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A UNIFIED APPROACH TO STRUCTURAL CHANGE TESTS BASED
ON ML SCORES, F STATISTICS, AND OLS RESIDUALS

Achim Zeileis � Department of Statistics and Mathematics, Wirtschaftsuniversität
Wien, Wien, Austria

� Three classes of structural change tests (or tests for parameter instability) that have been
receiving much attention in both the statistics and the econometrics communities but have been
developed in rather loosely connected lines of research are unified by embedding them into the
framework of generalized M -fluctuation tests (Zeileis and Hornik, 2003).

These classes are tests based on maximum likelihood scores (including the Nyblom–Hansen
test), on F statistics (sup F , ave F , exp F tests), and on OLS residuals (OLS-based CUSUM
and MOSUM tests). We show that (representatives from) these classes are special cases of the
generalized M -fluctuation tests, based on the same functional central limit theorem but employing
different functionals for capturing excessive fluctuations.

After embedding these tests into the same framework and thus understanding the
relationship between these procedures for testing in historical samples, it is shown how the tests
can also be extended to a monitoring situation. This is achieved by establishing a general
M -fluctuation monitoring procedure and then applying the different functionals corresponding
to monitoring with ML scores, F statistics, and OLS residuals. In particular, an extension of
the sup F test to a monitoring scenario is suggested and illustrated on a real-world data set.
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1. INTRODUCTION

Methods for detecting structural changes or parameter instabilities
in parametric models, typically (linear) regression models, have been
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receiving much attention in both the econometrics and the statistics
communities. Various classes of tests emerged that have been developed
focusing on different properties

• ML scores. Nyblom (1989) derived an LM test based on maximum
likelihood (ML) scores for the alternative that the parameters follow a
random walk, which was extended by Hansen (1992) to linear regression
models. Recently, Hjort and Koning (2002) suggested a general class of
ML score-based structural change tests (without mentioning explicitely
that this generalizes the Nyblom–Hansen test).

• F statistics. The class of tests based on F statistics (Wald, LR, and LM
test statistics) has been developed for the alternative of a single shift at
an unknown timing. The asymptotic theory was established for models
estimated by generalized methods of moments (GMM) by Andrews
(1993) focusing on the intuitive sup F test and extended by Andrews
and Ploberger (1994), who showed that the ave F and exp F tests enjoy
certain optimality properties.

• Fluctuation tests. Starting from the recursive CUSUM test of Brown et al.
(1975), a large variety of fluctuation tests for structural change in linear
regression models estimated by ordinary least squares (OLS) have been
suggested (see Kuan and Hornik, 1995, for an overview). These tests
are typically derived without having a particular pattern of deviation
from parameter stability in mind and have been emphasized to be also
suitable as an explorative tool. In particular, fluctuation tests based on
OLS residuals like the OLS-based CUSUM and MOSUM tests (Ploberger
and Krämer, 1992; Chu et al., 1995a) are popular because they are easy
to compute and to interpret.

Although developed for different alternatives (random walk/single
shift/no particular) and for different estimation techniques (ML/GMM/
OLS), these tests are more related to each other than is obvious at
first sight.

In the following, we provide a unifying view on all these structural
change tests by embedding representatives from all three classes into the
generalizedM -fluctuation test framework (Zeileis and Hornik, 2003). More
precisely, those tests that are based on a single estimate of the parameters
on the full sample (and not multiple estimates from recursively growing or
rolling subsamples) can be shown to be special cases of the M -fluctuation
framework. The M -fluctuation tests are always derived in the following
steps: choose a model and an estimation technique (or equivalently its
score or estimating function), compute the partial sum process of the
scores for which a functional central limit theorem (FCLT) holds, and
then compute a statistic by applying a scalar functional that captures
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the fluctuations in the process. Hence, the unified tests are based on
the same FCLT and just use different functionals for computing a test
statistic. This view also helps to separate the estimation technique from the
functionals employed.

In terms of estimation techniques, we mainly focus on the linear
regression model estimated by OLS—this is done only for simplicity, and
we would like to emphasize that the same types of test statistics can be
derived for parameters estimated, e.g., by ML, instrumental variables (IV),
or Quasi-ML. GMM is also covered in the case where the number of
parameters equals the number of moment restrictions. For the general
case, some—but not all (as components of the parameter vector and
components of the fluctuation process cannot be matched in general)—
properties of the tests discussed can be obtained; see Sowell (1996) or also
Gagliardini et al. (2005) for robust GMM.

As for the functionals employed, we focus on the most popular tests
from the three frameworks discussed, namely the OLS-based CUSUM
test, the supLM test and the Nyblom–Hansen test. By understanding the
connections between these tests, it becomes more clear what they have in
common and also what makes them (and their counterparts, which are
based on multiple parameter estimates) particularly suitable for certain
alternatives. Furthermore, their common features can be exploited, e.g.,
for deriving new tests in a monitoring situation.

Monitoring structural changes is a topic that gained more attention
recently (Chu et al., 1996; Leisch et al., 2000; Carsoule and Franses,
2003; Horváth et al., 2004; Zeileis et al., 2005). It is concerned with
detecting parameter instabilities online in a situation where new data
is arriving steadily rather than detecting changes ex post in historical
samples. Here, we establish an FCLT that yields a general class of
M -fluctuation tests for monitoring that has similar unifying properties as
for the historical tests. Subsequently, we apply functionals that correspond
to monitoring with the OLS-based CUSUM, supLM , and Nyblom–Hansen
tests, respectively. Whereas the OLS-based CUSUM test was considered
previously for monitoring (Zeileis et al., 2005), new monitoring procedures
are derived for the supLM and the Nyblom–Hansen test.

