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Recently, Perron has carried out tests of the unit-root hypothesis against the alternative hy-
pothesis of trend stationarity with a break in the trend occurring at the Great Crash of 1929 or
at the 1973 oil-price shock. His analysis covers the Nelson—Plosser macroeconomic data series
as well as a postwar quarterly real gross national product (GNP) series. His tests reject the
unit-root null hypothesis for most of the series. This article takes issue with the assumption used
by Perron that the Great Crash and the oil-price shock can be treated as exogenous events. A
variation of Perron’s test is considered in which the breakpoint is estimated rather than fixed.
We argue that this test is more appropriate than Perron’s because it circumvents the problem
of data-mining. The asymptotic distribution of the estimated breakpoint test statistic is deter-
mined. The data series considered by Perron are reanalyzed using this test statistic. The
empirical results make use of the asymptotics developed for the test statistic as well as extensive
finite-sample corrections obtained by simulation. The effect on the empirical results of fat-tailed
and temporally dependent innovations is investigated. In brief, by treating the breakpoint as
endogenous, we find that there is less evidence against the unit-root hypothesis than Perron
finds for many of the data series but stronger evidence against it for several of the series,
including the Nelson—Plosser industrial-production, nominal-GNP, and real-GNP series.
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1. INTRODUCTION

A major debate concerning the dynamic properties
of macroeconomic and financial time series has been
going on since Nelson and Plosser (1982) published their
stimulating article in the Journal of Monetary Econom-
ics a decade ago. The primary issue involves the long-
run response of a trending data series to a current shock
to the series. The traditional view holds that current
shocks only have a temporary effect and that the long-
run movement in the series is unaltered by such shocks.
Nelson and Plosser challenged this view and argued,
using statistical techniques developed by Dickey and
Fuller (1979, 1981), that current shocks have a per-
manent effect on the long-run level of most macro-
economic and financial aggregates. Others, including
Campbell and Mankiw (1987, 1988), Clark (1987),
Cochrane (1988), Shapiro and Watson (1988), and
Christiano and Eichenbaum (1989), have argued that
current shocks are a combination of temporary and per-
manent shocks and that the long-run response of a series
to a current shock depends on the relative importance
or “size” of the two types of shocks.

Recent research has cast some doubt on Nelson and
Plosser’s conclusions. In particular, Perron (1988, 1989)
argued that if the years of the Great Depression are
treated as points of structural change in the economy and
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the observations corresponding to these years are re-
moved from the noise functions of the Nelson and Plos-
ser data, then a “flexible” trend-stationary represen-
tation is favored by 11 of the 14 series. Similarly, Perron
showed that if the first oil crisis in 1973 is treated as a
point of structural change in the economy, then one
can reject the unit-root hypothesis in favor of a trend-
stationary hypothesis for postwar quarterly real gross
national product (GNP). These results imply that the
only observations (shocks) that have had a permanent
effect on the long-run level of most macroeconomic
aggregates are those associated with the Great Depres-
sion and the first oil-price crisis.

We enter this debate by taking issue with the unit-
root testing procedure used by Perron (1989) (hereafter
referred to as Perron). In particular, we examine the
sensitivity of Perron’s results to his exogeneity assump-
tion concerning the Great Depression and the 1973 oil
crisis. A skeptic of Perron’s approach would argue that
his choices of breakpoints are based on prior obser-
vation of the data and hence problems associated with
“pre-testing’’ are applicable to his methodology. Simple
visual inspection of the Nelson and Plosser data shows
that there is an obvious jump down for most of the
series occurring in 1929. Due to the sudden change in
the data at 1929, Perron chooses to treat the drop in
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the Nelson and Plosser series as an exogenous event.
This jump, however, could be interpreted as a reali-
zation from the tail of the distribution of the underlying
data-generating process. This interpretation views the
Great Depression as a shock or a combination of shocks
from the underlying errors.

Similarly, an examination of the postwar quarterly
GNP data shows a slowdown in GNP growth after the
oil crisis in 1973. Analogous to his treatment of the
Nelson and Plosser data, Perron’s statistical model han-
dles the slowdown in growth after the 1973 oil crisis as
an event external to the domestic economy. Although
it seems reasonable to regard the formation of the Or-
ganization of Petroleum Exporting Countries as an ex-
ogenous event, there are other big events such as the
1964 tax cut, the Vietnam War, and the financial de-
regulation in the 1980s that could also be viewed ex
ante as possible exogenous structural breakpoints. Per-
ron’s preference for the 1973 oil-price crisis is undoubt-
edly influenced by his prior examination of the data.

If one takes the view that these events are endoge-
nous, then the correct unit-root testing procedure would
have to account for the fact that the breakpoints in
Perron’s regressions are data dependent. The null hy-
pothesis of interest in these cases is a unit-root process
with drift that excludes any structural change. The rel-
evant alternative hypothesis is still a trend-stationary
process that allows for a one-time break in the trend
function. Under the alternative, however, we assume
that we do not know exactly when the breakpoint oc-
curs. Instead, a data-dependent algorithm is used to
proxy Perron’s subjective procedure to determine the
breakpoints. Such a procedure transforms Perron’s unit-
root test, which is conditional on a known breakpoint,
into an unconditional unit-root test.

We develop a unit-root testing procedure that allows
for an estimated break in the trend function under the
alternative hypothesis. Using our procedure on the data
series analyzed by Perron, we find less conclusive evi-
dence against the unit-root hypothesis than he found.
In particular, using our asymptotic critical values, we
cannot reject the unit-root hypothesis at the 5% level
for 4 of the 10 Nelson and Plosser series for which
Perron rejected the hypothesis—namely, real per cap-
ita GNP, GNP deflator, money stock, and real wages.
We still reject the unit-root hypothesis, however, for 6
of the series. Furthermore, contrary to Perron, we can-
not reject the unit-root null at the 5% or 10% level for
the postwar quarterly real GNP series.

We also investigate the accuracy of our asymptotic
approximations by computing the exact finite-sample
distributions of our test statistics for the two data sets
by Monte Carlo methods, assuming normal autore-
gressive moving average (ARMA) innovations. Here
we find that our asymptotic critical values are more
liberal than the finite-sample critical values. Using the
finite-sample critical values, we cannot reject the unit-
root hypothesis at the 5% level for three more of the

series that Perron rejected—namely, employment,
nominal wages, and common-stock prices (although the
latter two are very close to being rejected at the 5%
level). We can, however, still reject the unit-root null
at the 5% level for the real-GNP and nominal-GNP
series, and we can reject the unit-root null at the 1%
level for the industrial-production series.

For the series for which we reject the unit-root nuil
using our finite-sample critical values, we investigate
the possibility that the distributions of the innovations
driving these series have tails thicker than the normal
distribution. Our estimates of the kurtosis of these se-
ries lead us to believe that Student-t innovations may
be more appropriate than normal innovations for some
of these series. We recompute the finite-sample distri-
butions using Student-+ ARMA innovations, with de-
grees of freedom determined by equating sample kur-
tosis values to theoretical kurtosis values. Although the
percentage points of the finite-sample distributions us-
ing the ¢ innovations are uniformly larger (in absolute
value) than the corresponding percentage points assum-
ing normality, our unit-root testing conclusions remain
the same as in the normal case. Thus our finite-sample
results for these series are robust to some relaxations
of the normality assumption.

Last, we consider the effects of relaxing the assump-
tion of finite variance by computing the finite-sample
distributions of our test statistics using stable ARMA
innovations. Our conclusion is that it would take only
slightly more than infinite variance for us not to reject
the unit-root hypothesis for all of the series. On the
other hand, the estimates of kurtosis do not indicate
that the series have infinite-variance innovations.

The approach of this article is similar to that taken
by Christiano (1992). His results, however, were based
solely on bootstrap methods. The latter have question-
able reliability in regression models with dependent er-
rors and small sample sizes. Christiano also limited his
analysis to the postwar quarterly real-GNP series.

The asymptotic distribution theory developed here is
quite similar to that of Banerjee, Lumsdaine, and Stock
(1992), although our empirical applications are sub-
stantially different. Our asymptotic theory was devel-
oped simultaneously and independently of the theory
presented by Banerjee et al.

The empirical results of this article are quite similar
in many respects to some of those given by Perron
(1990) subsequent to the article under discussion. (In
particular, Perron’s [1990] results given in his column
labeled “‘p-value (¢ sig)” in tables VI and VIII corre-
spond closely to ours except for the wage and real-wage
series. The differences between his results and ours that
arise for the latter series are due to his inclusion of a
one-time dummy at the time of structural change in the
estimated regression model, which we do not include.)
Perron (1990) looked at several different data-dependent
methods of determining k, whereas we consider only
the method used by Perron (1989).



Other works in the literature that are related to this
one include those of Rappoport and Reichlin (1989),
Rappoport (1990), and Banerjee, Dolado, and Gal-
braith (1990).

The outline of this article is as follows. Section 2
reviews Perron’s unit-root testing methodology and pre-
sents our testing strategy. Section 3 contains the reqg-
uisite asymptotic distribution theory for our unit-root
test in time series models with estimated structural breaks.
We derive the asymptotic distributions for the test sta-
tistics, tabulate their critical values, and compare the
latter to the critical values used by Perron. Section 4
applies our results to the Nelson and Plosser data and
the postwar quarterly real GNP data. Section 5 inves-
tigates the finite-sample distributions of the test statis-
tics by Monte Carlo methods. This section determines
the difference in test size between the finite-sample
distributions and the asymptotic distributions and deter-
mines the effect of fat-tailed innovations on the finite-
sample distributions of our test statistics. Section 6 con-
tains our concluding remarks.

