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Abstract. We propose a class of complex population dynamic models that combines
new time-varying parameters and second-order time lags for describing univariate ecolog-
ical time series data. The Kalman filter and likelihood function were used to estimate
parameters of all models in the class for 31 data sets, and Schwarz's information criterion
(SIC) was used to select the best model for each data set. Using the SIC method, models
containing density-dependent processes were selected for 23 of the 31 cases examined,
while models containing complex density-dependent processes were selected in 19 of these
23 density dependence cases. The density-dependent models identified by SIC had various
linear or nonlinear forms, suggesting variable patterns of population regulation in nature.
Population dynamics may combine density-dependent, inversely density-dependent, and
density-independent processes, which may operate at different times and under different
density ranges. These results suggest that our approach offers an advance for modeling
complex population dynamics, discovering complex regulation processes, and estimating
the distribution of extinction times in changing environments.
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INTRODUCTION

Various methods for testing density dependence and
direct testing for population regulation have been pro-
posed over the last 20 years, including the reciprocal
of von Neumann's ratio test (Bulmer 1975), the major
axis test (Slade 1977), the randomization test (Pollard
et al. 1987), the permutation test (Reddingius and Den
Boer 1989), Crowley’s test of attraction (Crowley
1992), the parametric bootstrap likelihood ratio test
(PBLR test, Dennis and Taper 1994), and a delayed
density dependence test (Turchin 1990). Many of these
tests have been widely used in density dependence
studies of field populations (e.g., Gaston and Lawton
1987, Den Boer and Reddingius 1989, Turchin 1990,
Vickery and Nudds 1991, Woiwod and Hanski 1992,
Holyoak 1993a, b, Kemp and Dennis 1993, Wolda and
Dennis 1993, Rotella et al. 1996).

None of the various density dependence tests pro-
posed over the past two decades has been identified as
being more powerful and consistent than all others un-
der all conditions in detecting density dependence in
the field. Simulation results from Pollard et al. (1987)
suggested that the randomization test may be an ef-
fective tool in testing for density dependence, but Den-
nis and Taper (1994) found that this distribution-free
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test has low power when the alternative hypothesis is
a stochastic Ricker model. They also found that Tur-
chin’s (1990) method of detecting second-order lags
would cause an excessive type | error rate. Holyoak
(1994) found that Turchin’s (1990) method was not
capable of reliably distinguishing between delayed and
nondelayed density dependence. Holyoak and Lawton
(1993) and Holyoak (1994) found that the PBLR test
identified density dependence less frequently in some
insect time series data than using the randomization
test of Pollard et al. (1987). However, the PBLR testing
approach is not limited to the Ricker model, but may
be applied to other dynamic models if diagnostics or
prior evidence indicate the Ricker model is not appro-
priate (Dennis and Taper 1994, Rotella et al. 1996).
Moreover, inconsistent results have been frequently re-
ported if more than one density dependence test was
used (e.g., Den Boer and Reddingius 1989, Woiwod
and Hanski 1992, Holyoak 1993a, b). For a more de-
tailed review and comparison of density dependence
test methods refer to Holyoak (1993a, b), Dennis and
Taper (1994), and Fox and Ridsdill-Smith (1995).
Using simple modeling approaches and test tech-
niques, early studies rarely found density-dependent
processes in the field (e.g., Stiling 1987, 1988, 1989,
Den Boer and Reddingius 1989, Murdoch 1994). This
has stirred considerable controversy (Dempster and
Pollard 1986, Brown 1989, Hassell et al. 1989). As a
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consequence of the infrequent detection of density-de-
pendent processes, some authors have questioned equi-
librium theory (Strong 1986, Wolda 1989, 1991, Krebs
1992). Krebs (1992) declared that ‘‘it is clear that only
after you reject such a paradigm (density dependence)
can much progress be expected.”” Others supported the
concept as a logical necessity (Royama 1977, 1992,
Berryman 1991, Murdoch 1994). Long-term persis-
tence of populations was asserted by Royama (1977,
1992) to necessarily imply a negative correlation be-
tween per unit abundance growth rate (per capita
growth rate) and population size. Thus, the persistence
of many populations and species is taken by some as
evidence of population regulation (Royama 1977,
1992, Berryman 1991, Murdoch 1994). Some have
blamed spatial heterogeneity for the inability to detect
density dependence in intergeneration data (Hassell
1985, 1987, Hassell et al. 1987), or use of short time
series for the failures to detect population regulation
(Turchin 1995). Others argued that statistical estima-
tion and model evaluation of the complex dynamics
should be emphasized to solve the problem of low pow-
er, which has been an inherent problem with many of
these tests (Hanski et al. 1993, Dennis and Taper 1994,
Wolda et al. 1994, Turchin 1995). In fact, recent and
extensive analyses of ecological time series based on
improved statistical techniques are now finding density
dependence in substantial proportions of the cases in-
vestigated (Woiwod and Hanski 1992, Holyoak 1993a,
b, Kemp and Dennis 1993, Wolda and Dennis 1993,
Dennis and Taper 1994).

However, the utility of such results is limited. First
of all, there are inherent problems in the interpretation
of statistical tests of density dependence, due to the
lack of tight correspondence between the scientific hy-
pothesis and the statistical hypothesis (Royama 1977,
Wolda and Dennis 1993, Wolda et al. 1994). Second
there are potential problems with model misspecifi-
cation. Density dependence is a complex phenomenon
that may involve consumer—resource, predator—prey,
pathogen—host, intra- and interspecific interference,
and other ecological interactions. Such relationships
may not be well described by simple models.

Most statistical tests of density dependence were de-
signed to test simple correlation, simple dependence,
or the effect of dependence between per unit abundance
growth rate and population density, with less focus on
the dynamics (e. g. Bulmer’s test, Bulmer 1975; major
axis test, Slade 1977; randomization test, Pollard et al.
1987; permutation test, Reddingius and Den Boer 1989;
Crowley’s test of attraction, Crowley 1992; PBLR test,
Dennis and Taper 1994). The key problem in density
dependence tests may be that the density-dependent
model in many statistical test methodsisfar too simple
and removed from biological reality to cover the var-
ious complex population dynamics encountered in the
field (Turchin 1990, Hanski et al. 1993, Wolda et al.
1994, Zeng 1996). The diversity in patterns of natural
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population regulation also poses a problem for the clas-
sical hypothesis-testing framework used in these tests,
where a single null model is contrasted with a single
alternative model, and the alternative model may not
indicate how the population is regulated in the field
(Hanski et al. 1993, Zeng 1996). Because our intention
is to detect the population regulation patterns in the
field, hypothesis testing can at best convey only limited
information.

Recently, Hooten (1995) explored the use of infor-
mation criteria to select the best population dynamic
model of six constant-parameter models (zero- and
first-order lag), rather than pairwise hypothesis testing.
Among other things, this procedure determineswhether
the best model selected using information criteria in-
corporates density dependence. Such an approach of-
fers greater flexibility and provides additional infor-
mation beyond what can be obtained from traditional
statistical tests of density dependence based on eco-
logical time series data. The information criterion ap-
proach will be emphasized and improved in this study.

Our purpose in this paper is to develop procedures
that more effectively characterize the dynamics of a
natural population. To do this we fit a broad suite of
population dynamic models, some with great flexibil-
ity, to univariate time series of field populations. We
select a‘‘ best model”” from amongst these modelsusing
Schwarz’'s information criterion (SIC, Schwarz 1978).
One of the mgjor advances we make is the introduction
of the Kalman filter to the study of time-varying pa-
rameters in population dynamics. A substantial pro-
portion of the population dynamic models we studied
were identified as showing time-varying parameters.
By including time-varying-parameter models as well
as other linear and nonlinear models of complex pop-
ulation dynamics, such as delayed density dependence,
we increase our understanding of the biological system
and our ability to predict its further behavior.