The remainder of this paper is organized as follows. Section 2
briefly reviews the class of generalized M -fluctuation tests into which
the other classes of tests are embedded subsequently. Section 3 extends
the M -fluctuation tests to the monitoring situation and discusses how the
OLS-based CUSUM, supLM , and Nyblom–Hansen test can be employed
for monitoring before illustrating the monitoring techniques by a Monte
Carlo study and by applying them to a real-world data set. Conclusions are
provided in Section 4 and proofs and tables of critical values are attached
in an appendix.
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2. GENERALIZED M-FLUCTUATION TESTS

We assume n observations of some dependent variable yi and a
regressor vector xi such that the yi are

yi ∼ F (xi , �i) (i = 1, � � � ,n) (1)

following some distribution F with k-dimensional parameter �i , conditional
on the regressors xi .1 The ordering of the observations usually corresponds
to time. There are various sets of assumptions under which the results
presented below hold, including Krämer et al. (1988), Bai (1997), and
Andrews (1993).

The hypothesis of interest is “parameter stability”, i.e.,

H0 : �i = �0 (i = 1, � � � ,n) (2)

against the alternative that the parameter �i changes over time.
To assess this hypothesis, the parameter � is first estimated by

M -estimation, which includes ML, OLS , IV , Quasi-ML, and other robust
estimation techniques and is also related to GMM. The parameter estimate
�̂ is computed once for the full sample (assuming H0 is true) along with a
corresponding fluctuation process that captures departures from stability.
Both the estimate and the corresponding fluctuation process depend on
the choice of a suitable estimating function (or score function) �(·), which
should have zero expectation at the true parameters E[�(yi , xi , �i)] = 0.
Hence under the null hypothesis the parameter estimate �̂ can be
computed from the first-order conditions

n∑
i=1

�(yi , xi , �̂) = 0, (3)

and the decorrelated partial sums of the expression on the left can be
used as the fluctuation process capturing structural changes over time.
The resulting cumulative score process is referred to as the empirical
fluctuation process efp(·) and is formally defined as

Wn(t , �) = n−1/2
�nt�∑
i=1

�(yi , xi , �) (4)

efp(t) = Ĵ −1/2Wn(t , �̂), (5)

1Instead of using the conditional approach, the distribution of the full vector of observations
(yi , xi)� could also be modeled.



A Unified Approach to Structural Change Tests 449

where Ĵ is some suitable consistent estimate of the covariance
matrix of the scores �(Yi , �). The simplest estimator would be
Ĵ = n−1

∑n
i=1 �(yi , xi , �̂)�(yi , xi , �̂)

�, which can be plugged into Equation 5,
but also HC or HAC covariance matrix estimators could be used (see
Zeileis and Hornik, 2003, for more details).

Under the null hypothesis, an FCLT holds: on the interval [0, 1], the
empirical fluctuation process efp(·) converges to a k-dimensional Brownian
bridge W 0(·), which can also be written as W 0(t) = W (t) − tW (1), where
W (·) is a standard k-dimensional Brownian motion. Under the alternative,
the fluctuation should generally be increased and the process should
typically exhibit peaks at the times changes in �i occur.

In some situations, it is helpful not to look at the cumulative
score process itself but rather some transformation ẽfp = �trafo(efp).
For example, it has been shown in various situations that moving sums
instead of cumulative sums are better suited to detect multiple changes. A
moving score process can be obtained by transformation with the MOSUM
transformation �MOSUM such that the limiting process is also transformed to
�MOSUM(W 0(t)) = W 0(t + h) − W 0(t), the increments of a Brownian bridge
with bandwidth h.

To define a test statistic based on the empirical fluctuation process, a
scalar functional is required that captures the fluctuations in the process.
The corresponding limiting distribution is then determined by application
of the functional to the limiting process. Closed form solutions exist
for the distributions implied by certain functionals, but critical values
can be obtained easily by simulations for any kind of functional. As the
empirical process is essentially a matrix with n observations over time and
k components (usually corresponding to parameters), this functional can
typically be split up into a functional �comp which aggregates over the k
components and a functional �time which aggregates over time. If �comp is
applied first, a univariate process is obtained which can be inspected for
changes over time. However, applying �time first results in k independent
test statistics such that the component/parameter that causes the instability
can be identified. Common choices for �time are the absolute maximum,
the mean or the range, and typical functionals �comp include the maximum
norm (or L∞ norm, denoted as ‖ · ‖∞) or the squared Euclidean norm (or
L2 norm, denoted as ‖ · ‖2

2); see Hjort and Koning (2002) and Zeileis and
Hornik (2003) for more examples.

The test statistics unified in this paper are all of the form

�time

(
�comp(efp(t))

d(t)

)
, (6)

where d(·) is a weighting function. Hence statistics based on ML scores,
F statistics, and OLS residuals can all be shown to be based on the same
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empirical fluctuation process (and the same FCLT) and to only differ in
the choice of the functionals �time, �comp, and the function d .

By now, we did not specify a precise model to be estimated, i.e., in
particular we did not yet specify the estimating functions �(y, x , �) to
be used. As discussed in Section 1, the tests unified in this paper were
developed for rather different classes of models (ML/GMM/OLS), but
all tests are directly applicable to the model with the greatest practical
relevance, the linear regression model. Therefore, we will give some more
details about this model, but we would like to emphasize that the results
below do not only hold for the linear regression model. The model only
determines the estimating functions that are used, whereas our results are
mainly about functionals for capturing parameter instabilities. However,
if some specific estimating function is needed, we use that of the linear
regression model. In the linear model yi = x�

i � + ui with error variance �2,
we are faced with the question whether we want to regard � = (�, �2)� as
the parameter vector to be estimated or whether we treat �2 as a nuisance
parameter and just assess the stability of �. For simplicity, we follow the
latter approach and thus use the OLS estimating functions �(y, x , �) =
(y − x��)x . Furthermore, we assume (for this particular model) that an
intercept is included, i.e., that the first component of xi is equal to unity.