2. MODELS AND METHODOLOGY

Perron developed a procedure for testing the null
hypothesis that a given series {y}! has a unit root with
drift and that an exogenous structural break occurs at
time 1 < T < T versus the alternative hypothesis that
the series is stationary about a deterministic time trend
with an exogenous change in the trend function at time
Tg. He considered three parameterizations of the struc-
tural break under the null and the alternative. Following
the notation of Perron, the unit-root null hypotheses are

Model (A): y, = p + dD(Tp), + y,_1 + ¢,

Model (B): Ye= Mt Yo t (2 — m)DU, + ¢,
and
Model (C) Ye= 1ty t dD(TB)t

+ (u2 — w)DU, + e,

where D(Tg), = 1ift = Tz + 1, 0 otherwise; DU, =
1if t > Tg, 0 otherwise; A(L)e, = B(L)v,, v, = iid(0,
0?), with A(L) and B(L) pth and gth order polynomials
in the lag operator. Model (A) permits an exogenous
change in the level of the series, Model (B) allows an
exogenous change in the rate of growth, and Model (C)
admits both changes.

The trend-stationary alternative hypotheses consid-
ered are

Model (A): y, = p; + Bt + (n, — p)DU, + e,

Model (B): y, = u + Byt + (B, — B)DT, + e,
and

Model (C): y, = u + Bt + (n, — DU,

+ (B, — B)DT, + e,
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where DT, =t — Ty if t > Ty and 0 otherwise. As
with the unit-root hypotheses, Model (A) allows for a
one-time change in the level of the series, and, appro-
priately, Perron called this the “crash’ model. The dif-
ference u, — u, represents the magnitude of the change
in the intercept of the trend function occurring at time
Tg. Perron labeled Model (B) the “changing growth”
model, and the difference 8, — B, represents the mag-
nitude of the change in the slope of the trend function
occurring at time 7. Model (C) combines changes in
the level and the slope of the trend function of the
series.

Perron proposed Model (A) (the crash model) for all
of the Nelson and Plosser series except the real-wage
and common-stock-price series, for which he suggested
Model (C). He submitted Model (B) as the represen-
tation for the postwar quarterly real-GNP series. His
arguments for these representations were based pri-
marily on visual inspection of the data.

Perron employed an adjusted Dickey—Fuller (ADF)
type unit-root testing strategy (see Dickey and Fuller
1981; Said and Dickey 1984). His test for a unit root in
Models (A), (B), and (C) involve the following aug-
mented regression equations:

y, = @* + 02DU, + Bt + d*D(Ty),
k
+ @y, + > Ayt e, (1)
j=1
yt = :aB + BBI + ?BDT: + CAYByt—l

k
+ ,Z‘l FAy,_; + &, (2)
and

y, = g€ + DU, + Bt + $°DT;
. k
+ d°D(Ty), + &%, + 2, ¢Dy,_; + 6. (3)
j=1

The k extra regressors in the preceding regressions are
added to eliminate possible nuisance-parameter de-
pendencies in the limit distributions of the test statistics
caused by temporal dependence in the disturbances.
The number k of extra regressors is determined by a
test of the significance of the estimated coefficients ¢!
(i = A, B, Q) (as will be described).

For Model (B), we use the intervention outlier model
instead of the two-step additive outlier model used by
Perron. This latter regression is of the form

JE = a%P .+ 2 PNy + 8, (2a)
where {y#} are the residuals from a regression of y, on
a constant, time trend, and DT;*. Perron and Vogelsang

(1991) showed that the asymptotic distribution of &*
from (2) (when T} is known) is given in theorem 2 of
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Perron and that this distribution is different from the
asymptotic distribution of &® from (2a). We note, how-
ever, that the two models give essentially the same em-
pirical results for the postwar quarterly real-GNP series
and that the finite-sample distributions of &” from the
two models for this series are very close.

To formally test for the presence of a unit root, Per-
ron considered the following statistics computed from

(D-(3):
tw(\), i=A,B,C, 4

which represents the standard ¢ statistic for testing o’ =
1. These statistics depend on the location of the break
fraction (or breakpoint) A = T,/T, and we exhibit this
dependence explicitly because this notation will be use-
ful for the analysis that follows. Perron’s test for a unit
root using (4) can be viewed as follows: Reject the null
hypothesis of a unit root if

z&’()\) < Koz(’\)v (5)

where k,(A) denotes the size « critical value from the
asymptotic distribution of (4) for a fixed A = T,/T.
Perron derived the asymptotic distributions for these
statistics under the preceding null hypotheses and tab-
ulated their critical values for a selected grid of A values
in the unit interval. Based on the critical values for (4),
he rejected the unit-root hypothesis at the 5% level of
significance for all of the Nelson and Plosser data series
except consumer prices, velocity, and interest rates. He
also rejected the unit-root hypothesis at the 5% level
for the postwar quarterly real GNP series.

We construe Perron’s test statistic (4) in a different
manner. Perron’s null hypotheses take the break frac-
tion A to be exogenous. We question this exogeneity
assumption and instead treat the structural break as an
endogenous occurrence; that is, we do not remove the
Great Crash and the 1973 oil-price shock from the noise
functions of the appropriate series. Our null hypothesis
for the three models is

Yye=pt+y_,+e, (6)

Since we consider the null that the series {y;} is in-
tegrated without an exogenous structural break, we view
the selection of the breakpoint, A, for the dummy vari-
ables in Perron’s regressions (1)—(3) as the outcome of
an estimation procedure designed to fit {y} to a certain
trend-stationary representation; that is, we assume that
the alternative hypothesis stipulates that {y} can be
represented by a trend-stationary process with a one-
time break in the trend occurring at an unknown point
intime. The goal is to estimate the breakpoint that gives
the most weight to the trend-stationary alternative. Our
hope is that an explicit algorithm for selecting the break-
points for the series will be consistent with Perron’s
(subjective) selection procedure. (Note that several re-
cent works in the econometric literature consider the
problem of testing for structural change with unknown
changepoint; see Ploberger, Kramer, and Kontrus [1989],

Andrews [1989], Chu [1989], and Hansen [1992]. The
problem considered here differs from that considered
in the aforementioned works. It is one of testing for a
unit root against the alternative of stationarity with
structural change at some unknown point.)

One plausible estimation scheme, consistent with the
preceding view, is to choose the breakpoint that gives
the least favorable result for the null hypothesis (6)
using the test statistic (4); that is, A is chosen to minimize
the one-sided ¢ statistic for testing & = 1 (i = A, B,
C), when small values of the statistic lead to rejection
of the null. Let A‘; denote such a minimizing value for
model i. Then, by definition,

to[And = inf tz(1), i=A,B,C, (7
AEA
where A is a specified closed subset of (0, 1).

With the null mode} defined by (6) we no longer need
the dummy variable D(T), in (1) and (3). Therefore,
following Perron’s ADF testing strategy, the regression
equations we use to test for a unit root are

ye = B4 + 64DUK) + Bt + @y,

k
+ > Ay, + e, (1)

k
+ > EPAY, L + 8, (2)
and

y. = A€ + 0°DULA) + Bt + $°DT#(X)
k
+ dCyr—l + 21 é/'CA)’z—j + é, (3’)
“

where DU(A) = 1if ¢t > TA, 0 otherwise; DT}(A) =
t — TXAif t > TA, 0 otherwise. We put “hats” on the A
parameters in (1')-(3’) to emphasize that they corre-
spond to estimated values of the break fraction. [Except
for one series, the effect of excluding D(Tp), from (1')
and (3’) is to increase in absolute value the magnitude
of the ¢ statistic for testing o = 1. The actual changes in
the ¢ statistics for the series with estimated breakpoints
equal to Perron’s breakpoints are —.55 (real GNP),
—.40 (nominal GNP), —.52 (real per capita GNP),
— .48 (industrial production), — .44 (employment), —.08
(GNP deflator), .11 (nominal wages), and — .05 (money
stock). For the series with estimated breakpoints dif-
ferent from Perron’s choices, the changes in the ¢ sta-
tistics are —1.48 (consumer prices), —1.73 (velocity),
— .53 (interest rates), — .01 (quarterly real GNP), — .74
(common-stock prices), and — .46 (real wages).