MoDEL DESCRIPTION

Theoretically, the simple population dynamics of an
organism can be characterized by an intrinsic growth
rate and a density-mediated effect. The parameters cor-
responding to these can be used to express the inter-
actions between an organism and its environment. Two
stochastic models that have incorporated similar pa-
rameters in modeling animal population dynamics in-
clude the stochastic Ricker model (Ricker 1954; also
referred to as a discrete time stochastic exponential
logistic model, Dennis and Taper 1994) and the sto-
chastic Gompertz model (Dennis and Taper 1994). The
general form of both types of models can be represented
as follows:

N, = N, exp[a + bf(N._,) + &]. (1)
If we let X, = In(N,), then Eq. 1 becomes
X = X, + a+ bf(N_,) + & 2
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or
R =X — X_; = a+ bf(N_y) + &. 3)
Here, N, is population density at timet(t= 1,2, ...,
T; T is the number of the observations), R, is the re-
alized per unit abundance growth rate, and &, is a nor-
mally and independently distributed (NID) random
variable with mean zero and variance o2, which we
term system noise. Parameter a is the population
growth rate related to the intrinsic growth rate of de-
terministic models (see Dennis and Taper 1994), and
b is the density dependence parameter. A stochastic
Ricker model can be obtained from Eq. 1 by applying
a Ricker transformation (f(N,) = N,), while the Gom-
pertz model can be obtained from Eq. 1 by applying a
Gompertz transformation (f(N) = In(Ny)). According
to Dennis and Taper (1994), when b < 0 or b > 0,
density-dependent or inversely density-dependent pro-
cesses areimplied, respectively. When b = 0, adensity-
independent population process is implied.

Models explicitly incorporating more than one time
lag and/or parameters that change through time are re-
ferred to as complex population dynamic modelsin this
study. Such population dynamic processes are not rep-
resented well by the stochastic Ricker or Gompertz
models. When the information on fluctuations in re-
source availability, dynamics of natural enemies and
other density-dependent factors is unavailable, models
with time-varying parameters and high-order lags can
be used to describe the influence from these unknown
density-dependent factors on population dynamics
(Zeng 1996). Mathematically, a time series with dy-
namics described by a nonlinear stochastic dynamic
function with autoregressive moving average terms
can, under certain assumptions, be approximated by a
linear time-varying-parameter model via standard Tay-
lor series linearization techniques (Young 1994).

The structural population dynamic process devel-
oped in our study incorporates time-varying growth
rate and density dependence parameters. This process
also incorporates population dynamics as a function of
these parameters and previous population density. A
fourth class of models arises when time-varying den-
sity dependence parameters are considered. The pop-
ulation dynamics are termed indeterminate if the den-
sity dependence parameters take on values during the
time from two or more of the following categories: b
< 0,b>0, and b = 0 (Strong 1986, Brown 1989).
Little attention has been paid in the literature to the
formulation of models for indeterminate density de-
pendence.

The first-order time-varying parameter process is a
modification of Eq. 2 obtained by allowing the param-
eters a and b to follow the first-order autoregressive
models:

Xi= X+ a + bf(N_y) + & 4
a=a+ d(a,—a+ Wat 6)
by =Db + dp(b 1 — b) + oy, (6)
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TaBLE 1. Time-varying parameter structure of population-
dynamic models used in this study (Ar = First-order au-
toregressive; Rw = Random walk; Rc = Random coeffi-
cient; Cp = Constant parameter; P = Presence of system
noise; A = Absence of system noise).

& b, &t & b, €t & b, &t
Ar Ar P Rw Ar P Cp Ar Pt
Ar Ar A Rw Ar A Cp Ar A
Ar Rc P Rw Rc P Cp Rc P
Ar Rc A Rw Rc A Cp Rc A
Ar Rw P Rw Rw P Cp Rw P
Ar Rw A Rw Rw A Cp Rw A
Ar Cp P Rw Cp P Cp Cp Pt
Ar Cp A Rw Cp A Cp - Pg
P|

T Constant-growth-parameter models can be considered as
random-coefficient models (e.g., CpArP = RcArA). The sys-
tem noise g, and parameter noise w,, might be mixed and
considered as a single noise term in the model, when the
growth rate is considered as a random coefficient.

F Ricker or Gompertz model.

§ Exponential-growth model.

| Random-walk model.

Here a and b are central values (i.e., the unconditional
mean) of the growth and density dependence param-
eters, respectively (the parameters a and b in Egs. 2
and 3 can be considered central values of the stationary
processes). Parameters ¢, and ¢, are autocorrelation
coefficients of parameters a and b, respectively. Also,
0, and wy,, are NID random variables with mean zero
and variance o2, o, respectively, and refer to parameter
noise. Special cases of the first-order autoregressive
parameter model include random-coefficient models
(Rc; b, = b + ), parameter-random-walk models
(Rw; a, = a,_; + w,,, by = b_; + w,,), and constant-
parameter models (Cp; a, = a, b, = b). Twenty-five
different model structures were obtained by combi-
nations of various parameter changes of a, and b, (Table
1). The letters A and P are used after the codes for
growth rate and density dependence parameters to in-
dicate whether the system noise is absent (o2 = 0) or
present (o2 > 0). For all models, except for the random-
walk and exponential-growth models, a code of R or
G was used in the classification to indicate whether a
Ricker or Gompertz transformation was used. The
CpRcP-G model (i.e., constant-growth-rate parameter
(Cp) and random-coefficient density dependence pa-
rameter (Rc) model with the Gompertz transformation
(G) and the system noise present (P)) is the same as
that presented by Royama (1977).

To expand the class of modelsto cover more complex
dynamics, second-order stochastic Ricker and Gom-
pertz models were included. The constant-parameter,
second-order Ricker, and Gompertz models can be ex-
pressed as follows (Moran 1953, Royama 1977, 1981,
1992, Berryman 1978, Turchin 1990, Turchin et al.
1991, Dennis and Taper 1994):

X, = X 4+ a+ by f(N ) + b f(N_,) + & (7)

ArCpA models and second-order models can be used
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to describe the results of interactions between two spe-
cies (Royama 1977, 1981, 1992, Berryman 1978, Tur-
chin 1990) and internal population biological processes
(e.g., the negative effects of high population density
on the fecundity of the next generation, Prout and
McChesney 1985, Turchin 1990). The ArCpA models
in Table 1 can be expressed as either a second-order
Gompertz model (i.e., ArCpA-G) or in aform similar
to the second-order Ricker model (i.e., ArCpA-R, Zeng
1996). A total of 50 models were considered in this
study, based on the models in Table 1 and the second-
order models. These include: 23 first-order model and
one second-order model in Ricker form, 23 first-order
models and one second-order model in Gompertz form,
one random-walk model, and one exponential-growth
model. For more about considering the parameters b,
and b, in second-order models as random coefficients,
refer to Zeng (1996).

PARAMETER ESTIMATION

All models except for random-walk and exponential -
growth models were expressed in state space form to
take advantage of Kalman filter techniques. The state
space form contains the system and one step transition
state equations. The system equation in this study de-
scribes the dynamics where the observable variable (X,)
at timet is determined by the state vector at timet —
1 and the lag variables related to X,_,, or to X,_, and
Xi_,. The state equation represents the dynamics of the
various unobserved components (i.e., the state vector)
at time t, determined by the state vector at timet — 1
and noise at time t. The state space model represents
the most efficient condensation of information con-
tained in the past and present about the future (Tong
1990). However, population dynamics expressed in
state space form are nothing more than linear or non-
linear autoregressive models in which the parameters
change over time. Based on state space form, the Kal-
man filter provides the means to predict, update, and
smooth the state vector. As an example, the state space
form for model ArArP, where both growth and density
dependence parameters follow the first autoregressive
model and where system noise is present, is

Xo=Zi A+ X + & 8)
A =®A_, + (I — ®P)B + Q, 9

where Z, = [1, {(N)], A, = [a, b]", ® = [($a 0); (O,
(bb)]! B = [a, b]T! I = [(11 0), (O! 1)] and Qt = [('Oa,t:
wp]T. A, is called the state vector at timet, and Egs. 8
and 9 are called the system equation and state equation,
respectively. Other types of time-varying-parameter
models can easily be obtained by changing the param-
eter values. For example, if welet ¢, = 1 and ¢, = 1,
the above model will become RwRwP This structural
population dynamic model (Egs. 8 and 9) is known as
a conditionally Gaussian model. Kalman filter analysis
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can be used to estimate parameters in this nonlinear
population dynamic model.

When all parameter values in the state space model
are known, the Kalman filter uses arecursive algorithm
for estimating the conditional mean and covariance of
the state vector based on the information available at
time t — 1, and updating related estimates, when the
information at time t is available. The Kalman filter
finally smooths the estimates of conditional mean and
covariance to utilize all information in the time series
data (Kalman 1960, Harvey 1989a). The prediction,
updating, and smoothing equations represent three
parts of the Kalman filter (Egs. A.1 and A.2, A.3 and
A.4, and A.5 and A.6, respectively, in the Appendix).