2.1. ML Scores

Nyblom (1989) suggesed an LM test based on ML scores for the
hypothesis of parameter stability against a random walk alternative.
Hansen (1992) extended this test to linear regression models where
the ML scores and OLS first-order conditions both give the estimating
functions �(y, x , �) = (y − x��)x already introduced above. Based on these
estimating functions ( ft in Hansen’s notation, which additionally includes
a component for the variance �2), the cumulative score process Wn(t , �̂)
(St in Hansen’s notation) and the covariance matrix estimate Ĵ given above
(V in Hansen’s notation), Hansen (1992) derives a test statistic called LC .
It is defined in his Equation (9) and can be transformed as

LC = n−1
n∑

i=1

Wn(i/n, �̂)� Ĵ −1Wn(i/n, �̂)

= n−1
n∑

i=1

efp(i/n)�efp(i/n) = n−1
n∑

i=1

‖efp(i/n)‖2
2�

Thus it is a statistic of type (6) where the empirical fluctuation process is
first aggregated over the components using the squared Euclidean norm
and then over time using the mean. To be more precise, �comp is ‖ · ‖2

2,



A Unified Approach to Structural Change Tests 451

the squared L2 norm, �time is the mean, and the weighting function is
d(t) = 1 for all t . Hence the limiting distribution is

∫ 1
0 ‖W 0‖2

2, the integral of
the squared L2 norm of a k-dimensional Brownian bridge. This functional
is also called Cramér–von Mises functional (Anderson and Darling, 1952).

Hansen (1992) suggests to compute this statistic for the full process
efp(t) to test all coefficients simultaneously and also for each component
of the process (efp(t))j (denoting the j th component of the process efp(t),
j = 1, � � � , k) individually to assess which parameter causes the instability.
Note that this approach leads to a violation of the significance level of
the procedure if no multiple testing correction is applied. This can be
avoided if a functional is applied to the empirical fluctuation process which
aggregates over time, first yielding k independent test statistics (see Zeileis
and Hornik, 2003, for more details).

2.2. F Statistics

Andrews (1993) and Andrews and Ploberger (1994) suggested three
types of test statistics—sup F , ave F , and exp F statistics—that are based
on different kinds of F statistics—Wald, LM, or LR statistics—in a very
general class of models fitted by GMM. As the statistics not only are easy
to interpret but also possess certain optimality properties against single
shift alternatives, these tests enjoy great popularity and are probably the
most used in practice. The class of GMM estimators considered by Andrews
(1993) is similar to the M -estimators considered here, except that we only
treat the case of pure and not partial structural changes.

Although the asymptotic behavior for the tests based on Wald, LM,
and LR statistics is the same, only the test based on LM statistics can
be embedded into the framework above, because this is the only statistic
that is based only on the full sample estimate �̂. The other two require
partial sample estimates before and after a hypothetical breakpoint which
is moved over a subset of the sample �, a closed subset of (0, 1).

Andrews (1993) defines the ingredients for the supLM test in his
Equation (4.4): he employs the process of cumulative estimating functions
Wn(t , �̂) (m̄1T (�̃, �) in Andrews’ notation) and a variance estimate of
Ĵ −1(̂S−1M̂ (M̂ Ŝ−1M̂ )−1M̂ Ŝ−1 in Andrews’ notation), which is in linear
models equivalent to the covariance matrix estimate used in the previous
section. This supLM statistic can then be transformed as

sup
t∈�

LM (t) = sup
t∈�

(t(1 − t))−1Wn(t , �̂)̂J −1Wn(t , �̂)

= sup
t∈�

(t(1 − t))−1efp(t)�efp(t)

= sup
t∈�

‖efp(t)‖2
2

t(1 − t)
�
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Therefore this test statistic is also a special case of (6): the empirical
fluctuation process is again first aggregated over the components using
the squared L2 norm, weighted by the variance of the Brownian bridge
and then aggregated over time using the supremum over the interval �.
This can be intuitively interpreted as rejecting the null hypothesis when
the L2 aggregated process crosses the boundary b(t) = c · d(t), where c
determines the significance level. More precisely, �comp is again ‖ · ‖2

2, �time

is supt∈�, and d(t) = t(1 − t). Hence the limiting distribution is given by
supt∈�(t(1 − t))−1‖W 0(t)‖2

2.
The aveLM and expLM can be derived analogously, with the same

�comp and d and replacing only �time by the average and the exp functional,
respectively.

Another view on the same statistic could be to not use the process
efp but ẽfp = �LMefp where �LM is a transformation functional �trafo defined
as (t(1 − t))−1‖ · ‖2

2. This yields the univariate process of LM statistics
which just has to be aggregated over time using the supremum. This view
corresponds to the argumentation of Andrews (1993), who establishes the
FCLT not at the level of cumulative scores but at the level of F statistics.

For the Wald- and LR-based statistics, the same aggregation functionals
are used, and the limiting distribution is identical, but on the basis of
a fluctuation process that requires estimation of the model on various
subsamples.

2.3. OLS Residuals

The mother of all fluctuation tests is the CUSUM test of Brown
et al. (1975) based on recursive residuals. Ploberger and Krämer (1992)
showed how the CUSUM test can also be based on OLS residuals.
Computing the test statistic is very simple—the corresponding formula
is given in Equation (10) in Ploberger and Krämer (1992)—it is the
absolute maximum of the cumulative sums of the OLS residuals scaled
by an estimate �̂2 of the error variance. To embed this statistic into
the M -fluctuation test framework, the main trick is to exploit that the
OLS residuals ûi = yi − x�

i �̂ are the first components of the empirical
estimating functions in linear regression models (�(y, x , �))1 = y − x��
when an intercept is included in the regression.

This allows for the transformation

sup
t∈[0,1]

∣∣∣∣(�̂2n)−1/2
�nt�∑
i=1

ûi

∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣�̂−1 n−1/2
�nt�∑
i=1

yi − x�
i �̂

∣∣∣∣
= sup

t∈[0,1]

∣∣∣∣�̂−1
(
Wn(t , �̂)

)
1

∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣ Ĵ −1/2
1,1

(̂
J 1/2efp(t)

)
1

∣∣∣∣
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This functional looks rather complicated, but it just selects the first
component of the fluctuation process before scaling with the full matrix
Ĵ and scales it with the first diagonal element Ĵ1,1 instead, which is an
estimate of the error variance. As the process Wn(t , �̂) is not decorrelated,
the resulting test statistic captures changes in the conditional mean of y and
not only in the intercept (to which the first component of the decorrelated
process efp would correspond). More precisely, �comp is the absolute value
of the first component of the scaled nondecorrelated process, �time is
supt∈[0,1], and d(t) = 1. The corresponding limiting distribution is given by
supt∈[0,1]|(W 0(t))1|, i.e., the supremum of a 1-dimensional Brownian bridge.