Table 1 reports the values of Tx(= [TA]) that cor-
respond to Ak and the minimum values of t5(A) ob-
tained from the procedure defined in (7) for the data
series analyzed by Perron. The breakpoints and mini-
mum ! statistics were determined as follows. For each
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Table 1. Minimum t Statistics

Rank
Series’ 1 2 3

(i=A B0 t stat Year t stat Year t stat Year
Real GNPA —5.58"* 1929 -4.34 1928 -3.89 1927
Nominal GNPA —5.82"** 1929 —4.36 1927 -4.23 1928
Real per capita GNP —4.61" 1929 -4.29 1928 -4.09 1927
Industrial production® - 5.95*** 1929 —5.40 1928 —-5.09 1927
Employment* —4.95* 1929 —-4.71 1928 —4.38 1927
GNP deflator® —4.12* 1929 -3.90 1928 -3.82 1930
Consumer prices® ~2.76 1873 —-2.69 1872 —-2.64 1864
Nominal wages* —-5.830"* 1929 -510 1930 -4.61 1928
Money stock” —4.34*** 1929 -4.34 1928 ~4.32 1930
Velocity* -3.39 1949 ~3.35 1947 -3.21 1946
Interest rate* -.98 1932 —.96 1965 -.91 1967
Quarterly real GNP® —4.08" 1972:11 -4.07 1972:H1 —-4.07 1972:|
Common-stock prices® —-5.61* 1936 -5.60 1937 -5.52 1939
Real wages® —-4.74* 1940 -4.67 1941 —4.59 1931

NOTE: The minimum ¢t statistics were determined as follows. For each series, Equation (1'), (2'), or (3') was estimated with the
breakpoint, T, ranging from t = 2to t = T-1, For each regression, k was determined as described in the paragraph following Equation
(3'), and the t statistic for testing o/ = 1 was computed. The minimum t statistic reported is the minimum over all T-2 regressions. The
symbols *, **, and *** indicate that the unit-root hypothesis is rejected at the 10%, 5%, and 1% levels, respectively, using Perron’s critical

values.

series, (1'), (2'), or (3') was estimated by ordinary least
squares with the break fraction, A = T/T, ranging from
j=2/Ttoj = (T — 1)/T. (This range corresponds to
our choice of A = [.001, .999]. In fact, the results are
not sensitive to this particular choice of A.) For each
value of A, the number of extra regressors, k, was de-
termined using the same procedure as that of Perron,
and the ¢ statistic for testing ' = 1 was computed. The
minimum ¢ statistics reported are the minimums over
all T — 2 regressions, and the break years are the years
corresponding to the minimum 7 statistics. (It is impor-
tant to note that the number of extra regressors, k,
required for the ADF regressions was allowed to vary
for each tentative choice of A. We determined k using
the same selection procedure as that used by Perron;
that is, working backward from k& = k, we chose the
first value of k such that the ¢ statistic on ¢, was greater
than 1.6 in absolute value and the ¢ statistic on ¢, for
€ > k was less than 1.6. For the Nelson and Plosser
series, we set Kk = 8, and for the postwar quarterly real
GNP series, we set kK = 12. These are the same values
of k used by Perron, although a typographical error in
his article erroneously indicates that he used k = 12
for the Nelson and Plosser series.)

From Table 1 we see that the break year that mini-
mizes the one-sided ¢ statistic for testing a«®* = 1 does,
in fact, correspond to the year of the Great Depression,
1929, for the eight series that Perron rejected the unit-
root hypothesis. The three series with estimated break-
points not consistent with Perron’s choice are consumer
prices, velocity, and the interest rate. These are also
the series for which Perron does not reject the unit-root
hypothesis. The break years for these series are 1873,
1949, and 1932, respectively. The estimated break date
for the velocity series corresponds to the widely noted
leveling off of the series in the mid to late 1940s.

For the postwar quarterly real GNP series, the min-

imizing breakpoint occurs in the second quarter of 1972.
Perron’s choice of 1973:I produces the fifth smallest ¢
statistic. The numerical difference between the ¢ statis-
tics for these two dates, however, is very small. The
break years corresponding to the minimum ¢ statistics
for the Model (C) series do not coincide with the year
of the Depression. The estimated break year for the
common-stock price series is 1936 and the break year
for the real-wage series is 1940. As these results show,
our breakpoint algorithm is generally, though not com-
pletely, consistent with the subjective selection proce-
dure used by Perron for the Nelson and Plosser series
and the postwar quarterly real GNP series.

When we treat the selection of A as the outcome of
an estimation procedure, we can no longer use Perron’s
critical values to test the unit-root hypothesis. To see
this, consider the minimum ¢ statistic breakpoint esti-
mation procedure. With this definition of the break
fraction, our interpretation of Perron’s unit-root test
becomes the following: Reject the null of a unit root if

inf 1,(A) < Kiga» = A, B,C, (8)

AEA

where ki, ., denotes the size « left-tail critical value from
the asymptotic distribution of inf,c, £;:(A). By defini-
tion, the left-tail critical values in (8) are at least as
large in absolute value as those computed for an arbi-
trary fixed A. If one takes this unconditional perspec-
tive, then Perron’s unit-root tests are biased toward
rejecting the unit-root null hypothesis because he uses
critical values that are too small (in absolute value).
The extent of this size distortion depends on the mag-
nitude of the difference between the critical values de-
fined in (8) and those defined in (5). To determine this
difference, the asymptotic distributions of the test sta-
tistics infye s £;:(A) (i = A, B, C) are required. These
distributions are derived in Section 3.
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Table 2. Percentage Points of the Asymptotic Distribution of inf,c, tza (A) @and t;a (A) for a Fixed A

A 1.0% 2.5% 5.0% 10.0%

50.0% 90.0% 95.0% 97.5% 99.0%

A. infuep tan (A)

-5.34 -5.02 —-4.80 —~4.58

B. t;a (A) for a fixed A

A -4.30 -3.93 —-3.68 —3.40
2 —4.39 -4.08 -3.77 -3.47
3 —-4.39 —-4.03 -3.76 -3.46
4 —4.34 —4.01 —-3.72 —3.44
5 —4.32 -4.01 ~3.76 —3.46
.6 —4.45 -4.09 -3.76 -3.47
7 —4.42 -4.07 -3.80 —3.51
8 —4.33 -3.99 -3.75 —3.46
.9 -4.27 -3.97 —-3.69 -3.38

-3.75 -299 —-2.77 —2.56 -2.32
—2.35 -1.38 -1.09 ~.78 —.46
—245 —1.45 -1.14 -.90 —.54
-2.42 ~1.43 -1.13 —-.83 -.51
-2.40 -1.26 -0.88 —.55 -.21
—-2.37 -1.17 -0.79 -.49 -.15
-2.38 -1.28 -0.92 —.60 -.26
—-2.45 —1.42 -1.10 -.82 ~.50
—-2.43 —1.46 -1.13 -.89 -.57
-2.39 —-1.37 -1.04 -.74 - .47

NOTE: A = time of break relative to total sample size. Percentage points are based on 5,000 repetitions.

3. ASYMPTOTIC DISTRIBUTION THEORY

The asymptotic distributions of the minimum ¢ sta-
tistics may be compactly expressed in terms of stan-
dardized Brownian motions. Following Phillips (1988),
Park and Phillips (1988), and Ouliaris, Park, and Phil-
lips (1989), define Wi(A, r) to be the stochastic process
on [0, 1] that is the projection residual in L,[0, 1] of a
Brownian motion projected onto the subspace gener-
ated by the following: (a) i = A: 1,7, du(A,r); (b)i =
B: 1, r,dt*(A, r); (¢) i = C: 1, r, du(A, r), dt*(A, r);
where du(A, r) = 1 if r > A and O otherwise and
dr*(A, r) = r — A if r > A and O otherwise. Here,
L,[0, 1] denotes the Hilbert space of square integrable
functions on [0, 1] with inner product (f, g) = [ifg for
f, g € L,[0, 1]. For example, in Model (A), WA(A, r)
is the L, projection residual from the continuous time
regression

W(r) = ay + d&r + ddu(r, r) + WAA, r);  (9)

that is, &, &;, and &, solve

1
min fo [W(r) — ay — ayr — apdu(r, r)?dr.  (10)

xQ,0),x2

Notice that if we allow that A = 0 or 1, the preceding
minimization problem, and the minimization problems
for Models (B) and (C), do not have unique solutions
due to the singularity of the matrix defining the normal
equations.

The following theorem gives the asymptotic distri-
butions for the minimum ¢ statistics in terms of Wi(A, r).

Theorem 1. Let {y,} be generated under the null
hypothesis (6) and let the errors {¢,} be iid, mean 0,
variance o2 random variables with 0 < ¢2 < «. Let
t;(A) denote the ¢ statistic for testing &/ = 1 computed
from either (1'), (2'), or (3') with k = 0 for Models
i = A, B and C, respectively. Let A be a closed subset
of (0, 1). Then,

1 —-1/2
inf 7,()) — int < f Wi, r)2dr>
AEA AEA 0

X <f01 Wi(A, r)dW(r)> as T— o

fori = A, B, and C, where 2 denotes convergence in
distribution.
The proof is given in Appendix A.