SAS PROC IML (SAS 1988) was used to program
the Kalman filter, and a trust region nonlinear opti-
mization method (NLPTR, starting with release 6.08,
Hartmann 1994) in the NLP subroutines in SAS IML
was used to maximize the likelihood function. The ap-
proximate derivatives for the gradient vector and Hes-
sian matrix used for some nonlinear optimization meth-
ods can be automatically calculated by built in func-
tions, using finite differences. SAS IML provides an
efficient way to program the Kalman filter and maxi-
mum-likelihood function because of the great flexibil-
ity of various nonlinear subroutines. The execution of
the program usually takes <2 min with a PC 486/D X 2-
66 computer to finish the optimization for one model.
However, it is important to note that sometimes the
optimization may fail due to lack of convergence in
parameter estimation.

MODEL SELECTION

In order to identify the best density-dependent-model
form for the given ecological time series, we need to
use goodness-of-fit statistics to select a model form
among alternative models that either best approximates
the generating mechanisms, or offers the best predic-
tion of the data. The value of the maximized log-like-
lihood function (Eq. A.9) is a measure of the goodness-
of-fit statistic. Generally, models with more parameters
have higher maximized likelihood values. However,
this by itself may not determine which is the most
appropriate model, because excessively large confi-
dence and prediction intervals may occur in overpar-
ameterized models. Information criteria are model se-
lection methods that adjust the value of the maximized
likelihood function for the number of parameters, for
the sample size, or for both, to select the best model
among alternative models. Information criteriatake the
form of the negative log-likelihood plus some penalty
terms, which increase with the number of parameters
and the sample size (Sclove 1987). One of the advan-
tages of using information criteria is their computa-
tional simplicity for comparing different models. Ad-
ditionally, the models compared can be nested or non-
nested (Takane 1987, Harvey 1989b).

Many authors (e.g., Koehler and Murphree 1988,
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Hooten 1995) have verified that SIC (Schwarz 1978)
offers greater consistency than other information cri-
teria in identifying the appropriate model. A number
of information criteria were compared by Hooten
(1995) for selection of the appropriate model form in
studies of density dependence. The SIC method was
found to be the most appropriate information criterion
for identifying the best model among six alternative
models considered. It should be noted that in using
SIC, there is a slight tendency to choose lower order
models, which makes identification of complex dynam-
ics conservative (Hooten 1995). Based on Monte Carlo
simulation, Zeng (1996) also found a conservative
model selection among time-varying and constant-pa-
rameter models using SIC.

SIC, sometimes called the Bayesian information cri-
terion (BIC), is denoted as follows:

SIC = —21n(L) + kIn(n — 7) (10)

where In(L) is the maximized log-likelihood, k is the
number of parameters, n is the number of free obser-
vations used in the maximume-likelihood function (n =
T — [no. of terms related to the initial observations
dropped in the maximum-likelihood function]), and v
is the number of observations missing. In this study,
we used SIC to select the best model among the classes
of density-dependent and density-independent models.

The model that produces the minimal SIC value is
defined as the best model for describing the particular
time series data set. The number of free observations
for the ecological time series varies with the model,
and the value of the information criterion varies with
the sample size. For comparative purposes, all SIC val-
ues were adjusted by multiplying the value by (T — 1)/
(T — 0O), where O is the order of the model. For ex-
ample, the order of the NID model is zero, the order
of the random-walk model is one, and the order of the
second-order model is two. This method is similar to
using the mean information criterion value (i.e., the
information criterion value divided by the number of
free time series observations in the analysis, Tong
1990, Hooten 1995). In this study, a Ljung and Box
(1978) Q test statistic was used to test simultaneously
if al orders of the autocorrelation of the residuals up
to M were zero, where M is the maximum order of the
autocorrelation considered in the test (see the Appen-
dix).

DATA SETS

Sixteen insect census data sets were used to test our
modeling approach (Table 1 from Den Boer and Red-
dingius 1989). These included some famous historical
examples in population ecology (e.g., pine looper, Bu-
palus piniarius, Klomp 1966; winter moth, Opero-
phtera brumata, Varley et a. 1973; viburnum whitefly,
Aleurotrachelus jelinekii, Southwood and Reader
1976). Current test methods have frequently failed to
detect density dependence in these data sets (Den Boer
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and Reddingius 1989, Dennis and Taper 1994), and
parts of them have been used to address many contro-
versies in population regulation (e.g., Den Boer 1986,
1987, 1988, Gaston and Lawton 1987, Hassell et al.
1987, Latto and Hassell 1987, Southwood and Reader
1988, Vickery and Nudds 1991, Dennis and Taper
1994, Hooten 1995).

In addition, three 60-yr insect census data sets from
German forests (Schwerdtfeger 1941), one insect data
set from Morris (1959), three vertebrate data sets used
in Dennis and Taper (1994), three vertebrate data sets
used by Hooten (1995), four vertebrate data sets from
Keith (1963), and a Lynx data set from Elton and Nich-
olson (1942) were reanalyzed by this new modeling
approach. All data sets and their original sources used
in this study are available from the senior author, and
these can also be found in Zeng (1996).

REsULTS

Model selection results for the first four best models
based on SIC, and the difference of the SIC values
between the first best model and additional three best
models selected for 31 data sets, are shown in Table
2. The best model for each of the 31 data sets was
determined by evaluating the SIC and selecting the
model with the minimum information criterion value
for each data set. Table 2 indicatesthe strength of model
separation among the first four best models in describ-
ing the population dynamics, and the frequency of the
particular models occurring among the first four best
models. In Table 2, smaller SIC value differences (i.
e., those <1, as recommended by Sakamoto et al. 1986,
page 84 and Burnham and Anderson 1992) between
the first best model and any other best model are in-
explicable due to uncertainty in the model selection
processes, while larger differences in the SIC values
are more plausibly attributable to meaningful differ-
ences in the applicability of these models to the data
(e.g., in density-dependent or density-independent
models). The percentage of the examples in which cer-
tain models occurred among the best four models were
15% for the random-walk model, 6% for exponential
growth, 8% for Ricker, 13% for Gompertz, 9% for sec-
ond-order Ricker, and 11% for second-order Gompertz.
As a group, the 44 time-varying density-dependent
models were included in the best four models 38% of
the time. Density-independent models were included
in the best four models in only 21% of the cases. The
resultsin Table 2 thus suggest that the use of any single
density-dependent model form, such as time-varying-
parameter models, the Ricker model, Gompertz, or sec-
ond-order models may not maximize the detection of
the density dependence in the field populations using
statistical hypothesis testing.

Parameter estimates and model selection results
based on SIC for each population are presented in Table
3. Models selected using this criterion included: seven
random-walk, two Ricker, two Gompertz, five second-
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TaBLE 2. The best four models according to the Schwartz information criteria (SIC) and the difference of the SIC (dSIC)
between the first best model and other best model selected, based on SIC information criteria.

dsic dsic dsic

Species 1st 2nd (1st—2nd) 3rd (1st—3rd) 4th (1st—4th)