Instead of using the maximum absolute value, various other functionals
for capturing the fluctuation in the CUSUM of the OLS residuals have
been suggested: Krämer and Schotman (1992) use the range, Ploberger
and Krämer (1996) employ the Cramér–von Mises functional (as used in
the Nyblom–Hansen test), which provides a test that is trend resistant,
and Zeileis (2004) uses alternative boundaries proportional to the standard
deviation of the Brownian bridge d(t) = √

t(1 − t).
Another approach is to use moving sums instead of cumulative sums

(Chu et al., 1995a). As pointed out above, the corresponding fluctuation
process can be obtained by applying an appropriate transformation �MOSUM

before aggregating the process to a test statistic.
In linear models that only have an intercept (xi = 1, i = 1, � � � ,n), the

OLS-based CUSUM and MOSUM processes are equivalent to the recursive
estimates (RE) process (Ploberger et al., 1989) and the moving estimates
(ME) process (Chu et al., 1995b), which fit regressions on growing
or rolling windows of observations, respectively. In models with more
regressors, the RE and ME tests are not special cases of the M -fluctuation
test, but the underlying processes converge to the same limiting processes,
i.e., a k-dimensional Brownian bridge and its increments, respectively.
Thus the situation is similar to that of the F statistics: when the model is
estimated on multiple subsamples a test can be obtained that is not strictly
a special case but has very similar structural properties and in particular
the same limiting distribution.

3. MONITORING WITH M-FLUCTUATION TESTS

Monitoring of structural changes is concerned with detecting
parameter instabilities online in incoming data, a topic that has been
receiving much attention recently. Formally, this means that after the
so-called history period of observations 1, � � � ,n (corresponding to
t ∈ [0, 1]) where the parameters are assumed to be stable �i = �0, it is tested
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whether they remain stable for further incoming observations i > n (the
monitoring period, corresponding to t > 1). The end of this monitoring
period may in principle be infinity, but some power might be gained if it
is limited to some finite T > 1 or N = �nT �, respectively.

The theory of monitoring structural changes in linear regression
models was introduced by Chu et al. (1996), who used fluctuation
processes based on recursive residuals and recursive estimates. Their test
was extended by Leisch et al. (2000) to general estimates-based processes.
Carsoule and Franses (2003) present an application to score-based
processes in autoregressive models, and Zeileis et al. (2005) discuss several
extensions in the context of dynamic econometric models including
processes based on OLS residuals and new boundary functions. In the
statistical literature, Horváth et al. (2004) discuss various residual-based
monitoring techniques using different boundary functions.

As illustrated by Carsoule and Franses (2003) and Zeileis et al. (2005),
there are various approaches to the application of monitoring for data
analysis. The most intuitive is probably in a policy intervention setting,
where it should be assessed if and when a known intervention becomes
effective. In such a situation, it is plausible to establish a fitted model
once before the intervention and then compare the incoming data with
this fitted model. Another application might be diagnostic checking of
a model that is actively used for data analysis during the monitoring
period. Here the practitioner typically wants to update the model with
every incoming observation, which leads naturally to the recursive/moving
estimates monitoring tests that can be carried out with virtually no
additional computations. Monitoring is also useful for exploratory analysis
of time series, especially when there is a large number of high-frequency
series. Tests based on OLS residuals are particularly attractive in such a
situation, because they are very easy to compute and interpret. For more
details see Zeileis et al. (2005).

Here we extend these monitoring techniques in two directions: (1) we
establish a general class of M -monitoring processes, and (2) we apply
functionals to them corresponding to the Nyblom–Hansen, supLM , and
OLS-based CUSUM test. As for (1), an FCLT has to be established for the
extended empirical M -fluctuation processes that makes them applicable
to much more general models than only linear regression. The resulting
M -monitoring class has unifying properties that are completely analogous
to the historical tests. As for (2), appropriate boundary functions have to
be chosen. This is different from testing in historical samples, where only
a single statistic has to be computed, whereas monitoring is a sequential
testing problem in which some rule is needed for how to spread type I
errors over the monitoring period.
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3.1. Extending the Historical Tests

Establishing the FCLT is rather straightforward: the parameter �̂ is
still estimated only once on the history period where the parameters are
known to be stable, and the empirical fluctuation process efp(t) from
Equation (5) is extended by evaluating the estimating functions on new
incoming observations (i.e., for 1 < t ≤ T ). The resulting process efp(t) =
Ĵ −1/2Wn(t , �̂) still converges to a Brownian bridge W 0(t) = W (t) − tW (1)
on the interval [0,T ]. A formal proof is given in the appendix. The
covariance matrix estimate Ĵ might or might not be the same as for
the historical tests; for the FCLT to hold, it is only important that it be
consistent. In the simplest case, the covariance matrix estimator is also
evaluated on the history sample, but in some cases rescaling might be
beneficial (Zeileis et al., 2005). Based on this FCLT, it is easy to provide the
probabilistic ingredients for a monitoring procedure: as for the historical
tests, we capture the fluctuation using some scalar functional �(efp(t)).
But in contrast to the historical setup, this is not evaluated once only,
but reevaluated sequentially for each incoming observation. Thus we do
not need a single critical value but a boundary function b(t), and the
hypothesis of parameter stability throughout the monitoring period is
rejected if the process �(efp(t)) crosses the boundary b(t) for any t ∈ [1,T ].
To obtain a sequential testing procedure with asymptotic significance
level 	, this needs to fulfill 1 − 	 = P(�(W 0(t)) ≤ b(t) | t ∈ [1,T ]).
For boundaries of type b(t) = c · d(t), in which d(t) determines the shape
of the boundary and c the significance level, it is easy to obtain appropriate
values of c for any given d(t) by simulation. However, the challenge is to
choose a shape d(t) that spreads the power (or size) of the procedure
rather evenly (if no further knowledge about the location of potential
shifts is available) or directs it at the (potential) timing of the shift
(see Horváth et al., 2004; Zeileis et al., 2005, for a more detailed discussion
of boundaries for monitoring).