Table 3. Percentage Points of the Asymptotic Distribution of inf,c, t;s () and t;s (A) for a Fixed A

A 1.0% 2.5% 5.0% 10.0%

50.0% 90.0% 95.0% 97.5% 99.0%

A ianeA t&B ()‘)

-4.93 -4.67 —4.42 —4.11

B. t.g (A) for a fixed A

—4.27 -3.94 -3.65 —3.36
—4.41 -4.08 -3.80 —3.49
-4.51 -4.17 ~3.87 —3.58
—4.55 -4.20 -394 —3.66

—4.55 -4.20 —3.96 —3.68
-4.57 -4.20 —-3.95 —3.66
—4.51 -4.13 -3.85 -3.57
—4.38 —4.07 -3.82 -3.50
—4.26 ~3.96 —-3.68 -3.35

CoNoORLDD

-3.23 —2.48 ~2.31 -217 -1.97
-2.34 -1.35 -1.04 -.78 —.40
—-2.50 —1.48 -1.18 -.87 -.52
-2.54 -1.59 -1.27 -.97 -.69
—2.61 —-1.69 -1.37 -1.11 —.75
-2.70 -1.74 ~1.40 -1.18 -.82
—-2.61 -1.71 -1.36 -1.11 -.78
—2.55 —1.61 -1.28 -.97 -.67
—-247 ~1.49 -1.16 -.87 —.54
-2.33 —1.34 -1.04 -.77 —.43

NOTE: A = time of break relative to total sample size. Percentage points are based on 5,000 repetitions.
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Table 4. Percentage Points of the Asymptotic Distribution of inf,< , t,c(A) and ts;c(A) for a Fixed A

A 1.0% 2.5% 5.0% 10.0%

50.0% 90.0% 95.0% 97.5% 99.0%

A ianeA t&C(/\)

-5.57 -5.30 ~5.08 —4.82

B. tic(A) for a fixed A

A -4.38 —4.01 -3.75 -3.45
2 —4.65 —4.32 -3.99 —3.66
.3 —-4.78 —4.46 -4.17 -3.87
4 —-4.81 ~4.48 —4.22 -3.95
5 -4.90 —4.53 -4.24 -3.96
.6 -4.88 —4.49 ~-4.24 —3.95
7 -4.75 ~4.44 -4.18 —3.86
.8 -4.70 ~4.31 -4.04 —3.69
9 ~4.41 —-4.10 -3.80 —3.46

-3.98 -3.25 —3.06 —-2.91 -272
—-2.38 -1.44 -1.11 —.82 -~.45
-2.67 —-1.60 ~1.27 -.98 -.67
-2.75 -1.78 —1.46 -1.15 -.81
—2.88 -1.91 -1.62 -1.35 -1.04
-291 -1.96 -1.69 -1.43 ~-1.07
-2.87 ~1.93 —1.63 -1.37 -1.08
—-277 -1.81 —1.47 -1.17 -.79
-2.67 -1.63 ~1.29 -1.04 -~ .64
—-2.41 -1.44 -1.12 -.80 ~.50

NOTE: A = time of break relative to total sample size. Percentage points are based on 5,000 repetitions,

The limiting distributions presented in Theorem 1 are
for the case in which the disturbances are independent
and there are no extra lag terms in the regression equa-
tions (1)~ (3’). If we allow the disturbances to be corre-
lated and heterogeneously distributed, then the asymp-
totic distributions in the theorem become nonstandard
in that they depend on the nuisance parameters o> =
limg,. ET"'(Z7e,)? and 02 = limy,, ET 272

Two approaches have been employed in the time
series literature to eliminate this nuisance-parameter
dependency. One approach is due to Phillips (1987).
His technique is based on the result that if consistent
estimators of o2 and o2 are available then one can de-
rive a nonparametric transformation of the test statistics
whose limiting distributions are independent of the pop-
ulation parameters o2 and o2. It should not be too
difficult to extend Theorem 1 to incorporate Phillips’s
technique of handling serial correlation. The other ap-
proach is the ADF approach referred to previously. It
is based on the addition of extra lags of first differences
of the data as regressors. The number of extra regres-
sors must increase with the sample size at a controlled
rate. With the ADF procedure, the errors are restricted
to the class of ARMA (p, q) processes. Since we follow
Perron and use the ADF approach, we consider the
following assumption.

Assumption1. (a)A(L)e, = B(L)v,; A(L) and B(L)
are pth and gth order polynomials in the lag operator
L and satisfy the standard stationarity and invertibility
conditions. (b) {v,} is a sequence of iid(0, o-?) random
variables with E|v /¢ < o for some 8 > 0. (¢) k - o
and T-'%3 5 0 as T— o

When the error sequence {e,} satisfies Assumption 1,
we conjecture, based on arguments outlined by Said
and Dickey (1984), that the limiting distributions of the
test statistics computed from the ADF regression equa-
tions (1')-(3') are free of nuisance parameter depend-
encies and have the limiting distributions presented in
the theorem. In fact, the proof of this conjecture is apt

to be tricky and rather involved. For the case in which
g = 0 and k (=p) is fixed and independent of T in
Assumption 1, the proof is clearly easier than when
k 5 w; see Banerjee et al. (1992) for a treatment of
this case. We do not give a proof of the efficacy of the
ADF procedure, but we use it in the following empirical
applications.

Critical values for the limiting distributions in the
theorem are obtained by simulation methods; that is,
the integral functions in the theorem are approximated
by functions of sums of partial sums of independent
normal random variables. The method used is described
in Appendix B.

The critical values for the limiting distributions of the
minimum ¢ statistics and for the ¢ statistics used by Per-
ron are presented in Tables 2—4. Estimates of their
densities are plotted in Figure 1. As expected, for a
given size of a left-tailed test, the critical values for
inf, <5 25:(A) are larger in absolute value (more negative)
than the critical values obtained by Perron for any fixed
value of the break fraction A. The biggest difference
occurs for the Model (A) densities. At the 5% level,
the critical value for inf,,f;4(A) is —4.80 and the av-
erage value, over A, of Perron’s critical values is —3.74.
Thus, at the 5% level, our critical value is roughly 24%
larger (in absolute value) than Perron’s and at the 1%
level our critical value is about 23% larger. For the
Model (B) densities, our 5% critical value is —4.42 and
Perron’s average critical value is —3.84. For the Model
(C) densities, our 5% critical value is —5.08 and Per-
ron’s average value is —4.07.

(The critical values for Perron’s test statistics pre-
sented in the B panels of our Tables 2, 3, and 4 were
generated from projection-residual approximations in-
stead of the approximations used in Perron’s theorem
2 to give more accurate comparisons with the critical
values for our test statistics. The two techniques give
approximately the same results and any difference can
be attributed to simulation error.)

We can now address the magnitude of the size dis-
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Model (A) Table 5. Size Distortions
o 00 Model Critical value Size
A -3.68 .551
o8 B -3.96 142
0.5 C ~4.24 .345
0.4
0.3
02 actual sizes of Perron’s 5% tests are 55.1% and 34.5%,
0.1 o respectively. The size distortion for Model (B) is more
° moderate with an actual size of 14.2%. The density plots
8 0 ! in Figure 1 clearly illustrate this distortion. For all models,
the asymptotic densities of the minimum f statistics are
shifted to the left of the Perron densities. The densities
for the minimum ¢ statistics also have thinner tails than
Modet (B) the Perron densities.
o7 (x)
06 4. EMPIRICAL APPLICATIONS
05 We now apply the unit-root test developed in the
ol previous sections to the data series analyzed by Perron.
(The Nelson and Plosser data were generously provided
o3 by Charles Nelson. The postwar quarterly real GNP
0.2 series [GNP82] was extracted from the Citibase data
0.1 bank.) We analyze the natural logarithm of all the data
o . except for the interest-rate series, which is analyzed in
8 7 & ! levels form. Table 6, A—C, presents the estimated
regressions for all of the series using the regression
equations (1')—(3"), ¢ statistics are in parentheses. The
¢ statistic for & is for testing the hypothesis that of =
1(i = A, B, Q).
Model (C) These results are somewhat different from the results
o in Perron’s table 7 for two reasons. First, the break
07 years defining the dummy variables are estimated ac-
06 cording to (7) instead of being fixed at 1929 or 1973:1.
05 This has relevance only for the series whose estimated
break years are different from the ones used by Perron.
o4 Second, we do not impose a structural break under our
0.3 null hypothesis, and hence, the variable D(T}), is not
0.2 included in the regressions. This affects only the Model
01l (A) and Model (C) regressions. For this effect, the most
N notable change in the regression results is that the es-
o . .. . ; .
-8 -7 -1 ° 1 timated ¢ statistics for testing o/ = 1 (i =A and C)

Figure 1. Density Plots: Model (A): , Finite Sample; A

Asymptotic; - - -, Perron; Models (B) and (C): - - -, Finite Sample;

, Asymptotic; , Perron.

tortion of Perron’s test statistics incurred by ignoring
the pretest information concerning the location of the
trend break. Table 5 gives the actual asymptotic sizes
of tests based on the statistic inf, < ,#;:(A) that uses Per-
ron’s 5% critical values. We see that the size distortion
is quite dramatic for Models (A) and (C), where the

increased (in absolute value) for a majority of the series,
see the preceding paragraph that contains Equation (3').
Often this increase was substantial. For example, the
absolute change in the ¢ statistic for the real per capita
GNP series is .52 (—4.61 — (—4.09)), which is roughly
13% . For most of the affected series, this change favors
the trend stationary alternative.