1) Operophtera brumata larvae R(2) RW 1613 G(2) 1943 G(1) 3.354

2) adults CpRcA-G  CpArA-G 1.745 R(1) 2.886 RW 3.276

3) Bupalus piniarius larvae CpRcA-R CpArA-R 1449  CpRcP-R 2.153 CpRcA-G 2.474

4) larvae (Sept.) CpRcA-R CpArA-R 1.130 CpRcP-R 2.385 CpArA-G 3.346

5) pupae G(1) RW 0.292  ArCpA-G 2564 EG 2.856

6) adults G(1) G(2) 1935 ArCpA-G 2560 R(2) 3.557

7) Bupalus piniarius pupae R(2) R(1) 0.310 RW 1.270 ArCpA-R 1.551

8) Phyllopertha horticula RW EG 3.277  G(1) 3.842 R(1) 5.724

9) 3rd instar Hawes End Farm G(2) ArCpA-R 1.001  CpRcA-R 1.632 ArCpA-G 2.015

10) Zeiraphera diniana G(2) ArCpA-G 20.500 R(2) 21.740 RW 22.778
11) Choristoneura fumiferana RwW G(1) 1863 R(1) 2433 EG 2.528
12) 3rd instar larvae RW G(1) 0.253  G(2) 0.408 R(1) 0.699
13) Aleurotrachelus jelinekii R(2) G(2) 6.990 R(1) 9.401 EG 11.620
14) 4th instar larvae, pop. 2 R(2) G(2) 0.551 RW 1.094 EG 2.748
15) 4th instar larvae, pop. 3 CpRcA-P G(1) 1428 CpArA-G 2.040 RW 2.642
16) Nebria brevicollis adults RW G(1) 0.574  ArCpA-R 1.157  ArCpA-G 1.314
17) Acleris variana G(2) R(2) 0.193 RW 10.198 ArCpA-G  10.808
18) Panolis flammea CpRcP-G CpArA-G 2.909 ArRwA-G 3.123 CpArP-R 3.919
19) Dendrolimus pini CpRcP-G RwWArA-G 0.404  CpArP-G 2.343  ArCpA-G 4.071
20) Bupalus piniarius G(2) ArCpA-R 1.656 G(1) 3.856 ArRcA-R 5.652
21) Ursus arctos horribilis CpArA-G  ArCpA-G 0.393 ArCpA-R 0421 G(2) 0.795
22) Cervus elaphus R(1) R(2) 2546 CpRcA-G 2815 G(1) 3.342
23) Cervus elaphus R(1) CpRcA-G 0.868 G(1) 1.021 RW 2.614
24) Cervus elaphus CpRcA-G  G(1) 0.074 R(1) 0.400 ArCpA-G 3.050
25) Anas strepera RW R(1) 0.505 G(1) 1422  CpRcA-G 2.508
26) Anas platyrhynchos RW EG 2694 G(1) 3.427  CpRcA-G 3.431
27) Vulpes spp. G(2) ArCpA-G 2022 R(2) 4732 RW 5.348
28) Canis latrans R(2) G(2) 0.653 RW 1.193 ArCpA-G 1.371
29) Mustela vison RW EG 3.504 CpRcA-G 4.059 G(1) 5.413
30) Ondatra zibethica G(2) G(1) 0.269  ArCpA-G 1561 RW 3.352
31) Lynx canadensis G(2) R(2) 2,522  ArCpA-G 38.725 CpArA-G  40.379

Note: Data sets nos. 1-16 were from Den Boer and Reddingius (1989). Data set no. 17 was from Morris (1959). Data sets
nos. 18-20 were from Schwerdtfeger (1941). Data sets nos. 21-23 were from Dennis and Taper (1994). Data sets nos. 24—
26 were from Hooten (1995). Data sets nos. 25—-30 were from Keith (1963). Data set no. 31 was from Elton and Nicholson

(1942). G(1) = Gompertz model; R(1) = Ricker model; G(2) =

second-order Gompertz model; R(2) = second-order Ricker

model; RW = random walk model; EG = exponential growth model.

order Ricker, seven second-order Gompertz, three
CpRcA-G, two CpRcA-R, one CpArA-G, and two
CpRcP-G models. Data are categorized as density de-
pendent or density independent simply by noting
whether the best model is in the family of density-
dependent models or in the family of density-indepen-
dent models (Hooten 1995).

The results from the comparison of the best density-
independent and best density-dependent models se-
lected using SIC are also listed in Table 3. For the 31
cases in Table 3, the model yielding the lowest SIC
values was density dependent in 23 cases, density in-
dependent in seven cases, and inversely density de-
pendent in one case. But invoking the above-mentioned
one-unit criterion for distinguishing SIC values (Sak-
amoto et al. 1986, Burnham and Anderson 1992) re-
sulted in 22 cases of density dependence, only four of
density independence, one of inverse density depen-
dence, and four cases that could be either density de-
pendent or density independent (i.e., nos. 5, 12, 16,
and 25). Models featuring complex population regu-

lation were selected in 19 of the 22 unambiguous cases
of density dependence.

A. jelinekii population one (no. 13 in Table 3) was
identified as a second-order inversely density-depen-
dent process, because of the positive coefficients. Ac-
cording to Southwood and Reader (1976), the resources
for A. jelinekii population one and population two in-
creased considerably during the experimental period.
The use of the total count of the population instead of
population density per unit resource may obscure pos-
sible density-related influences of resource availability
and violate some assumptions of the models (Zeng
1996).

One advantage in using dynamic modeling of eco-
logical time series is that one may further improve the
SIC and prediction by using a model with fewer pa-
rameters based on current modeling results. For ex-
ample, the estimate of the density dependence param-
eter for the B. piniarius pupal population (no.5in Table
3) based on the Gompertz model is close to negative
one (b = —0.669, sE = 0.258). We attempted to im-
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prove the fit by setting the density dependence param-
eter value to negative one. Thisisidentical to a model
in which log-population size is the NID process (X, =
a + g,). Using the NID model, we obtained the adjusted
SIC value of 41.382. This SIC value was smaller than
the SIC value obtained using the Gompertz model
(42.474) in Table 3, which suggests a higher likelihood
for the NID model to be the best model, since the model
has fewer parameters, and the penalty is less. It should
be noted that the difference in the SIC values among
random-walk and NID models is larger than one unit
compared with the results achieved in Table 3, due to
the finding of a more appropriate model form. The
mean and variance parameters in the NID model here
are based on the maximum-likelihood estimates of the
mean and variance (i.e., mean and population vari-
ance). The SIC value for the NID model is adjusted to
(T — 1)SIC/T, because one more observation is con-
sidered in computing the maximum-likelihood value
for the NID model than for first-order models.

A similar procedure was carried out for O. brumata
larvae, B. piniarium adults, and C. elaphus populations
(nos. 1, 6, and 24 in Table 3, respectively). By setting
b, = 0 in the second-order Gompertz model and re-
estimating parameters for the O. brumata larval pop-
ulation, we obtained an adjusted SIC value of 53.972,
which is smaller than that from the best model (second-
order Ricker model, SIC = 54.881) in Table 3, sug-
gesting a better fit of the data. For B. piniarium adults,
an adjusted SIC value of 40.832 was obtained using
the NID model, which is smaller than the SIC value
(42.861) in Table 3. This suggests that the B. piniarium
adult population can be better modeled using the NID
model. For the C. elaphus population, by setting b =
—1, for both Gompertz and CpRcA-G models and re-
estimating parameters, we obtained the adjusted SIC
value of —36.769 and SIC value of —41.30, respec-
tively. The smaller SIC value in the latter case sug-
gested that atime-varying noise model (X, = a + X,_,&,)
was the more appropriate model form.

A density-dependent model was found to fit the griz-
zly bear data (Ursus arctos horribilis) better than the
density-independent models. In order to consider if the
central b (i.e., the unconditional mean of the density
dependence parameter) is equal to zero in the autore-
gressive density dependence parameter for the grizzly
bear data set, we set b = 0 and obtained the following
parameter estimates, & = 0.0394, , = —0.648, G2 =
5.65 X 104, and SIC = —23.482. The slightly smaller
SIC value compared to the SIC value, —22.429, in
Table 3, suggests that the central b may actually be
zero. Because the b, values range from positive to neg-
ative, the population dynamics of the grizzly bear may
include density-dependent, inversely density-depen-
dent and density-independent processes. The negative
autocorrelation among these b, values is especialy in-
teresting. But certain features of the grizzly bear data,
such as the 3-yr moving average and the likelihood that
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the same individuals were recounted in subsequent
years, make this autocorrelation pattern much moredif-
ficult to interpret and suggest that firm conclusions
must await more detailed studies of this population.

Inthefirst 16 data setsin Table 3, density-dependent
models were selected in 10 out of 16 cases, while one
ambiguous case and one case of inverse density de-
pendence were found using SIC. In contrast, Den Boer
and Reddingius (1989) detected a density-dependent
process in none of 16 using the randomization test of
Pollard et al. (1987), 3 of 16 using Bulmer’s test, and
1 of 16 using the permutation test of the same data
sets. Dennis and Taper (1994) rejected density inde-
pendence in two of the data sets using the PBLR sig-
nificance test and using the exponential-growth model
as the null model. Using constant-parameter models
and a model selection approach based on SIC, Hooten
(1995) identified the density-dependent model as the
best model in 9 out of 16 cases. Both B. piniarium
pupae and adults (numbers 5 and 6 in Table 3), were
identified as independent, identically distributed (11D)
models by Hooten (1995), who applied empirical den-
sity distribution estimation techniques to estimate the
density distribution. More density-dependent models
were sel ected here by using the time-varying-parameter
approach and second-order models than in previous
studies.

Four types of complex regulation models (CpRcA,
CpATrA, CpRcP, and second-order models) were found
among 31 data sets (Table 3). Time-varying density
dependence parameters were found in 6 out of 20 insect
data sets examined, and 2 out of 11 vertebrate data sets
using SIC. Among the time-varying-parameter models,
the random-coefficient parameter model seemed to be
the model selected more frequently in animal popu-
lations than other time-varying models. The random-
walk-parameter model seemed to be identified less fre-
quently as the best model (Table 2). The advantage of
using the random-walk-parameter model is that it can
approximate some linear and nonlinear parameter
trends (Zeng 1996). Two out of 20 insect data sets, and
two out of 11 vertebrate data sets were not categorized
as density dependent using one-unit criterion of SIC.
This may have been due to small sample size, aspecific
period of time in the time series where density depen-
dence was absent or weak in the data, or misspecifi-
cation of the model. Model misspecification may be
identified with the Ljung and Box Q test. Results in
Table 3 show that the error terms for some of the best
models sel ected were not 11D, and further improvement
of the population dynamic models is needed.

