)
� ð1 � pðk0ÞÞ log p2

þ 1 � pðk0Þ þ
ð1 � qðk0ÞÞl

1 � l

� �
log½ð1 � lÞp2 þ l� þ ðpðkÞ � pðk0ÞÞ log p1

þ 1 þ
l

ð1 � lÞp1

� �
ðpðk0Þ � pðkÞÞ log½ð1 � lÞp1 þ l�:

Using the fact that � logðð1 � qðkÞÞ=ð1 � pðkÞÞÞ þ½1 þ ðl=ð1 � lÞÞð1 � qðkÞÞ=ð1 � pðkÞÞ� �

log½ð1 � qðkÞÞ=½ð1 � lÞð1 � pðkÞÞ þ lð1 � qðkÞÞ�� is a convex function of ð1 � qðkÞÞ=ð1 � pðkÞÞ

and ð1 � qðkÞÞ=ð1 � pðkÞÞ ¼ ½ð1 � pðk0ÞÞ=ð1 � pðkÞÞ�ð1=p2Þþ ½1� ð1 � pðk0ÞÞ=ð1 � pðkÞÞ�ð1=p1Þ,

we conclude that AIC1ðkÞ� AIC1ðk0Þ > 0 when m and n are sufficiently large, which

then implies that almost surely lim inf bk1k1 � k0. This proves the consistency of bk1k1.

Although the principle of information criterion gives us very simple and easy to use deci-

sion rule for testing H0 against Hi � H0; i ¼ 1; 2, it does not give the significance level for

the test. When the AICs from H0 and Hi do not have much difference, a decision based on the

above simple decision rule may be very risky since the slight difference between the AICs

from H0 and Hi might be caused due to the random noise from the data. In order to control

the significance level of the test, we modify our decision rule for testing H0 against Hi � H0

to give a test of significance level a as follows: rejecting H0 if AIC0 � min1�k�l�1

AICiðkÞ þ ca, where ca is chosen such that

PðAIC0 � min
1�k�l�1

AICiðkÞ � cajH0Þ ¼ a:

The computation of ca depends on the distribution of AIC0 � min1�k�l�1 AICiðkÞ under H0.

Since the exact distribution and the asymptotic distribution of AIC0 � min1�k�l�1 AICiðkÞ

under H0 is not easy to obtain, we use simulations to approximate the critical points. For

a set of chosen m, n and l, we simulate 10,000 samples under H0 when all probabilities

are assumed equal, and compute the same number of test statistics AIC0 � min1�k�l�1

AICiðkÞ and locate the sample approximation of ca. This process is repeated 30 times, and

the mean and the standard deviation of 30 ca’s are reported. Table I presents the approximate

critical points ca for different choices of sample sizes m ¼ n and l ¼ 5 when all probabilities
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in H0 are assumed equal. The first row in Table I is the approximate critical values for testing

H0 against H1 � H0 and the second row for testing H0 against H2 � H0. The number inside

the parenthesis is the standard deviation from 30 replicates.

In practice, since H0 does not specify the common probability vector, we recommend that

one use the MLEs p̂pð0Þð¼ q̂qð0ÞÞ under H0 in the simulation of the cut-off points of the test

statistics. The strong consistence of p̂pð0Þð¼ q̂qð0ÞÞ makes the simulated cut-off points close

to the true ones when sample sizes are large.

4 EXAMPLE

We use the data set studied by Dykstra et al. [9] to demonstrate our estimation and testing

procedures. This data set is originally discussed in a report from the Boston Collaborative

Drug Surveillance Program [5]. The data set consists of observed values for the mean

daily insulin dose from 80 subjects categorized as ‘‘hypoglycemia present’’ and 245 subjects

from the population ‘‘hypoglycemia absent’’. The measurements are grouped into five

ordered categories and are shown in Table II.

Let fpig
5
i¼1 be the probabilities of five insulin levels when hypoglycemia is present, and

fqig
5
i¼1 be the probabilities of five insulin levels when hypoglycemia is absent. One would

expect that hypoglycemia (low blood sugar) occur when large amounts of glucose are meta-

bolized and hence would be consistent with higher levels of insulin dosage. Dykstra et al. [4]

tested p1=q1 ¼ p2=q2 ¼ � � � ¼ p5=q5 against p1=q1 � p2=q2 � � � � � p5=q5 and concluded

that there is strong evidence supporting the likelihood ratio ordering hypothesis over equality

of the distributions. We would like to further locate the changepoints in the likelihood ratios.