The results of our unit-root tests are also presented
graphically in Figure 2, which contains time plots of the
natural logarithm of the 14 data series. Superimposed
on the time plot of each series are the estimated ¢ sta-
tistics (in absolute value) for testing o = 1 for each
possible break date Tz = [TA], a line indicating the
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Table 6. Tests for a Unit Root
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Series T T, k a 6 g2 at S(é)
Model A: Regression: y, = i* + 6ADU(A), + BAt + &y, ., + ShePdy,; + &

Real GNP 62 1929 8 3.514 -.195 .027 .267 .05
(5.62) (-4.92) (5.71) (-5.58)"

Nominal GNP 62 1929 8 5.040 -.311 .032 .532 .07
(5.85) (-5.12) (5.97) (-5.82)**

Real per capita GNP 62 1929 7 3.584 —-.117 012 494 .056
(4.62) (—341) (469) (—461)

Industrial production 111 1929 8 122 -.317 034 .290 .088
(4.46) (—-5.12) (591)  (~5.95)**

Employment 81 1929 7 3.564 —.051 .006 651 .029
(4.97) (—3.14)  (479) (—4.95)*"

GNP Deflator 82 1929 5 .641 -.091 .007 .786 .044
(4.17) (-3.23) 4.14) (—-4.12)

Consumer prices 111 1873 2 217 —.055 .001 941 .043
(2.79) (-251) (3.27) (-276)

Nominal wages 71 1929 7 2.126 -.161 017 .660 .054
(5.35) (—4.16) (6.32) (-5.30)*"

Money stock 82 1929 6 .288 —.064 011 .823 .044
(4.76) (—2.54) (4.25) (—4.34)

Velocity 102 1949 O 224 .095 —-.002 .840 .064

Interest rate 71 1932 2

(2.99) (3.09) (-295) (-3.39)

065  —.444 013 945 272
(31) (-255)  (309)  (-.98)

Model B: Regression: y, = % + BBt + ¥BDT*(\), + &8y, , + kEPAY, ; + &,

Quarterly real GNP~ 159 72:11 10

1.044 .001 ~.0004 .851 .010

(4.12) (3.93) (—2.86) (—4.08)

Model C: Regression: y, = A° + 6°DU(R), + B° + 3%°DT*(A), + &%, , + S5CPAY, ; + &,

Common-stock prices 100 1936 1 471 -.226 .007 .021 642 139
. (5.12) (—3.25) (4.83) (4.80) (—5.61)**
Real wages 71 1940 8 2678 .085 .012 .008 115 .030
(4.81) (4.33) (4.49) (3.68) (—4.74)

NOTE: t statistics are in parentheses. The t statistic for & is for testing & = 1. k is determined as described in the paragraph following
Equation (3'). The symbols *, **, and *** denote significance of the test of o = 1 atthe 10%, 5%, and 1% levels, respectively, using

the critical values from Table 2A, 3A, or 4A.

appropriate asymptotic 5% critical value (in absolute
value) for the minimum ¢ statistic, and a line depicting
the appropriate 5% critical value from Perron’s asymp-
totic distributions for a fixed break date. A line labeled
“Finite Sample 5% C.V.,” which will be explained later,
is also superimposed on the time plots.

Consider first the results for the Model (A) series,
presented in Table 6, panel A. From Table 1, we know
that Perron’s break fraction for 8 of the 11 series cor-
responds to the break fraction associated with the min-
imum ¢ statistic for testing e® = 1. This can also be
seen graphically from Figure 2, where, clearly, the larg-
est ¢ statistic (in absolute value) for these series occurs
at Ty = 1929. These 8 series are also the ones for which
Perron rejects the unit-root nuil hypothesis at a 5%
significance level using his critical values for a fixed
breakpoint. Now, treating the break fraction as the out-
come of the estimation procedure defined by (7) and
using the critical values from Table 2, panel A, we can
reject the unit-root null at the 1% level for the real-
GNP, nominal-GNP, and industrial-production series.
We can reject the unit-root null at the 2.5% level for
the nominal-wage series, at the 5% level for the em-
ployment series, and at the 10% level for the real per

capita GNP series. We cannot reject the unit-root null
at the 5% or 10% level, however, for the GNP-deflator,
consumer-prices, money-stock, velocity, and interest-
rate series. In fact, the p values for these series, com-
puted from the asymptotic distribution of inf,catz4(A),
are .278, .951, .174, .737, and .999, respectively. Thus,
by endogenizing the breakpoint selection procedure, we
reverse Perron’s test conclusions for the GNP deflator
and nominal-money-stock series and weaken the evi-
dence against the unit-root hypothesis for the remaining
series.

Next, consider the results for the Model (B) series
presented in Table 6, panel B. The estimated break
date for the postwar quarterly real GNP series occurs
three quarters prior to Perron’s choice of 1973:1, so it
seems reasonable to apply our methodology to this se-
ries. Using the critical values from Table 3, panel A,
we find, contrary to Perron, that we cannot reject the
unit-root null at the 5% level. The asymptotic p value
for the ¢ statistic is .105.

Finally, the results for the Model (C) series are given
in Table 6, panel C. For these series the estimated break
years do not coincide with Perron’s choices. Neverthe-
less, using our estimated breakpoints for these series
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Figure 2. Time Plots of t Statistics.
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Figure 2. (continued).

and the critical values from Table 6, we reject the
unit-root null for the common-stock price series at
the 1% level, but, contrary to Perron, we cannot reject
the unit-root null at the 1%, 5%, or 10% level for the
real wage series. The asymptotic p value for the ¢ sta-
tistic is .119.

Table 7 compares the p values computed from Per-
ron’s fixed-A distributions to the p values computed
from our asymptotic distributions, as well as p values
from distributions that will be explained later. The table
clearly shows the effects of incorporating the pretest
trend-break information on the asymptotic distributions

of the unit-root tests. In sum, by endogenizing Perron’s
breakpoint selection procedure, we reverse his conclu-
sions for 5 of the 11 series for which he rejects the unit-
root null hypothesis at 5% and for 4 of the 11 series
for which he rejects at 10%. (Of course, our inability
to reject the unit-root null hypothesis for these series
should not be interpreted as an acceptance of the unit-
root hypothesis.) On the other hand, even after ad-
justing for pretest examination of the data, we reject
the unit-root null for 6 series using our 5% asymptotic
estimated breakpoint critical values and for 7 series using
10% critical values.
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Table 7. One Sided p Values for the Minimum t Statistics

Perron’s Asymptotic F.S.N.  F.S.T.

Series tstat p value p value p value p value

Real GNP -5.58 .000*™ .003™* 029" .035**
(9)

Nominal GNP -5.82 .000*** .00t 017" .050*
(4)

Real per capita GNP —4.61  .003* .091* 216

Industrial production -5.95 .000™* .000™™  .005**  .009"*
(9)

Employment -4.95 001 031 101 124

(10

GNP deflator -4.12 017" .278 392

Consumer prices -276 .340 .951 .939

Nominal wages -5.30 000 012 .053" 117
(5)

Money stock —4.34 .008™* 174 293

Velocity -3.39 .104 737 774

Interest rate -.98 .939 .999 .999

Quarterly real GNP —-4.08 .027" 105 251

Common stock prices —5.61 .000*** .009™*  .055" .075"
(6)

Real wages -4.74 005" 119 .298

NOTE: The symbols *, **, and *** denote rejection at the 10%, 5%, and 1% levels,
respectively. The column labeled Perron's p value gives the p values computed from
Perron’s fixed A distributions for the appropriate A value, the column labeled F.S.N. gives
the p values computed from the finite-sample distributions using normal innovations, and
the column labeled F.S.T. gives the p values computed from the finite-sample distributions
using Student-t innovations. The degrees of freedom for the t-distribution p values are in
parentheses.

5. FINITE-SAMPLE RESULTS

The sample sizes for the series under consideration
range from T = 62 to T = 111. In addition, there
appears to be considerable temporal dependence in the
data. In consequence, our asymptotic critical values may
differ from the appropriate finite-sample critical values.
In this section, we investigate this possibility by com-
puting the finite-sample distributions of our test statis-
tics, under specific distributional assumptions, by Monte
Carlo methods.

To compute the finite-sample distributions of the
minimum ¢ statistics, one has to make specific assump-
tions concerning the underlying error sequence {e} for
each series. First, we suppose the errors driving the data
series are normal ARMA(p, q) processes. In this case,
the first differences of the series are normal ARMA(p,
q) processes, possibly with nonzero mean, under the
null hypothesis. To determine p and g, we fit ARMA(p,
q) models to the first differences of each series, and we
use the model-selection criteria of Akaike (1974) and
Schwarz (1978) to choose the optimal ARMA(p, q)
model with p, g = 5. The Akaike criterion minimizes
2In L + 2(p + q), where L denotes the likelihood
function. The Schwarz criterion minimizes 2 In L +
(p + gq) In T, where T is the sample size. The Schwarz
criterion penalizes extra parameters more heavily than
does the Akaike criterion. We then treat the optimal
estimated ARMA(p, g) models as the true data-
generating processes for the errors of each of the series.

Table 8, panels A and B, presents the chosen models
for each of the data series. In most cases the Akaike and
Schwarz criteria select the same model. ARMAC(1, 0)
models are selected by both criteria for the real-GNP,
nominal-GNP, real per capita GNP, GNP-deflator, and

money-stock series, whereas ARMA(0, 1) models are
selected by both criteria for the employment, nominal-
wages, velocity, and real-wages series. In addition, an
ARMA(0, 5) model is selected by both criteria for
the industrial-production series. The Akaike criterion
favors an ARMA(5, 0) model for stock prices, an
ARMA(3, 0) model for interest rates, an ARMA(1, 1)
model for consumer prices, and an ARMA(0, 3) model
for postwar quarterly real GNP; the Schwarz criterion
chooses ARMA(0, 1), ARMA(2, 0), ARMA(O, 1), and
ARMAC(1, 0) models for these series, respectively. In
those cases in which the two criteria choose different
models, we select the most parsimonious model.