Time-varying changes in the density dependence pa-
rameter might be expected under unstable natural-en-
emy performance (Royama 1977), and/or fluctuations
in resource availability. A combination of density-de-
pendent, inversely density-dependent, and density-in-
dependent processes may exist in the populations with
a time-varying density dependence parameter, as the b,;
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TaBLE 3. Results of parameter estimation and fit of population time series data.

Density-independent model t

Density-dependent model

No. of
Spe- obser- . .
cies vations G2 In(L(X, W)) SIC Model typet a (se) b, or b (sg)
1 19 1.150 —26.802 56.494 R(2) 0.938 (0.344) —0.00348 (0.0024)
2 19 0.783 —23.338 49.567 CpRcA-G 1.049 (0.0484) —0.542 (0.104)
3 15 1.310 —21.757 46.153 CpRcA-R 1.029 (0.105) —0.084 (0.0269)
4 15 1.800 —23.981 50.601 CpRcA-R 1.148 (0.085) —0.108 (0.0363)
5 14 1.290 —20.101 42.766 G(1) 0.391 (0.299) —0.669 (0.258)
6 14 1.720 —21.973 46.510 G()T —0.271 (0.265) —0.914 (0.260)
7 13 1.430 —19.174 40.834  R(2) 0.741 (0.401) —0.0279 (0.0101)
8 29 0.747 —35.637 74.606 G(1) 0.876 (0.515) —0.231 (0.135)
9 18 0.610 —19.929 42.692 G(2) 0.985 (0.518) —0.746 (0.211)
10 20 6.6671 —44.983 92.910 G(2) 1.898 (0.364) 0.387 (0.113)
11 15 2.031 —24.825 52.288 G(1) 0.611 (0.420) —0.285 (0.148)
12 14 2230 —23.660 49.886  G(1) 0.484 (0.370) —0.427 (0.179)
13 12 1.217 —16.690 35.777 R(2) 0.360 (0.215) 3.35 X 1076(1.035 X 10-9)
14 12 0.643 —13.181 28.760 R(2) 0.582 (0.215) —4.7 X 1075(6.447 X 1079
15 12 1.370 —17.340 37.078 CpRcA-G 2.397 (0.743) —0.598 (0.198)
16 11 0.350 -8.941 20.185 G(1) 3.445 (1.558) —0.526 (0.0590)
17 12 2.2067 —19.960 42318  G(2) 2.538 (0.556) 0.208 (0.148)
18 60  1.502 —95.725 195.527  CpRcP-G 0.264 (0.115) —0.327 (0.147)
19 60 1.8001 —101.059 206.196 CpRcP-G 0.201 (0.140) —0.266 (0.115)
20 60 3.591 —121.431 246.940 G(2) 1.0689 (0.319) —0.0519 (0.122)
21 17 0.0179 10.076 -17.379 CpArA-G —0.377 (0.30) 0.113 (0.0811)
22 12 0.021# 5.753 —6.710 R(1) 0.468 (0.0637) —4.1 X 10-5(7 X 10°9)
23 23 0.067 —1.439 5.922 R(1) 0.731 (0.231) —0.00049 (1.56 x 104
24 25 0.0151 16.410 —29.643 CpRcA-G 7.317 (1.514) —0.810 (0.168)
25 31 0.044 4.252 —5.102 R(1) 0.403 (0.154) —2.64 X 1074(1.0012 X 10-%)
26 31 0.019 16.638 —29.874 G(1) 1.858 (1.121) —0.208 (0.124)
27 44 0.245 —30.788 65.337 R(2) 1.614 (0.739) 0.411 (0.132)
28 44 0.325 —36.839 77.439 R(2) 0.106 (0.162) —3.7 X 10°%(1.23 X 1079)
29 44 0.124 —16.141 36.043 CpRcA-G 1.691 (1.0625) —0.182 (0.116)
30 44 3.4891 —87.880 179.522 G(2) 7.404 (1.731) —0.252 (0.145)
31 114  0.6811 —138.669 282.065 G2)T 2.435(0.277) 0.384 (0.063)

Note: DD = density dependence; ID = inverse density dependence; DI = no density dependence was detected.

T The best model between random walk and exponential growth models.

F The best model among all density dependence modelsin this study (except modelswhich failed in nonlinear optimization).

§ SIC for the best model between Ricker and Gompertz models. SIC is not listed for models where either the Ricker or
Gompertz model is the best model among all density-dependent models.

9 Nonindependent, identically distributed residuals were detected by a Ljung and Box (1978) Q test at the 5% probability

level.
# Exponential growth model, & = 0.111.

may be smaller than, larger than, or close to zero in
different time periods and under different density rang-
es. Finding occasional periods of positive density de-
pendence in these populations was not surprising, and
could be expected when outbreak-prone insect popu-
lations overwhelm their predators’ or their hosts' re-
sistance mechanisms (Dennis 1989). These features are
also demonstrated in the notable time series of P. flam-
mea and D. pini reported by Schwerdtfeger (1941). The
population densities, the estimated density dependence
parameters and the fit (i.e., conditional expected mean)
from the time-varying-parameter model are presented
in Fig. 1A (b = —0.327, no. 18 in Table 3) and 1B (b
= —0.266, no. 19 in Table 3), respectively. It can be
seen that the density dependence parameter (b,;) from
the Kalman-filter smoothing procedure closely follows
the population dynamic trends of the P. flammea and
D. pini populations, respectively.

DiscussioN

In this section, we elaborate on the general statistical
and ecological advantages of our current modeling ap-

proach over tests of density dependence that invoke
only simple models. We focus on the ability of our
methods to categorize density-dependent processes in
natural populations and gain biological insights into
the intricacies of complex population regulation as-
sociated with the ecological time series data.

The advantage of using the Kalman filter in
ecological time series analyses

The Kalman filter is a series of recursive equations
that are capable of analyzing structural time series
models represented in state space form. The structural
time series modeling method using the Kalman filter
shown in Harvey (1989a) has many advantages over
classical Box-Jenkins methods (Box and Jenkins 1976),
in that the model can contain multiple noiseterms (e.g.,
parameter noise, observation noise and system noise)
and deterministic or stochastic components of the time
series (e.g., linear-trend, circular, seasonal, or autore-
gressive processes) (Harvey 1989a). Unlike Box-Jen-
kins methods, it is not necessary to assume stationarity
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TaBLE 3. Extended.
Density-dependent model
. Density
b, (sE) 62, 63, or 62 In(L(X,W)) SIC dependence? SIC§
—0.00761 (0.00248) 0.634 —20.250 54.881 DD 58.235G(1)1
0.154 —18.810 46.291 DD 49.177R(1)
0.005 —13.260 34.436 DD 43.019R(1)
0.011 —15.796 39.51 DD 47.737R(1)
0.850 —17.389 42.474 DD
0.876 —17.583 42.861 DD
—0.0146 (0.0102) 0.662 —13.337 39.563 DD 39.873R(1)
0.675 —34.226 78.448 DI
0.295 (0.218) 0.312 —13.373 40.201 DD 42.373G(1)
—0.983(0.121) 1.248 —27.532 70.326 DD 95.212G(1)1
1.591 —21.222 54.152 DI
1.533 —13.105 50.139 DI
3.504 X 10°%(1.99 X 10-9) 0.207 —6.305 24.003 ID 33.403R(1)
—3 X 105 (6.762 X 1079) 0.288 —7.970 27.666 DD 32.349R(1)
0.041 —13.621 34.436 DD 35.863G(1)
0.234 -6.925 20.759 DI
—0.874 (0.154) 0.432 —9.995 32.120 DD 44.188R(1)T
G = 0.44 (0.178) 0.472 —81.938 180.185 DD 189.959G(1)
6% = 0.212 (0.105) 0.738 —90.766 197.842 DD 206.353G(1)
—0.369 (0.121) 2.642 —110.469 241.269 DD 245.125G(1)
¢, = —0.712 (0.158) 5.0 X 104 16.760 —22.429 DD —13.987R(1)T
0.00489 13.654 —20.115 DD
0.044 2.913 3.266 DD
9.4 X 105 24.454 —39.374 DD —39.300G(1)
0.0357 7.400 —4.597 ID
0.017 18.326 —26.447 ID
—0.605 (0.142) 0.166 -21.821 59.989 DD 70.521R(1)T
—1.4 X 1075(1.236 X 1079 0.242 —29.761 76.246 DD 82.868G(1)
0.0014 —14.409 40.102 ID 41.456G(1)
—0.335(0.145) 2.467 —78.561 176.171 DD 176.440G(1)T
—0.748 (0.063) 0.274 —86.359 193.303 DD 279.315G(1)1

of the time series in structural time series modeling,
because the nonstationarity of the time series can be
embedded directly into the model. These advantages
are also very useful in the analysis of shorter ecological
time series data where the nonstationarity of the time
series is not easy to determine. In the structural time
series model, it is easy to include and estimate unob-
served components. In our study, the unobserved com-
ponents are parameters a, and b,. Because the Kalman
filter uses recursive algorithms, it can easily deal with
missing data.