3.1.1. OLS-Based CUSUM Test
Applying the functionals corresponding to the historical tests is easiest

for the OLS-based CUSUM process. In the linear regression model, the
first component of the empirical fluctuation process Ĵ −1/2

1,1 ( Ĵ 1/2efp(t))1 is
of course still equivalent to the cumulative sums of the OLS residuals
for which appropriate boundaries are discussed in Zeileis et al. (2005).
They recommend using d(t) = t .

3.1.2. supLM Test
The basic idea for extending the supLM test to the monitoring

setup is also straightforward: in the historical test, the hypothesis of
parameter stability is rejected if the process ‖efp(t)‖2

2 crosses a boundary
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that is proportional to the variance of the Brownian bridge t(1 − t). For
monitoring, the same idea can be used; the boundary should then be
proportional to t(t − 1), the variance of the Brownian bridge for t > 1.
However, this poses the same problem as in the historical test, because at
t = 1 both the process and the boundary are 0, and it has to be bounded
away for the asymptotic theory to be valid. In the historical test, this is
done by bounding it away on the time scale, i.e., taking the supremum
only over the compact interval �. For monitoring, this is rather unintuitive
because one could not start to monitor directly from the beginning. An
alternative approach is to bound it away from zero in the direction of b(t)
using some offset. Two conceivable approaches are to add some constant
� and thus use d(t) = t 2 − t + � or to simply use d(t) = t 2 instead of
t 2 − t . The former is probably more similar in spirit to the historical test;
the latter leads to a procedure that can be seen as an extension of the
monitoring procedure based on OLS residuals given above. Let us assume
for a moment that we have a linear regression model with just one constant
regressor xi = 1. Then efp(t) is the process of cumulative OLS residuals,
and the OLS-based monitoring procedure rejects the null hypothesis if

|efp(t) |> c · t ⇔ (efp(t))2 > c2 · t 2

⇔ ‖efp(t)‖2
2 > c2 · t 2�

Therefore the general k-dimensional case using the boundary b1(t) = c · t 2
can be seen as an extension of this 1-dimensional case. For k = 1, the
squared critical values from Zeileis et al. (2005) can be used and are given
in Table 2 in the appendix along with new critical values for k > 1. Table 3
reports critical values for boundary b2(t) = c · (t 2 − t + �) with � = 0�1. The
boundary b1 spreads its power rather evenly over the monitoring period,
while b2 directs most of its power against changes at the beginning of
the monitoring period. This is emphasized by Figure 1, which shows both
boundaries for T = 2 and 	 = 0�1. It can be seen that the boundaries are
crossing at about t = 1�55 so that b1 will perform better for earlier changes
and b2 better for changes that occur later. This is confirmed by simulated
hitting times, which are depicted in the appendix.

In summary, both boundaries are suitable for capturing fluctuations
in the ‖efp(t)‖2

2 process: b1 can be seen as an extension of the procedure
suggested in Zeileis et al. (2005) and spreads its power rather evenly, while
b1 uses a trimming parameter similar to the historical procedure and is
especially suitable for detecting changes early in the monitoring period.

3.1.3. Nyblom–Hansen Test
To extend the Nyblom–Hansen test statistic—the mean of ‖efp(t)‖2

2—
to the monitoring situation, a natural idea would be to consider
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FIGURE 1 Comparison of boundaries for ‖W 0(t)‖22.

the cumulative mean process �nt�−1
∑�nt�

i=1 ‖efp(t)‖2
2. Suitable boundaries

can be found in Borodin and Salminen (2002, p. 378). However, the
cumulative mean is varying very slowly and it will become increasingly
difficult to detect fluctuations in efp(t). As a low detection delay is crucial
in monitoring, this functional does not seem to be very suitable for this
task. A way to overcome this problem, at least partially, would be to use a
running mean process n−1

∑�nt�
i=�nt�−n+1 ‖efp(t)‖2

2 with bandwidth n instead of
the cumulative mean process. Both have in common that the process gives
the historical test statistic for t = 1. Of course, other bandwidths than n
would also be feasible even if they should not yield an immediate extension
of the historical statistic. However, none of these processes seems to be
promising for monitoring with a low detection delay. Hence monitoring
based on cumulative or running means of squared Euclidian norms is not
pursued further here.

3.2. Simulation of Size and Power

Before applying these monitoring procedures to real-word data, a
Monte Carlo study is conducted to study size and power properties in a
scenario where the data generating process can be controlled. Following
Carsoule and Franses (2003), an AR(2) model is considered,

yi = �1 + �2yi−1 + �3yi−2 + ui , (7)

where �1 is the mean, �2 and �3 are the autocorrelations at lag 1 and 2, and
the ui are standard normal innovations. In the history period (t ∈ [0, 1],
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TABLE 1 Finite sample size and power (in %) for simulated AR(2) model

t0 = 1�25 t0 = 1�5
t0 = 2 t0 = 1�0

n Type Size Power Type I Power Type I Power

25 OLS 27�9 30�8 4�7 22�0 13�9 11�9
supLM (b1) 51�8 66�0 18�0 43�4 34�5 21�7
supLM (b2) 56�0 69�5 30�8 32�5 44�7 14�9

50 OLS 18�6 29�1 2�9 19�0 9�9 10�2
supLM (b1) 36�0 67�2 10�9 46�0 22�9 23�1
supLM (b2) 41�1 68�6 22�4 36�4 33�8 15�3

100 OLS 14�9 37�3 1�6 22�5 7�0 12�1
supLM (b1) 27�4 86�0 6�0 60�0 15�6 33�1
supLM (b2) 32�4 84�2 16�5 48�6 25�6 23�2

500 OLS 11�1 95�4 0�6 72�7 3�7 36�0
supLM (b1) 15�1 100�0 1�4 98�5 5�2 88�4
supLM (b2) 18�9 100�0 7�6 92�4 13�0 78�0

first n observations), the mean is zero and the autocorrelations are 1.2
and −0�4, respectively. In the monitoring period up to T = 2, the new
incoming observations are tested using the OLS-based CUSUM test and
the supLM test with boundaries b1 and b2 as defined in the previous
section. At time t0 there is a structural break, and the coefficients change
to � = (0�5, 1�2,−0�7)� for t > t0. This is essentially the setup of Carsoule
and Franses (2003), but in addition to the autocorrelations we monitor the
intercept instead of the variance. Monitoring the variance is also covered
by the M -fluctuation framework, but as we have treated the variance as a
nuisance parameter for the previous examples, we continue to do so here.
As before, the parameters are estimated by OLS, and critical values for
	 = 0�1 are used. All the critical values can be obtained from the tables in
the appendix.2 In the simulation, the size of the history sample n and the
timing of the shift t0 are varied: n is taken to be 25, 50, 100, or 500, and t0
is one of 1.0, 1.25, 1.5, or 2, where the latter corresponds to “no break”.