To determine the finite-sample distributions of our
test statistics under the null hypothesis with the pre-
ceding error distributions, we perform the following
Monte Carlo experiment. For each series, we construct
a pseudo sample of size equal to the actual size of the
series using the optimal ARMA(p, g) models described
previously with iid N(0, o?) innovations, where g2 is
the estimated innovation variance of the optimal
ARMAC(p, g) model. Then, foreachj =2,...,T —
1, we set A = j/T, determine k as described in the
paragraph following Equation (3'), and compute
t4(A) using either (17), (27), or (3'). Our test statistic is
then determined to be the minimum ¢ statistic over all
T — 2 regressions. We repeat this process 5,000 times,
and the critical values for the finite-sample distributions
are obtained from the sorted vector of replicated sta-
tistics.

Table 9, panels A—C, display the percentage points
of the finite-sample distributions of the minimum ¢ sta-
tistics for all of the data series under the assumption of
normal ARMA(p, q) errors. The salient feature of these
critical valuesis that they are alluniformlylarger (in abso-
lute value) than the corresponding average asymptotic
critical values. At the 5% level, the Model (A) finite-
sample critical values range from —5.12 to —5.38, the
average of which is 9.2% larger (in absolute value) than
the corresponding asymptotic critical value. At the same
level, the Model (B) finite-sample critical value is —4.84
and the Model (C) finite-sample critical values are —5.63
and —5.68. These finite-sample critical values are 9.0%
and 11.8% larger (in absolute value), respectively, than
their corresponding asymptotic values. For the Model
(A) series, the difference between the finite-sample and
asymptotic critical values abates for the series with larger
sample sizes. For the two Model (C) series, however,
the critical values are nearly identical even though the
sample size for the real-wage series is 71 and the sample
size for the common-stock-price series is 100. Further-
more, for the series with comparable sample sizes, the
finite-sample distributions generated from different
ARMA models are fairly similar. The latter result sug-
gests that the ADF methodology works fairly well in
finite samples for our data set.

(We note that the finite-sample distributions of our
test statistics are sensitive to the procedure used to de-
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Table 8. Selected ARMA Models

Series Model 6 & i & AlC SBIC Q)
A. Model: Ay, = i + éAy,,, +e + Jlet,,
Real GNP (1,0) .341 - 029 061 -165 —161  Q(22)
(2.78) (—) (2.50) 18.06
Nominal GNP (1,0) 440 — .055 .089 120 ~116 Q(22)
(3.76) (—) (1.36) 2357
Real per capita GNP (1,0) 331 — .016 .062 -—164 -160 Q(22)
(2.69) (—) (1.36) 17.60
Employment (0,1) - .388 .016 .03 —302 -278 Q(22)
(—) (3.72) (2.38) 18.53
GNP deflator (1,0) 434 _— .20 047 262 —-257 Q(22)
(4.27) (—) (2.19) 21.55
Consumer prices 0,1) — .655 012 .046 365 —360 Q(22)
(—) (9.21) (1.73) 25.78
Nominal wages 0,1) — 474 .040 .061 —-192 —188 Q(22)
(—) (4.44) (3.81) 34.90
Money stock (1,0 622 — 059 .048 257 ~253 Q(22)
(7.06) (—) (4.28) 22.19
Velocity (0,1) — 116 ~012 068 -—254 -248 Q22
(—) (1.16)  (~1.55) 21.53
Quarterly real GNP (1,0) .368 — .005 .010 -992 —986 Q(28)
(4.94) (—) (6.08) 19.80
Stock prices (0,1) — .313 029 .156 ~-846 -795 Q22
(—) (3.22) (1.40) 21.41
Real wages (0,1) — 205 018 036 -263 -258  Q(22)
(—) (1.72) (3.50) 10.80
B. Model: Ay, = i + 328Ay,_, + e, + Z3e,_,

Industrial production (0,5) —_ .033 .043 .095 ~-198 -182 Q(18)
(—) (.36) 13.42

—_ -.087

(=) (-.98)

—_ -.022

(—) (-.24)

— -.199

(=) (-227)

e —.402

(=) (-4.49)
Interest rates (2,0) 177 — 079 .282 24.5 31.3  Q(21)
(1.43) (—) (1.10) 14.98

367 —
(2.86) (=)

NOTE: All models were estimated using PROC ARIMA in SAS. t statistics are in parentheses. AIC denotes the Akaike information
criterion, SBIC denotes the Schwarz criterion, and Q(x) denotes the Box—Pierce statistic.

termine k, the number of lags of first differences of the
data used in the regressions (1')—(3'). In particular,
when £ is fixed at some value, say k*, for each tentative
choice of the break fraction A instead of being allowed
to vary, the fixed-k finite-sample distributions of the
minimum ¢ statistics are much closer to the appropriate
asymptotic distributions than the random-k finite-
sample distributions. Furthermore, this result obtains
regardless of the value of k* chosen for k* =< 8 for the
Nelson and Plosser data and k* = 12 for the postwar
quarterly real-GNP data. For example, the 1%, 2.5%,
5%, and 10% points based on 5,000 repetitions of the
fixed-k distributions for the nominal-GNP series are
(a) k* = 2: —5.55, —5.21, —4.89, —4.62; (b) k* =
4: —5.52, —5.18, —4.94, —4.63; (c) k* = 6: —5.56,
-5.19, —4.91, —4.60; and (d) k* = 8 —5.61, —5.17,
—4.88, —4.60. These percentage points are, on aver-
age over k*, 10% smaller in absolute value than the
random-k percentage points reported in Table 9, panel
A. The p values for nominal GNP computed from the
preceding four fixed-k distributions are .005, .003, .005,

and .005, whereas the asymptotic p value is .003 and
the p value computed from the random-k distribution
is .017.)

Using the finite-sample distributions of the Model
(A) ¢ statistics, the actual sizes of the asymptotic 5%
tests range from 10.7% to 16.0%, producing an average
size distortion of 8.2%. The size of the Model (B)
asymptotic 5% test is 13.6%, and the average size for
the model (C) ¢ statistics is 16.0%. These size distortions
are presented graphically in Figure 1, where we see that
the finite-sample densities of the minimum ¢ statistics
are shifted to the left of the asymptotic densities of the
minimum ¢ statistics.

Assuming that the fitted ARMA models of the Nel-
son and Plosser series and the postwar quarterly real
GNP series are correct, we can use the Monte Carlo
generated finite-sample distributions of our test statis-
tics to test these series for a unit root. From the pre-
ceding discussion, we know that the asymptotic tests are
too liberal, allowing us to reject the unit-root null too
often. This effect can be seen graphically in Figure 2,
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Table 9. Percentage Points of the Finite-Sample Distribution of inf,ct;a(A), infycatzs(A), and
inf,eatsc(A) Assuming Normal ARMA Innovations

Series/model T 10% 25%

5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

A. infyzatza(A)

Asymptotic x -5.34 -5.02
Real GNP ARMA(1,0) 62 —6.03 -5.65
Nominal GNP ARMA(1,0) 62 -6.12 —-5.67
Real per capita GNP ARMA(1,0) 62 -6.03 —-5.63
Ind. prod. ARMA(0,5) 111 -573 -5.41
Employment ARMA(0,1) 81 -592 -555
GNP deflator 82 -5.85 -550
CPI ARMA(0,1) 11t ~576 -5.46
Nominal wages ARMA(0,1) 71 -593 -5.69
Money stock ARMA(1,0) 82 -591 -5.49
Velocity ARMA(0,1) 102 -567 -~-537
Interest rate ARMA(3,0) 71 -590 -5.64

-4.80 —-458 -375 -299 -277 -256 -232
-5356 -499 -396 -290 -247 -207 -151
-538 -505 -4.00 -290 -253 -214 -152
-532 -501 -399 -292 -252 -223 -162
-5.14 -486 -388 -3.01 -274 -252 -2.15
~526 -495 -397 -3.00 -266 -226 -1.71
-521 -487 -391 -299 -262 -233 -182
-5.14 -485 -3.88 -297 -2.68 -234 -195
-533 -5.02 -401 -296 -255 -2.16 -1.90
-519 -490 -396 -294 -260 -222 -1.71
~-512 -48 -3.8 -3.02 -275 -247 -2.16
-530 ~5.00 -3.99 -295 -260 -231 -1.96

B. infieatza(A)

Asymptotic w 493 —4.67
Quarterly real GNP ARMA(1,0) 159 -5.40 -5.14

-442 -411 -328 -248 -23t -217 -197
-484 -457 -353 -270 -249 -232 -220

C. infieatsc(A)

Asymptotic * —-557 -530
Stock prices ARMA(0,1) 100 -6.30 -5.93
Real wages ARMA(0,1) 71 -6.25 —-592

-508 -482 -398 -325 -3.06 —-291 -272
-563 -531 —-430 -330 -309 -28 -264
-568 -538 -432 -33 -3.04 -281 -257

NOTE: Percentage points are based on 5,000 repetitions.

which shows the finite-sample 5% critical values lying
above the corresponding asymptotic critical values. Us-
ing the finite-sample distributions, we can no longer
reject the unit-root null at the 5% level for the em-
ployment, nominal-wage, and common-stock-price se-
ries. On the other hand, we can reject the unit root null
at the 1% level for the industrial-production series, we
can reject the null at the 2.5% level for the nominal-
GNP series, and we can reject the null at the 5% level
for the real-GNP series. The p values computed from
the preceding finite-sample distributions are presented,
for comparison with the previous asymptotic results, in
column 4 of Table 7. Thus, after endogenizing the
breakpoint selection procedure and correcting for small-
sample biases, we do not reject the unit-root hypothesis
for 8 of the 11 series for which Perron rejects the hy-
pothesis. In accordance with Perron, however, we do
reject the unit-root null for the real-GNP, nominal-
GNP, and industrial-production series.