The Kalman filter provides a powerful mechanism
for estimating the parameters and detecting various
sources of noise, such as parameter and system noise
from density-dependent and density-independent fac-
tors, if the model is clearly specified. As we have
shown, increasing the complexity of the models may
help in more realistically describing density depen-
dence. However, because of the limited information in
many data sets, one may not arbitrarily raise the com-
plexity of models by increasing the number of param-
eters or noise terms to be estimated. For a relatively
short time series such as one with <20 observations,
higher power can be expected when only one noise
term is considered in the system equation, growth rate,

or density dependence parameters (Zeng 1996). Fur-
thermore, the set of models that we used should not be
considered definitive. Researchers could reasonably
use a subset of the models presented in this study or
include others, depending on their prior knowledge of
the particular biological system and on the length of
the time series.

Study of the performance of the Kalman filter in
estimating the time-varying Gompertz model can be
found in Zeng (1996). Using Monte Carlo simulations,
the Kalman filter, and information criteria, Zeng (1996)
explored the parameter-estimation efficiency of time-
varying-parameter models and model identification
(with respect to different strengths in parameter and
system noise, the number of the noise terms, and length
of the time series). Based on three information criteria
(including SIC) used to identify the best model between
constant-parameter and time-varying-parameter mod-
els, Zeng (1996) found that greater parameter noise
relative to system noise, fewer noise terms, reduced
system noise, and alonger time series will consistently
increase the parameter estimation efficiency and the
percentage of time-varying-parameter models that are
correctly identified.

For more general results and discussion about the
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1B) reported by Schwerdtfeger (1941), the fit from the time-varying parameter model (i.e., conditional expected mean) and

estimated time-varying density dependence parameters.

Kalman filter, parameter estimation efficiency, alter-
native models, true model assumptions, number of
noise terms, and omitting variables in statistical pop-
ulation dynamic modeling, we refer the reader to Zeng
(1996).

Detecting density dependence: hypothesis testing vs.
model selection

In this study, some complex form of density depen-
dence was suggested in 23 out of 31 cases classified
as density dependent. In such a situation, hypothesis-
based tests designed to detect simple correlations or
simpl e dependence between growth rate and popul ation
density may frequently fail because of the poor match
between the implied dynamic model and underlying
natural processes. Furthermore, in most density depen-
dence tests, only one alternative density-dependent
model form (usually, Ricker and Gompertz models) has
been compared against either a random-walk model or
an exponential-growth model. We have seen that these
alternative models often present an over-simplified pic-
ture of population dynamics in a changing environ-

ment. It is important to note that forcing complex dy-
namics to fit the simple alternative models may gen-
erate serious statistical and ecological problems (Guck-
enheimer et al. 1977, Schaffer and Kot 1985, Turchin
and Taylor 1992, Zeng 1996).

Our approach provides less opportunity to misspe-
cify the models compared with hypothesis testing and
other modeling approaches using single null and al-
ternative models (e.g., constant-parameter, first-order,
or second-order models). While the use of abroad array
of candidate models also increases the likelihood that
one of our modelswill approximate the underlying pro-
cess, the use of the SIC model selection criterion pro-
tects against the perils of overfitting the data. The sta-
tistically rigorous selection of models has not received
sufficient attention in previous work on complex pop-
ulation dynamicsin natural populations (Schaffer 1985,
Schaffer and Kot 1985, Turchin 1990, Turchin and Tay-
lor 1992).

Results from hypothesis testing and model selection
are not directly comparable, and hence it is necessary
to address the difference between these two approach-
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es. One advantage of using hypothesis testing is that
the Type | and Type Il error rates associated with a
hypothesis test can be explicitly explored, once the
basic assumptions of the test are satisfied. Hypothesis
testing is best suited for problems in a closed world:
a world in which the truth lies in either the null or
alternative hypothesis (Oreskes et al. 1994). However,
in the real world, a number of problems arise when
attempting to use the hypothesis-testing framework to
detect density dependence. First, as we have shown, it
is difficult to find a few models associated with null
and alternative hypotheses which are general enough
to describe the full range of population dynamic pat-
terns observed in field populations. Dennis and Taper
(1994) used the term ““Type Il error’” to describe the
error associated with fitting the wrong model. Chatfield
(1995) expressed the belief that model misspecification
is the dominant source of error for many problems.
When the Type 11l error rate is high, the Type | and
Type |l error rates are meaningless in hypothesis test-
ing. Second, because there are two possible null models
(random-walk model and exponential-growth model),
many possible alternative models (e.g., Ricker model,
Gompertz model, time-varying-parameter models, sec-
ond-order models, etc.), and different test methods
(e.g., linear regression, Morris 1959; test of correlation,
Bulmer 1975; test of the density dependence parameter,
Pollard et al. 1987, Dennis and Taper 1994; test limit,
Reddingius and Den Boer 1989), different researchers
may produce different and incomparable density de-
pendence test results (Wolda and Dennis 1993).
Model selection simultaneously takes account of the
goodness-of-fit of a model, the number of model pa-
rameters, and the sample size used to achieve that fit
(Sclove 1987). Model selection invites the use of mul-
tiple models and thus can make full use of modern
nonlinear modeling techniques without abandoning
classical simple models. Hence, it is better suited for
problems in an open world. Hooten (1995) found that
even when failing to select the true model, the use of
information criteria will tend to select a similar model
form, and increasing the number of models under con-
sideration seems to increase the likelihood of correctly
identifying a class of models such as density-dependent
models. One disadvantage of using model selection is
that it is difficult to determine statistical significance
levels among a group of nested and nonnested models.
Different information criteriain usetoday might give
slightly different rankings to a set of tested models.
The best model among a group of models can be se-
lected based on its prediction ability or the ability to
approximate the data-generating mechanism. The most
popular information criteriaarethe AIC (Akaike, 1974)
and the SIC (Schwarz 1978). The AIC attempts to
choose the model that will minimize the prediction er-
ror (Shibata 1981, Reschenhofer 1996) and is asymp-
totically equivalent to model selection by cross-vali-
dation (Stone 1977). On the other hand, the SIC and
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other consistent information criteria asymptotically se-
lect the model that generated the data (Reschenhofer
1996). Simulations (Hooten 1995, Zeng 1996) have
shown that the SIC identifies the order of the generating
model more consistently than does the AIC, and further
that the AIC tends to suggest the use of models with
more parameters. In this paper, we are more concerned
with identifying the form of ‘‘density dependence’
than with immediate predictions and, thus, have opted
to use SIC as a model-selection criterion.

Hypothesis testing in the context of population dy-
namic time series has some additional difficulties. Itis
well known that allowing inspection of the data to af-
fect selection of the alternative model biases hypothesis
testing by producing unrealistically low probability
values (Chatfield 1995). This study (see Table 2) and
that of Hooten (1995) indicates that no single model
represents the real world well in even a majority of
cases. Thus, the researcher interested in hypothesis
testing is faced with the choice of either consistently
using a single generic test such as the parametric boos-
trap test of Dennis and Taper (1994) or randomization
test of Pollard et al. (1987) and accepting the loss of
power and biological insight due to common model
mi sspecification, or to select an alternative model after
viewing the data and compromising any meaning the
probability value may have. We believe that the model
selection approach is a viable way to avoid this quan-
dary. However, because there are no probability values
directly associated with model selection, the model se-
lection itself cannot reject or accept a hypothesis of
density dependence, but can only indicate that data are
more consistent with density dependence or density
independence. If aresearcher wishesto combine model
identification and hypothesis testing for density de-
pendence, a legitimate probability value can be ob-
tained by performing a parametric bootstrap (Dennis
and Taper 1994) of the entire model identification pro-
cess. This topic will be considered in a subsequent

paper.
Biological insight

Detecting density dependence in natural populations
isan important first step in ecological studies. However,
of far greater ecological interest is explaining what
actually happens in the field. Thus, determining, or
closely approximating, the actual form and pattern of
natural population regulation surpasses in interest the
detection of density dependence. Here again our ap-
proach represents a major advance.