Table 1 reports the empirical boundary crossing probabilities from
5,000 replications in each cell. For the first scenario (t0 = 2, no break), this
corresponds to the size of the test, and for the second (t0 = 1), to power
only. For the remaining two scenarios (t0 = 1�25 and 1�5), the empirical
boundary crossing probability has to be split up into type I error (crossing
for t ≤ t0) and power (crossing for t > t0). Confirming the findings of
Carsoule and Franses (2003) and Zeileis et al. (2005), the tests are
somewhat oversized in small samples with pronounced autocorrelations.

2For the OLS-based CUSUM test, it is the square root of the value for k = 1 in Table 2: 1.383.
For the supLM tests, the values for k = 3 parameters have to be taken from Tables 2 and 3: 3.823
and 8.787, respectively.
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The power for history samples as small as n = 25 has therefore to be taken
with a grain of salt. However, both size and power improve significantly with
the sample size, showing a small advantage for the supLM -based tests. This
is not surprising as the OLS-based test is only sensitive to changes in the
conditional mean. As for the comparison between the boundary b1 and b2,
it seems that the boundary b1(t) = c · t 2 is more robust to random crossings
early in the monitoring period because it is better bounded away from zero
while having similar power properties.

In summary, this shows that the tests perform quite well. However,
they should be treated carefully when applying them in autoregressive
models with strong autocorrelations and/or few observations. Zeileis et al.
(2005) show that estimates-based tests exhibit similar size distortions in
autoregressive models that can be tackled by rescaling the fluctuation
processes with different covariance matrix estimates. This is also a potential
route of enhancement for score-based processes but lies beyond the scope
of this paper.

3.3. Application to Seat Belt Data

Although the main purpose of this paper is to give a unifying view on
testing and monitoring changes with various functionals and not to suggest
new testing/monitoring techniques, we want to illustrate the OLS-based
CUSUM test and supLM test for monitoring using a real-world data set.
The well-known seat belt data (Harvey and Durbin, 1986) provides a
monthly time series from 1969(1) to 1984(12) of the number of car drivers
in Great Britain killed or seriously injured in traffic accidents. The series
exhibits several breaks, in particular one in 1983(1) associated with the seat
belt law introduction in the UK on 1983-01-31. Harvey and Durbin (1986)
analyzed this data set with historical tests, but a monitoring approach would
probably have been more natural for evaluating the impact of this policy
intervention (had the methodology been available at that time). Here we
monitor the impact of the seat belt law introduction using the observations
from 1976(1) to 1983(1) as the history period—excluding all previous
breaks—based on a multiplicative SARIMA(1, 0, 0)(1, 0, 0)12 model for the
log frequencies fitted by OLS as in Zeileis et al. (2003).

Figure 2 depicts both monitoring processes—for the OLS-based
CUSUM test and the supLM test—along with their boundaries (in gray)
and a dashed vertical line for the beginning of the monitoring period.
Both are based on the same empirical fluctuation process efp(t) computed
by using the OLS estimating functions. The OLS-based CUSUM process
is computed, just as in the historical case, as the first component of the
recorrelated process | Ĵ −1/2

1,1 ( Ĵ 1/2efp(t))1| using the usual OLS estimate for
the variance as Ĵ1,1. The process shows only small fluctuations in the history
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FIGURE 2 Monitoring with OLS-based CUSUM test (left) and supLM test (right).

period but starts to deviate from 0 immediately after the start of the
monitoring period and crosses its boundary b(t) = 1�568 · t (employing the
5% critical value for T = 2) in 1983(7), signalling that the seat belt law
intervention was effective. The clear deviation from zero that continues
after the boundary crossing emphasizes that this is not a random crossing
but is caused by a structural change in the data.

Monitoring with the supLM test leads to very similar results: the
right panel of Figure 2 shows the result of monitoring with the process
of squared Euclidian norms ‖efp(t)‖2

2 together with the boundaries
b1(t) = 4�603 · t 2 (solid line) and b2(t) = 10�334 · (t 2 − t + 0�1) (dashed
line). To make the graph more intellegible, the square root of the process
and its boundaries is plotted. It also clearly deviates from zero with the
beginning of the monitoring period, crosses both boundaries, and thus also
clearly signals a structural change. The boundary b1 is crossed in 1983(5)
and b2 (not surprisingly) a bit earlier in 1983(3). In summary, all three
methods perform very similar on this data set and are all able to detect the
effect of the policy intervention quickly after only a few observations in the
monitoring period.

4. CONCLUSIONS

In this paper, we provide a unifying view on three classes of structural
change tests by embedding them into the framework of generalized
M -fluctuation tests. The three classes are tests based on ML scores, F
statistics, and OLS residuals developed in rather loosely connected lines of
research. Special emphasis is given to the most prominent representatives
from these classes, namely the Nyblom–Hansen test, the supLM test, and
the OLS-based CUSUM test, which can be shown to be based on the
same empirical fluctuation process, only employing different functionals
for capturing excessive fluctuations within the process.
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The knowledge about the connections between these historical tests is
subsequently used to extend the tests to online monitoring of structural
changes. To accomplish this, a general FCLT for empirical M -fluctuation
processes in a monitoring situation is established, and several strategies for
extending the supLM and Nyblom–Hansen test are discussed. Finally, the
methods are illustrated in a policy intervention context for the UK seat
belt data.