We use the binary segmentation procedure and first test H0: p1=q1 ¼ p2=q2 ¼ � � � ¼ p5=q5

TABLE II Mean Daily Insulin Dose.

Insulin level 1 (<0.25) 2 (0.25–0.49) 3 (0.50–0.74) 4 (0.75–0.99) 5 (�1.00)

Hypo. present 4 21 28 15 12
Hypo. absent 40 74 59 26 46

TABLE I Approximate Critical Values of AIC07min1� k� l7 1 AICi(k).

m¼ n a¼ 1% a¼ 2.5% a¼ 5% a¼ 10%

50 7.013(0.190) 5.189(0.142) 3.878(0.064) 2.606(0.104)
5.644(0.222) 3.891(0.097) 2.594(0.123) 1.308(0.042)

60 7.311(0.280) 5.507(0.155) 4.032(0.059) 2.690(0.076)
5.851(0.223) 4.031(0.103) 2.689(0.097) 1.362(0.055)

70 7.336(0.259) 5.472(0.096) 3.986(0.089) 2.716(0.049)
5.892(0.185) 4.023(0.114) 2.711(0.101) 1.388(0.075)

80 7.253(0.174) 5.418(0.132) 3.997(0.100) 2.645(0.080)
5.862(0.193) 3.995(0.139) 2.671(0.104) 1.336(0.079)

90 7.318(0.224) 5.429(0.134) 4.006(0.083) 2.640(0.044)
5.859(0.223) 3.972(0.083) 2.637(0.071) 1.333(0.048)

100 7.188(0.182) 5.408(0.086) 4.018(0.073) 2.671(0.040)
5.803(0.226) 4.035(0.116) 2.684(0.062) 1.399(0.060)

200 7.088(0.252) 5.291(0.171) 3.966(0.068) 2.625(0.050)
5.727(0.209) 3.958(0.088) 2.632(0.086) 1.348(0.052)
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against H2 � H0: p1=q1 ¼ � � � ¼ pk1
=qk1

< pk1þ1=qk1þ1 ¼ � � � ¼ p5=q5 for some unknown

1 � k1 � 4. Table III presents the computed AIC under Hi; i ¼ 0; 2.

Let D ¼ AIC0 � min1�k�l�1 AIC2ðkÞ ¼ max1�k�4ðAIC0 � AIC2ðkÞÞ. The computed D is

5.65. To find the approximate critical value for D, we use the MLE p̂pð0Þ ¼ q̂qð0Þ and simulate

10,000 samples under H0 when m ¼ 80 and n ¼ 245 and locate the sample percentiles of D
from the 10,000 observations. This process is repeated 30 times. The mean of the thirty

97.5th percentiles of the test statistics based on AIC is 4.331 with a standard deviation of

0.118. Thus, H0 is rejected at 2.5% significance level, and the estimate for the changepoint

is k1 ¼ 1 as it gives the minimum AIC2. Following the binary segmentation procedure, we

further locate changepoints for the subsequence when 2 � i � 5. We test H0: p2

P5
i¼2 qi=

ðq2

P5
i¼2 piÞ ¼ p3

P5
i¼2 qi=ðq3

P5
i¼2 piÞ ¼ p4

P5
i¼2 qi=ðq4

P5
i¼2 piÞ ¼ p5

P5
i¼2 qi=ðq5

P5
i¼2 piÞ

against H2 � H0: there is an increase at some 2 � k2 � 4 for the sequence

fpi
P5

t¼2 qt=ðqi
P5

t¼2 ptÞg
5
i¼2. Conditioning on 2 � i � 5, we compute AIC under H0

and H2. Table IV presents these computation results.

The test statistics for testing H0 vs: H2 � H0 based on AIC is 1.77. We again locate the

sample percentiles of the test statistics under H0 by repeatedly simulating 10,000 samples

of sizes 76 and 205 from p and q under H0 and computing the test statistics. The mean of

the thirty 70th percentiles of the test statistics based on AIC is 2.202 with a standard devia-

tion of 0.014. Thus we fail to reject H0 at 30% significance level. In conclusion, among five

insulin levels, there is only one significant increase in likelihood ratios and that increase is

from level 1 to level 2.
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