For the preceding series for which we do reject the
unit-root hypothesis, we investigate the effect of relax-
ing the normality assumption on the finite-sample dis-
tributions of our test statistics. In particular, the large
changes in the series at the estimated breakpoints sug-
gest that the distributions of the innovations underlying
the series may have fatter tails than the normal distri-
bution. In repeated samples under a distribution with
a higher probability of generating tail events than the
normal, our breakpoint selection procedure will tend
to produce larger (in absolute value) ¢ statistics than in
the normal case. Therefore, with fat-failed innovations,
we expect the finite-sample distributions of our test
statistics to shift further to the left.

To assess the normality assumption, Table 10 gives
the estimated skewness and kurtosis values for the re-
siduals from the optimal ARMA models for the first
differences of the logarithms of the data series. Most

of the series exhibit mild negative skewness. The esti-
mated kurtosis values for real GNP, industrial produc-
tion, and employment are only slightly larger than 3
(the kurtosis for a standard normal random variable),
whereas the values for nominal GNP, nominal wages,
and common-stock prices are considerably larger than
3. [For a sequence of iid normal random variables, the
sample kurtosis has standard error equal to (24/T)2.
Using this formula, the estimated kurtosis values for
the nominal GNP, nominal wages, and common-stock
prices are 4.3, 2.3, and 5.7 standard deviations larger
than the kurtosis values of a normal random variable. |
Hence there is some evidence of leptokurtosis for some
of the series.

A plausible family of distributions close to the normal
but with thicker tails is the Student-f family with » df.
To determine the appropriate degrees of freedom, we
use a modified method-of-moments approach. In par-

Table 10. Skewness and Kurtosis Values for Residuals From the
ARMA Model for Ay,

Sample  Sample Finite-sample

Series skewness  kurtosis kurtosis df
Real GNP -.317 3.400 3.426 9
Nominal GNP —1.146 5.868 4.804 4
Real per capita GNP -~.235 3.257
Industrial production —-.737 3.722 3.815 9
Employment —.424 3.469 3.420 10
GNP deflator -.907 9.739
Consumer prices 1.023 6.852
Nominal wages —.304 4.658 4.283 5
Money stock -.270 4.636
Velocity -.329 2.927
Interest rate 751 4.413
Quarterly real GNP —.061 3.828
Common stock prices -.390 4.324 4.351 6
Real wages -.040 3.161

NOTE: The column labeled “Finite sample kurtosis™ gives the mean kurtosis value ob-
tained from the finite-sample distribution of the sample kurosis using Student-t ARMA
innovation with degrees of freedom given in the adjacent column.
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Table 11. Percentage Points of the Finite-Sample Distribution of inf, . \t;(A) Assuming Student-t
ARMA Innovations

Series of 1.0% 2.5% 5.0%

100% 50.0% 90.0% 95.0% 97.5%  99.0%

Nominal GNP 4 -756 -640 586
Real GNP 9 -616 -575 -5.39
Ind. prod. 9 -594 -560 -5.29
Employment 10 —-5.98 -567 -527
Nominal wages 5 -726 -631 -581
Stock prices 6 —6.66 -6.09 -584

~5.31 —4.05 -3.01 -263 -220 -184
-5.04 398 -292 -257 -213 -156
—-4.91 -39 -303 -273 -248 -193
-5.01 -398 ~-3.06 -266 -232 -190
-539 -411 -3812 -282 -~-240 -1.86
~546 -429 -337 -312 -29 —-2.71

NOTE: The column labeled “df* gives the degrees of freedom of a Student-t random variable that gives the closest match between
the observed sample kurtosis and the finite-sample mean kurtosis value. Percentage points are based on 1,000 repetitions.

ticular, for each series under consideration we compute
by Monte Carlo the means of the sample kurtosis sta-
tistic using the appropriate ARMA(p, q) model with
iid Student-t innovations for various values of 1. We
then determine the ¢ distribution for each series by find-
ing the closest match between the observed sample kur-
tosis and the finite-sample mean kurtosis values. The
finite-sample mean values of the sample kurtosis and
the degrees of freedom of the selected ¢ distributions
are given in the third and fourth columns of Table 10.
For nominal GNP, 4 df are chosen; for nominal wages,
5 are chosen; for common-stock prices, 6; for both in-
dustrial production and real GNP, 9; and for employ-
ment, 10.

[Note that we also tried the traditional method-of-
moments approach to estimate n by using the fact that
the kurtosis of a Student-f random variable with » df
is 3 + 6/(n — 4). Using this method, 6 df were deter-
mined for nominal GNP and common-stock prices, 8
were chosen for nominal wages, 12 for both industrial
production and employment, and 16 for real GNP. Our
test conclusions based on these ¢ distributions are the
same as in the normal case.|

Table 11 gives the percentage points of the
finite-sample distributions of our test statistics for the
preceding series. Table 7 (col. 5) reports the p values
computed from these distributions. The percentage points
obtained using the Student-f innovations are uniformly
larger than the corresponding percentage points deter-
mined from normal innovations. Our test conclusions
based on the Student-¢ distributions, however, remain
essentially the same as in the normal case; that is, we re-
ject the unit-root null at the 1% level for the industrial-

production series, we reject at the 5% level for the real-
GNP and nominal-GNP series, and we reject at the
10% level for the common-stock-price series. We no
longer reject at the 10% level for the nominal-wage
series, but we are still close to rejecting because the p
value is only 11.7%. Thus our rejections of the unit-
root hypothesis for these series are not very sensitive
to the relaxation of the normality assumption.

Last, we briefly investigate the effect that infinite-
variance innovations would have on our test results,
although the sample kurtosis estimates are not indica-
tive of innovations whose tails are that fat. We compute
the finite-sample distribution of our test statistic, using
the parameters of the nominal-GNP series, under the
assumption of ARMA errors with innovations that fol-
low a symmetric stable distribution with characteristic
exponent a. (Note that the asymptotic distribution of
our test statistic given in Theorem 1 does not apply in
this case because the partial sum process of the errors
does not satisfy a Gaussian functional central limit theo-
rem.) Table 12 reports the percentage points of this
distribution for various values of a. From these results,
we see that if the innovations have only slightly less
than two moments finite (e.g., @ = 1.9) one cannot
reject the unit-root hypothesis at the 5% level for any
of the series.

6. CONCLUDING REMARKS

In this article, we transform Perron’s unit-root test
that is conditional on structural change at a known point
in time into an unconditional unit-root test. We also
take into consideration the effects of fat-tailed inno-
vations on the performance of the tests. Our analysis

Table 12. Percentage Points of the Finite-Sample Distribution of inf,c st;a(\) Assuming Stable
ARMA Innovations

a 1.0% 2.5% 5.0% 50.0% 90.0% 95.0% 97.5% 99.0%
2.0 -6.12 —5.65 —5.37 -505 -400 -290 -253 -215 -1.51
1.9 -9.99 -6.69 -6.00 -533 -4.08 -292 -243 -195 -1.52
1.8 -12.0 —9.14 7.05 -587 -411 -294 -251 -196 -1.54
1.5 —49.3 -18.2 -122 -9.32 -457 -3.00 -257 -170 -1.50
1.0 —221 —-93.0 -42.9 -572 -38.02 -245 -152 -1.01

5 -15,622 -4,518 —893 -205 —-7.18 -342 -232 -—-141 -.73

NOTE: « is the characteristic exponent of a standard stable random variable. « = 2 corresponds to a normal variate, and o = 1
corresponds to a Cauchy variate. The ARMA innovations use the nominal GNP parameters. Percentage points are based on 5,000

repetitions.
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is motivated by the fact that the breakpoints used by
Perron are data dependent and plots of drifting unit-
root processes often are very similar to plots of pro-
cesses that are stationary about a broken trend for some
breakpoint. The null hypothesis that we believe is of
most interest is a unit-root process without any exog-
enous structural breaks, and the relevant alternative
hypothesis is a trend-stationary process with possible
structural change occurring at an unknown point in time.

We systematically address the effects of endogenizing
the breakpoint selection procedure on the asymptotic
distributions and finite-sample distributions of Perron’s
test statistics for a unit root. Using our estimated break-
point asymptotic distributions, we find less conclusive
evidence against the unit-root hypothesis than Perron
found for many of the data series. We reverse his con-
clusions for 5 of the 11 Nelson and Plosser series for
which he rejected the unit-root hypothesis at the 5%
level, and we reverse his unit-root rejection for the
postwar quarterly real-GNP series. When we take into
consideration small-sample biases and the effects of fat-
tailed (but not infinite-variance) innovations, we reverse
his conclusions for 3 more of the Nelson and Plosser
series.