Ecological factors such as the dynamics of natural
enemies and fluctuations in resource availability are
considered by many authors to be important factorsin
animal population regulation (e.g., Dempster and Pol-
lard 1981, Turchin 1990). Models that fail to include
such important regulation factors or their various in-
fluences on population dynamics may not be able to
detect different types of density dependence, such as
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indeterminate density dependence, which may contain
density-dependent, inversely density-dependent, and
density-independent processes (Strong 1986, Brown
1989). These various types of density dependence may
operate at different times and under different density
rangesin nature (Nicholson 1958, Strong 1986, Sinclair
1989). In this study, we combined time-varying-param-
eter and second-order modeling approaches, and se-
lected the best model using the SIC information cri-
terion. When information on the dynamics of natural
enemies, fluctuationsin resource availability, and other
density-dependent factors, as well as density-indepen-
dent factorsis not available in a changing environment,
this approach has great potential and flexibility for ap-
proximating the underlying mechanisms of ecological
time series data and for modeling various population
dynamics.

The dynamic modeling of time series also provides
the means for inferring the importance of changes in
environmental factorsthat occur over greater than year-
ly or generational time scales. Heretofore, the best ap-
proach available was to divide the time series into dif-
ferent segments and fit different models to each seg-
ment (Rotella et al. 1996; M. L. Taper and P Gogan,
unpublished manuscript). This piecewise approach is,
at best, an awkward method for studying populations
whose parameters have changed gradually over along
time period.

The comparison between density-dependent models
and density-independent models is not the only com-
parison of interest. Because the models are able to de-
scribe various density-dependent influences inherent in
the time series data, and because different density-de-
pendent models may indicate different strengthsin in-
teraction among groups of density-dependent and den-
sity-independent factors on the population dynamics,
identifying certain density-dependent model forms may
help in inferring the importance of certain environ-
mental factors. For example, if the second-order model
is identified as the best model, one may infer strong
interaction between population density and density-de-
pendent factors. Ricker and Gompertz models, if iden-
tified as the best models, may suggest that the condi-
tional density dependence concept would tend to be
supported, in which the influences of the density-de-
pendent factors increase conditionally on the increase
of the population density, and overall density-depen-
dent factors are less influenced or not affected by pop-
ulation density (Royama 1992, Zeng 1996). In our
study, we found only four cases where the Ricker and
Gompertz models provided the best fit of thetime series
data, and one of these was not unequivocally superior
to the random-walk model (Table 3). In some cases as
shown in Table 3, the differences between the SIC val-
ues for the complex model and simple model are neg-
ligible, and statistically indistinguishable. A long time
series data set may be helpful in discriminating between
different density-dependent model forms, as well as
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between density-dependent and density-independent
models. However, once the best model is found for an
ecological time series data set, the importance of ac-
quiring additional biological information and the need
for further experimentation to test the hypotheses re-
garding the mechanism of population dynamics cannot
be overemphasized, as the statistical approaches used
cannot guarantee that the density dependence detected
is from the density-dependent factors.

Long-term ecological studies and field experimental
studies are two important complementary approaches
that have been used to address variousissuesin ecology
(Krebs 1991). Under a stochastic population system,
replication, or the like, isthe only way to isolate trends
or deterministic dynamics from the noise in a given
system. In practice, it may be difficult to carry out many
independent field experiments, because of the corre-
lation of density-independent factorsin somelarge geo-
graphical regions (Royama 1992). Long-term studies
have a number of advantages that enable the study of
population and community dynamics over temporal
and/or spatial scales that are often difficult, if not im-
possible, to consider in experimental studies. Such
study may allow one to detect dynamic patterns (e.g.,
trends) under equilibrium and nonequilibrium ecolog-
ical paradigms, monitor environment changes, and test
ecological hypotheses related to the past and present.
In contrast, it is not easy to conduct experimental stud-
ies sufficiently comprehensive to obviate the need for
long-term data, which have inherent historical char-
acteristics (Zeng 1996).

Population viability analysis

The ability to classify and characterize complex pop-
ulation regulation should have important practical ap-
plications. The model selection and parameter esti-
mation techniques we have demonstrated can be used
to develop population management models and gen-
erate more realistic estimates of extinction time dis-
tributionsin population viability analysis. For example,
we investigated the extinction time distributions for
two of the populations analyzed in this study. In Fig.
2, a Monte Carlo simulation was conducted to study
the number of generations needed to reach a minimum
population density (arbitrarily set at 0.01/m?) based on
three time series models and corresponding estimated
parameter values. The time to reach the minimum pop-
ulation density was recorded for 1000 simulations for
each model. Simulations were carried out for the ran-
dom-walk, constant-parameter, and time-varying-pa-
rameter models. The cumulative frequency of extinc-
tion times to reach the minimum population density for
O. brumata (no. 2, in Table 3) and B. piniarius (no. 3,
in Table 3) is presented in Figs. 2A and 2B, respec-
tively, and varied among the three models. A rapidly
rising curve indicates a propensity for reaching the
minimum density quickly (i.e., rapid extinction), while
a shallow curve indicates greater persistence. The cu-
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mulative frequency from the time-varying model,
which was the best model among all alternative models,
indicated a longer persistence time than that from ran-
dom-walk and constant-parameter models for O. bru-
mata. However, the simulation results for B. piniarius
indicated that the time-varying-parameter model gen-
erated a shorter persistence time than the other two
models. A time-varying coefficient density-dependent
model may not always generate a longer persistence
time prediction for aregulated population and, as Figs.
2A and 2B indicate, the differences may be dramatic.

CONCLUSION

We believe that the approach we have devel oped and
demonstrated in this paper represents a major advance
in the ecological statistics of modeling population dy-
namics and in the characterization of population reg-
ulation patterns. We see three magjor advantages:

1) By using abroad array of models (some of which
exhibit a great deal of flexibility), it is more likely that
one of them will closely approximate the true popu-
lation dynamics of a population than if a researcher
confined his or herself to a single null and alternative
model. Thisincreases the likelihood that complex den-
sity dependence, if it exists, will be recognized as such,
in contrast to procedures using standard hypothesis
tests with simple models, where complex population

dynamics will decrease the power for detecting density
dependence.

2) This ability to recognize and identify a broad ar-
ray of density dependence forms increases the hiolog-
ical insight derivable from the statistical analysis.

3) The increased ability to characterize complex
population regulation may have profound effects on our
ability to predict the fate of populations. Our examples
show that for populations exhibiting complex popu-
lation regulation, a population viability analysis that
takes this into consideration may predict population
survival times that are either shorter or longer than
those predicted by simple population dynamic models.
These differences can be quite large.
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APPENDI X
PARAMETER ESTIMATION PROCEDURE

Kalman filter

Based on the state representation of the popul ation dynamic
model (Egs. 8 and 9), let the vector, A,_,;_,, denote the con-
ditional mean estimator of state vector A,_, based on the
observations up to and including X,_, (X, = [X, X, . . ., X{).
Let P_,,_, denote the p X p conditional covariance matrix of
A, ,, based on the observations up to and including X,_;,
where p is the number of variables in the state vector. In this
study, p = 2 and p = 3 for first-order and second-order mod-
els, respectively. The one-step ahead prediction equations of
the conditional mean (A,_,) and variance (P,_,, ,) at timet
— 1 are as follows:

Ay = E(Atlxt—l)
E{[PA  + (| — ®)B + Q]| X, 4}

= DA .+ (I — D)B (A1)
Pus = Var(A] X, )

= Var{[®A, , + (I — ®)B + Q]| X, .}

= @ Var(A_ | X, 1)@ + Var(Q)

= DP, 4 DT+ Q (A.2)

where Q = [(03, 0); (0, a})].
The mean and variance of the one-step ahead prediction at
timet — 1 for the system equation are as follows:

EX | X 1) = E[(Z 1A+ Xq + &) | Xia]
=Z A+ X 4,
Var(X | X 1) = Var[(Zo A + X + &) | Xa]
= Var(Z_ A | X 1) + Var(X .| Xi1)
+ Var(e| X_1)
= Z, Var(A| X, )ZT, + o2

= Z 1Py 27, + o2
The covariance between X, and A, based on information
available at timet — 1is

Cov(Xi, Al X 1) = Cov(Z, 1A, Al X 1)

= Z,Cov(A,, Al X 4)

= Z Var(Ad Xi1) = Z 1Py

[A, X]T has a multivariate conditional normal distribution,
mean is

A!/!*l
ZACH X
covariance is
Pl/lfl Plltfllefl
Z1Py1 Z 4Py Zl, + o2 .