A. APPENDIX

A.1. Proofs

In Zeileis and Hornik (2003), it is shown that the empirical fluctuation
process from Equation (5) converges to a Brownian bridge on the unit
interval [0, 1]. Here the results are extended to any compact interval [0,T ]
with T ≥ 1. As in the proofs of Zeileis and Hornik (2003) t ∈ [0, 1] is never
needed, the same argumentation can be used. Therefore we just sketch the
most important steps using the same notation.

A(�) = E[−�′(yi , xi , �)], (8)

J (�) = VAR[�(yi , xi , �)], (9)

where yi ∼ F (xi , �0), �′(·) is the partial derivative of �(·) with respect to �.
Under suitable regularity conditions, �̂ is consistent for �0 under the

null hypothesis and
√
n(�̂ − �0) is asymptotically normal with zero mean

and covariance matrix A(�)−1J (�)
A(�)−1��. Equivalently, we can write

√
n(�̂ − �0)

·= A(�0)−1 · Wn(1, �0), (10)

where an
·= bn means that an − bn tends to zero in probability.

Applying a first order Taylor expansion then yields the FCLT:

Wn(t , �̂n)
·= 1√

n

�nt�∑
i=1

�(yi , xi , �0) + 1
n

�nt�∑
i=1

�′(yi , xi , �0) · √
n(�̂ − �0)

·= Wn(t , �0) − �nt�
n

A(�0) · A(�0)−1Wn(1, �0)

d−→ Z (t) − t · Z (1),
where Z (·) is a Gaussian process with continuous paths, mean function
E[Z (t)] = 0, and covariance function COV[Z (t),Z (s)] = min(t , s) · J (�0).
Therefore, with a consistent nonsingular estimate Ĵ of J (�0), efp(t) =
Ĵ −1/2Wn(t , �̂) converges to a Brownian bridge W 0(t) = W (t) − tW (1).
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TABLE 2 Simulated critical values for supLM test with boundary b1

T
	

k (in %) 1.25 1.5 2 3 4 6 8 10

1 20�0 0�541 0�917 1�343 1�766 2�045 2�256 2�375 2�455
15�0 0�628 1�064 1�570 2�088 2�384 2�621 2�782 2�849
10�0 0�754 1�291 1�913 2�528 2�873 3�201 3�378 3�460
5�0 0�979 1�690 2�459 3�291 3�760 4�186 4�368 4�528
1�0 1�570 2�669 3�905 5�290 5�871 6�620 6�744 7�022
0�1 2�353 3�827 5�929 7�779 8�839 10�407 10�433 11�567

2 20�0 0�876 1�481 2�182 2�932 3�316 3�702 3�950 4�064
15�0 0�989 1�676 2�477 3�302 3�753 4�195 4�475 4�612
10�0 1�161 1�948 2�875 3�849 4�394 4�932 5�201 5�316
5�0 1�440 2�460 3�525 4�846 5�407 6�010 6�535 6�612
1�0 2�055 3�494 5�058 7�051 7�721 8�789 9�255 9�245
0�1 3�164 4�622 7�054 9�648 10�438 12�939 14�190 13�764

3 20�0 1�183 1�953 2�974 3�915 4�469 5�036 5�136 5�316
15�0 1�322 2�174 3�315 4�359 4�946 5�563 5�744 5�963
10�0 1�523 2�503 3�823 4�959 5�632 6�307 6�598 6�855
5�0 1�817 3�030 4�603 6�016 6�816 7�621 8�006 8�329
1�0 2�532 4�195 6�392 8�350 9�381 10�360 11�212 11�534
0�1 3�548 5�630 9�047 11�422 12�697 14�876 15�491 15�671

4 20�0 1�454 2�417 3�631 4�896 5�532 6�085 6�380 6�524
15�0 1�607 2�680 3�979 5�407 6�079 6�704 7�079 7�228
10�0 1�814 3�064 4�539 6�123 6�872 7�608 7�948 8�083
5�0 2�151 3�661 5�375 7�266 8�125 9�043 9�489 9�741
1�0 2�861 4�955 7�240 9�682 11�012 12�280 12�457 13�044
0�1 3�932 6�598 10�092 12�876 14�164 16�875 16�653 17�439

5 20�0 1�714 2�897 4�327 5�803 6�461 7�217 7�479 7�790
15�0 1�875 3�197 4�692 6�365 7�105 7�896 8�214 8�541
10�0 2�090 3�598 5�256 7�162 7�917 8�873 9�216 9�604
5�0 2�463 4�232 6�135 8�372 9�320 10�388 10�838 11�172
1�0 3�224 5�519 8�178 11�022 12�082 13�811 14�356 14�858
0�1 4�284 7�078 11�076 14�259 16�324 19�442 18�021 20�323

10 20�0 2�967 5�010 7�445 9�885 11�281 12�498 13�213 13�383
15�0 3�176 5�378 7�952 10�569 12�115 13�405 14�145 14�392
10�0 3�458 5�884 8�658 11�545 13�138 14�631 15�453 15�716
5�0 3�897 6�691 9�753 13�094 14�824 16�446 17�581 17�834
1�0 4�897 8�386 12�516 16�318 18�317 20�212 21�394 22�346
0�1 6�079 10�407 15�855 20�095 22�292 25�794 26�585 28�056

15 20�0 4�176 7�001 10�361 13�999 15�818 17�404 18�191 18�690
15�0 4�424 7�428 10�947 14�867 16�782 18�346 19�371 19�842
10�0 4�747 7�950 11�862 15�931 18�107 19�769 20�787 21�441
5�0 5�298 8�778 13�202 17�704 20�028 21�862 23�135 23�920
1�0 6�449 10�660 16�025 21�607 24�251 26�250 28�078 29�326
0�1 7�626 12�553 19�416 26�807 30�234 31�283 32�880 35�525
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TABLE 3 Simulated critical values for supLM test with boundary b2