Based on the properties of the multivariate normal distri-
bution (Harvey 1989a), when the information at time t is
available, the updating equations are:

Ay = EAIX) = Ayr+ Py ZT b, (A3)

Py = Var(A X)) = Pys = Py rZ01 121 Pycas (A4
and
v =X = ZiaAr— X,

fo=Z1PyaZls + o2

v isthe prediction error, and f, is the prediction error variance.
v, ~ N(O, f).

The estimators A, and P, yield conditional estimates of
the mean and covariance of state vector A, for the time series
through time t, but only the last estimators (A, Pyy) use all
information in the data. In order to consider all available
information to estimate the state variables (e.g., a and b, in
the state vector for first-order models), recursive smoothing
techniques were used to estimate the conditional mean (A ;)
and the conditional covariance (Py;), which start with thefinal
quantities A+ and P and work backwards as follows (Har-
vey 1989a):

A!/T = A(/I - P;k (Az+]JT - AHJJI)' (AS)
Pyr = Py + P (Peyr — Puy)(PE)T, (A-6)
where
Pr= PPy, t=T-1T-2....2

Egs. A.1-A.4 are recursive. They cannot be implemented
without initial values for Ay, Py, ®,and B (t=1andt = 2
for first-order and second-order models, respectively). These
initial values will influence the estimates of the conditional
mean and variance based on the Kalman filter. Thisinfluence
diminishes with time series length. Fortunately, dependence
on initial guess valuesis lost in the maximum-likelihood op-
timization process, provided that a solution is found. Initial-
ization and optimization of the maximum-likelihood function
are described in the next section.

Maximum-likelihood function and initialization of the
Kalman filter

In statistical applications, the Kalman filter, which is a
recursive algorithm for computing the state vector based on
known parameter values, cannot give the estimates of the
parameters in the state space model by itself. Hence, the
Kalman filter must be combined with the likelihood function
to estimate the parameters (Harvey 1989a). For a structural
time series model as in Egs. 8 and 9, the likelihood function
is defined as

Lmn®):gpaJKa

PX)PK [ X)) - - - p(X| Xica), (A7)
where X = (Xg, Xy, ..., X;), O is the parameter set in the
likelihood function (e.g., ® = [a, b, d,, by, 03, o}, 7 for
Egs. 4, 5 and 6), and the p(X, | X,_,) is the probability density
function of X, conditional on the X,_; values up to time t —
1. Under the state space model assumption, p(X, | X,_,) is a
density function of the normal distribution with the prediction
error v,, and the prediction error variance f, asfollows (Harvey
1989a):

1 v2
X | X 1) = —=exp| —==|. A8
PX | Xi-1) VanT p( 2f‘) (A.8)
Thus, the complete log-likelihood function for fitting the
model to a univariate time series can be expressed in pre-
diction error decomposition form (Schweppe 1965, Nicholls
and Pagan 1985, Harvey 1989a) as

T; 1In(21'r) - %é In(f)

InfL(Xy, ©)] = —

18 v
— =3 S Inpxyl-
25 f,

The v, and f, can be calculated from the Kalman filter (Egs.
A.1-A.4). Inour analysis, In(p(X,)) isconsidered afixed term

(A.9)
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and can be dropped from the likelihood function. Thus, the
likelihood used is not the full likelihood of X;, X,, ..., X;,
but isinstead the likelihood of X,, X, . . ., X; conditional on
the realized initial value of the population size X,. In certain
special cases of stationary time series with well characterized
distributions, term In(p(X;)) can be included to give the full
likelihood, but in general this is not possible. The influence
of the initial condition diminishes as the length of the time
series increases. The likelihood function for the second-order
models can be formulated in a fashion similar to Eq. A.9.
For similar reasons, terms In(p(X,)) and In(p(X, | X,)) were
also dropped from the likelihood function in the second-order
models. Dropping these terms is common practice and affects
parameter estimation negligibly (Harvey 1989b, Tong 1990).
Setting Q = 0 (Q = [(c3, 0); (0, ¢3)]) in the CpRcP model,
ordinary least squares estimates can be achieved using the
Kalman filter and the maximum-likelihood process for the
constant-parameter models. The ordinary least squares esti-
mates for the first-order models can also be directly achieved
by using the Kalman filter based on the RwRwP model when
Q = 0 (Otter 1978, Zeng 1996). The close connection between
the Kalman filter and recursive weighted least squares re-
gression is discussed by Diderrich (1985).

For a given model, the Kalman filter is used to do the
recursion for Ay, Py_1, Ay Py vy @nd f, based on a given
parameter vector ® and a data vector X+; the log-likelihood
of the parameter vector ® given data X; is evaluated by Eqg.
A.9. The estimates of the parameter vector @ are the vector
that maximizes the log-likelihood function, and the optimi-
zation is done numerically. The parametersin all models con-
sidered in our study were estimated using the Kalman filter
and likelihood function, except for the parametersin random-
walk and exponential-growth models. For these models, pa-
rameter estimates were calculated from the following explicit
formulas given by Dennis and Taper (1994):

random walk
1 T
2= = — 2
o T-1 2:2 (X = Xi0)?, (A.10)
exponential growth model,
1 T
a= ﬁ ; X = X0, (A.11)
and
l T
2= —— X, — a)2. A.12
ot = =7 2 (%~ 2) (A.12)

The value of the maximized likelihood function can be cal-
culated using Eg. A.9, where v, = X, — X1, vy = X — X1
— a for random-walk and exponential-growth models, re-
spectively; and f, = o2

The unconditional mean and covariance of the parameters

COMPLEX POPULATION DYNAMICS

2209

a, and b, were used to initialize A, and P, (for first-order
models) or A,, and P, (for the second-order models) for the
recursion of the Kalman filter, when they were available. For
the first-order autoregressive parameter model, the uncondi-
tional mean is the central value a and b, respectively, and the
unconditional variance for a, and b, is 62/(1 — ¢32) and o?/(1
— &), respectively. Theinitial conditions of the variance for
random-coefficient parameters can be achieved by setting ¢,
= 0 and ¢, = 0 in the above equations. Parameter estimates
from constant-parameter models were used as the initial pa-
rameters B (e.g, a and b) in the Kalman filter except for
random-walk-parameter models. For the parameters without
initial knowledge, arbitrary values within the reasonable
ranges were used for initialization (such as ¢, and ¢, which
should be set between —1 to 1). The off-diagonal elements
in the covariance matrix are initialized with zero.

The unconditional mean and covariance for the random-
walk parameters do not exist. Harvey (1989a) suggested a
small value (e.g., 0) and large value (e.g., 1000) be used to
initialize the elements in the mean vector and the diagonal
in the covariance matrix in the Kalman filter, respectively.

The covariance matrix of the estimated parameters was
approximately estimated from the Kalman filter by inverting
the Hessian of the log-likelihood (Nicholls and Pagan 1985).
Missing observations in the time series were treated by using
a one-step ahead prediction value from the Kalman filter to
replace missing observations, and by letting the Kalman filter
skip updating equations related to them (Harvey 1989a).
Missing observations should also be skipped in the log-like-
lihood function, and the term (T — 1)/2 in Eqg. A.9 needs to
be modified to (T — = — 1)/2, where 7 is the number of
observations missing.

Test of independent, identically distributed noise

Assuming that the noise term ¢, is IID noise, then the au-
tocorrelation function of the noise T(m) (misthe order of the
autocorrelation) is approximately normal with mean zero and
variance 1/T,, where T, is the length of the noise term (Shum-
way 1988). This approximate variance can be used to test if
an autoregression of the residual is zero for a specific order
M. Ljung and Box (1978) proposed a Q test statistic, which
can be used to simultaneously test the order of the autocor-
relation of the residuals until M is zero. The Q statistic is
expressed as follows:

QM) = T\(Ta + 2) Z‘l (To = m)2(r(m)?,  (A.13)

where M is the order to be tested, Q is distributed as a chi-
square random variable with M — K degrees of freedom, K
is the number of parameters in the model, and T(m) is the
estimated sample autocorrelation at time lag m (Shumway
1988).