T
	

k (in %) 1.25 1.5 2 4 5 6 8 10

1 20�0 2�465 3�069 3�554 3�878 3�969 4�128 4�146 4�180
15�0 2�846 3�516 4�053 4�452 4�536 4�724 4�760 4�716
10�0 3�389 4�153 4�766 5�191 5�268 5�439 5�522 5�434
5�0 4�330 5�233 6�043 6�373 6�605 6�904 6�762 6�750
1�0 6�603 7�867 9�064 9�402 9�831 10�185 9�796 10�350
0�1 9�638 11�148 13�748 13�571 14�382 15�250 15�727 14�254

2 20�0 3�869 4�800 5�506 5�877 6�125 6�231 6�291 6�317
15�0 4�290 5�365 6�071 6�473 6�822 6�907 6�945 7�030
10�0 4�968 6�180 6�941 7�358 7�759 7�862 7�830 7�915
5�0 6�037 7�442 8�411 8�973 9�255 9�361 9�249 9�387
1�0 8�388 10�231 11�705 12�477 12�858 12�816 12�760 12�940
0�1 11�749 13�687 16�285 17�155 17�809 16�242 18�481 17�510

3 20�0 5�018 6�319 7�170 7�578 7�825 8�027 8�043 8�180
15�0 5�570 6�943 7�864 8�284 8�537 8�815 8�770 8�964
10�0 6�316 7�758 8�787 9�233 9�543 9�802 9�810 10�012
5�0 7�515 9�056 10�334 10�825 11�097 11�599 11�559 11�772
1�0 10�454 12�486 13�799 14�624 14�745 15�682 15�297 15�462
0�1 15�296 16�253 18�294 19�459 19�822 20�143 19�861 20�332

4 20�0 6�229 7�620 8�579 9�190 9�516 9�658 9�671 9�797
15�0 6�787 8�308 9�296 10�011 10�338 10�499 10�442 10�631
10�0 7�545 9�268 10�293 11�053 11�534 11�631 11�597 11�785
5�0 8�814 10�884 11�920 12�696 13�312 13�483 13�452 13�595
1�0 11�719 14�253 15�352 16�566 17�422 17�871 17�574 17�660
0�1 15�599 17�773 20�459 22�374 22�532 22�710 22�012 23�279

5 20�0 7�294 8�841 9�890 10�787 10�951 11�165 11�301 11�348
15�0 7�938 9�673 10�682 11�623 11�828 12�054 12�143 12�271
10�0 8�756 10�786 11�770 12�736 12�985 13�293 13�385 13�421
5�0 10�163 12�286 13�611 14�686 15�078 15�157 15�334 15�447
1�0 13�147 15�439 17�088 18�176 18�985 19�285 19�563 19�613
0�1 16�797 19�179 22�383 23�175 23�759 24�916 25�602 25�863

10 20�0 12�157 14�718 16�534 17�475 17�971 18�128 18�294 18�429
15�0 13�002 15�746 17�543 18�591 19�083 19�215 19�460 19�515
10�0 14�048 16�911 18�903 20�047 20�462 20�774 20�992 20�943
5�0 15�796 18�842 21�169 22�207 22�778 23�149 23�397 23�477
1�0 19�450 22�810 25�853 27�226 27�880 28�133 28�678 28�393
0�1 25�148 27�875 33�228 32�496 33�011 32�983 35�636 36�626

15 20�0 16�787 20�542 22�493 23�796 24�305 24�572 24�821 24�972
15�0 17�783 21�588 23�643 25�066 25�552 25�823 26�067 26�279
10�0 18�988 23�190 25�187 26�768 27�216 27�403 27�638 28�063
5�0 21�144 25�548 27�723 29�384 29�684 30�140 30�377 30�536
1�0 25�641 30�410 33�347 35�561 35�850 35�640 35�652 36�259
0�1 31�345 36�453 40�389 42�309 43�366 41�742 42�356 43�278
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FIGURE 3 Hitting times for ‖W 0(t)‖22 process with k = 1 and boundary b1 (left) and b2 (right).

A.2. Monitoring with supLM Test

For monitoring with the supLM test, the process ‖efp(t)‖2
2 is used,

and the hypothesis of parameter stability is rejected if this process crosses
a boundary of type b(t) = c · d(t) in the monitoring period [1,T ]. The
function d(t) determines the shape of the boundary, and above we have
suggested using d(t) = t · (t − 1) + trimming and in particular d(t) = t 2

(in b1) or d(t) = t 2 − t + 0�1 (in b2). Under the null hypothesis, the process
‖efp(t)‖2

2 converges to the Euclidean norm process of a k-dimensional
Brownian bridge ‖W 0(t)‖2

2 on [0,T ] and hence the critical value c has to
be chosen so that

P(‖W 0(t)‖2
2 < c · d(t) | t ∈ [1,T ]) = 1 − 	�

Suitable simulated values of c for selected values of 	, k, and T are provided
in Tables 2 and 3 for the boundaries b1 and b2. Each of these is based on
10,000 replications, where each Brownian bridge is simulated from 10,000
normal pseudorandom numbers per unit time interval.

FIGURE 4 Hitting times for ‖W 0(t)‖22 process with k = 5 and boundary b1 (left) and b2 (right).
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To compare the properties of different monitoring procedures, Zeileis
et al. (2005) employ histograms of hitting times for the limiting process
(under the null hypothesis). Using this approach, insight is gained into
how the test spreads its size (and typically also power) over the monitoring
interval without having to focus on a small set of alternatives from the
infinite set of conceivable patterns of deviation from parameter stability.
Figures 3 and 4 depict the hitting times derived from 1-dimensional
and 5-dimensional Brownian bridges with boundaries b1 and b2 at 10%
significance level. Both show that b2 directs most of its size to the beginning
of the monitoring period, whereas b1 spreads it a bit more evenly so that
the corresponding monitoring procedure will have more power against
changes that occur very late in the monitoring period. Comparing the
hitting time distributions for k = 1 and k = 5, the pictures are very similar
but somewhat shifted to the right in the latter case.

Computational Details

The results in this paper were obtained using R 2.1.1 (R Development
Core Team 2005, http://www.R-project.org/) and the package strucchange
1.2-11 (Zeileis et al., 2002), which are both freely available at no cost
under the terms of the GNU General Public License (GPL) from the
Comprehensive R Archive Network at http://CRAN.R-project.org/.
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