The reversals of some of Perron’s results should not
be construed as providing evidence for the unit-root
null hypothesis, because the power of our test against
Perron’s trend-stationary alternatives is probably low
for small to moderate changes in the trend functions.
Rather, the reversals should be viewed as establishing
that there is less evidence against the unit-root hypoth-
esis for many of the series than the results of Perron
indicate. On the other hand, for some of the series
(industrial production, nominal GNP, and real GNP),
we reject the unit-root hypothesis even after endogen-
izing the breakpoint selection procedure and accounting
for moderately fat-tailed errors. For these series, our
results provide stronger evidence against the unit-root
hypothesis than that given by Perron.
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APPENDIX A: PROOF OF THEOREM

One way to establish the convergence result in the
theorem is to first show that the finite dimensional dis-
tributions of #.(A), indexed by A, converge; that is, for
any finite number J of A values one must show that
(tz(Ay), . . - ,22(A,)) converges weakly to (L(Ay), . . - ,
L(A,;))". Next one must show that the sequence of prob-
ability measures associated with #.(A) is tight. If the pre-
ceding two conditions hold, then we have the weak con-
vergence result £;(-) = L(-). Then, provided inf,c,L(})
is a continuous functional of L(-) a.s. [L(-)], we get the

desired result: inf,cptz(A) = inf,cAL(A).

Establishing the finite-dimensional convergence of
t4i(A) is trivial given Perron’s results. Showing tightness,
however, is a difficult task. We avoid the problem of
establishing tightness by using a different method of
proof from the “fidi plus tightness” method. The method
we use appeals directly to the continuous mapping theo-
rem (CMT). The idea is to express the test statistic in the

sum process X(+), a rescaled version of the determin-
istic regressors Z (-, -), the process T~ Y227 Z (-, t/T)e,,
the average squared innovations 0%, and an estimate
s%(*) of the error variance. If we have joint weak conver-
gence of the process (X;(*), Z(*, "), T"Y?ZTZ (-, t/T)e,,
0%, s%(+))' to a process (W(*), Z(-,), [§Z(-, r)dW(r),
o?, ¢1(+))’ and if g is continuous with respect to (W(-),
Z(-, ), [3Z(-, ndW(r), o2, 0°1(-))" on a set C with
PW(). Z(-, *), Js Z(-, ndW(r), o?, o?1(}))" €
C} = 1, then g(X;(), Z(:, ), T"Y2ZTZ(-, t/T)e,,
07, %)) = (W), Z(+, *), [6Z(, n)dW(r), o, a?1())
by the CMT.

Let S, = Zte; (Sy = 0) and Xr{r) = o7 'T" 12§ 4,,
(G- WWT=r<j/Tforj=1,...,T, where o =
limz.,..T~*ES% and [Tr] denotes the integer part of Tr.
Here, as in the theorem, we assume that the distur-
bances are iid so that o? = Eei = o2 € (0, ). Under
these assumptions, the disturbances {e,} satisfy an in-
variance principle. Specifically, as processes indexed by
r € [0, 1], we have X,(-) > W(-) as T — = (using the
uniform metric on the space of functions on [0, 1]), where
W(r) denotes a standard Brownian motion or Wiener
process on [0, 1]. In addition, 03 = T-1S7e? 5 02, As
in the theorem, we take A to be a closed subset of (0, 1).

Throughout what follows, “=>"" denotes weak con-
vergence (with respect to a specified metric) and “="
denotes equivalence in distribution. For notational con-
venience, we shall often denote W(r) by W. Similarly,
we shall often write integrals with respect to Lebesgue
measure such as [{W(r)dr as [{W.

We consider least squares regressions of the form
Ye = BN zir(A) + &Ny, + Q) @t =1,...,7)
for Models i = A, B, and C. The vector zi;(\) encom-
passes the deterministic components of the regression
equation, and it depends explicitly on the location of
the break fraction and the sample size. For example,
in Model (A) we have z3(A)' = (1, t, DUJ(A)), where
DUJ(A) = 1ift > TX and 0 otherwise.

Let Z%(A, r) = 8%2zi5y7(A) denote a rescaled version
of the deterministic regressors, where 6% is a diagonal
matrix of weights. For each i = A, B, C, there is a
nonrandom function Z(A, r) such that Zi{(-, -) —
Z(-, +) as T — o with respect to a metric d*. By def-
inition, d*(Z4(-, *), Z'(*, -)) is the maximum of the
uniform metric distances between the elements of the
vector-valued function Z4(-, ) and those of Z'(*, ),
unless the elements are DUipy(A) and its limit
du(A, r) = 1(r > A). In the latter case, the metric
distance between these two elements is taken to be a



hybrid uniform/L? metric
d(DUry("), du(:, )

= sup <f01 (DUiry(A) = du(A, r))Zdr> .

Note that [DU;py(A) — du(r, )l = 1([TrJ/T = A <r)
= 1A <r= X+ UT), so that d(DUr (), du(:, -)) =
1T — 0 as T — o as desired. We use the metric D
for the functions DUy, (A) and du(A, r), because con-
vergence under the uniform metric does not hold:
sup, |DU;rs(A) — du(A, r)| = 15 0as T—> . In fact,
convergence does not hold even under the Skorohod
metric for any fixed A € A. [The use of the metric d
for DUz, (A) makes it somewhat more difficult to es-
tablish Lemma A.2 than if the uniform metric could be
used but otherwise does not affect the proof of the
theorem. Note that the metric d is just what is needed
here, because it is weak enough so that Z%(:, -) —
Zi(+, ) as T — = and strong enough so that continuity
of H, and H, can be established in Lemma A.2.)
For example, in Model A we have
1 0 01t
8% = [O T 0

0 0 1
and Z4(A, r) — ZA(A, r) = (1, r, du(X, r))’ under d*.

Note that it is possible to circumvent the use of the
hybrid metric d* by writing the test statistic of interest
as a continuous function g of the same terms as pre-
viously but excluding Z (-, -). We do not do so, because
the resulting expressions are excessively lengthy.

The coefficient &(A) and its ¢ statistic are invariant
with respect to the value of the drift w in the null model
(6). Therefore, without loss of generality, we set u =
0in (6).

The normalized bias for testing the null hypothesis
o = 11is given by
em - 1)

= <T2 2 yi_l()\)z) <T"1 Z yi_l()\)€,>

and the ¢ statistic for testing &' = 1 is given by

Il

t2:(A) (T‘2 Z y‘;_l()\)2> T@() ~ Dis(h)

(5 w)

X (T‘1 i yi_l()\)e,>/3()\),

where yi(A) = y: — zir(A)' (E1z5 /(M) 25 7(A0)") ~ Z{z,7(A)ys
and s’(A) = T7'2[(y, — B'(V)'zir(A) — &(A)y,,)* for
Models i = A, B, and C. For brevity we drop the
superscript i and only consider Model (A) for which
z&(A) = (1, t, DU(A)). The proofs for Models (B)
and (C) are analogous and are therefore omitted.
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The test statistic of interest is

T -172
inf z,(A) = inf(T‘2 > y,,l(/\)2>
AEA AEA 1

X (T_l ET: ytl()t)et>/s(A)a

which we may write as a function of X (= X(*)), Z7
(= Z7(, ), T1°E{Zse, (= T7'2E{Z1(-, T)e,), 0%,
and s? (= s2(+)) plus an asymptotically negligible term,

inf £4(A)
AEA

T
= g(XD ZT7 T_ 1z Z ZTeta UzT'» S2> + OpA(1)9 (AI)

where g is as defined later. The symbol 0,,(1) denotes
any random variable {(A) such that sup,c, [{(A)] 2 0.

It will be useful to reexpress g as the following com-
posite functional:

T
g(XT7 Zy, T ”22 Zqe, U'ZTJZ)
1

T
= h* (h[H,[oXT, Z, H2|:0'XT, Zp, T2 3, Zre,, oZT] , Sz:| )

1
(A2)
where H; maps a function on [0, 1] and a function on
A % [0, 1] into a function on A, H, maps a function
on [0, 1], a function on A X [0, 1], a function on A,
and a positive real number into a function on A, & maps
three functions on A into a function on A, and £* maps
a function on A into a real number. Specifically, for

any real function m = m(-) on A,

B*(m) = inf m(}), (A.3)

and for any functions m; = my(-), m, = my(-), and
my = m(*) on A,

himy, my, m3)(-) = my() " 2my()ms(c). (A.4)
The functionals H, and H, are the functional analogs of

the sample moments T-227y,_,(A)?and T 2]y, ,(A)e,
plus an o0,,(1) term. In particular,
T

T—ZZ)}:*[(/\V
=T 21: {yt—l - z7z(A) (El: st(/‘)Z:r()‘)'> Z ZST(/\7S)yJ}
=T é { =128, 1 = z7(A)’ 3r( T i 872,7(A)z,r(A)’ 51)

- 2
x T2 57257(/\)7"’“255-1} +0,(1)
T

= f ' {oxr(r) - z,(,\,r)'< f( '1 ZT(/\,s)ZT(/\,s)’ds>_

0

x L‘ ZT(/\,S)O'XT(s)ds} dr +0,,(1)

= H,\[0X7, Z;](A) + 0,,(1) (A.5)
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= T"ET {Y:—l - Z(T(")’(E‘: st()‘)ZsT(/\)’) Z Z.\'T(/\)yA}er

T T T -t
=T 128, e,~ T2 ez (A) 6T< T-'Y 8,2,1(\)z, (XY 5T>
1 1 1
T
X T2 8,2,7(N)T 128, 1 + 0,,(1)
1

= (12)(02XA1) — 03) = T-2 > e, Z(A, tiT)
X (f(: ZT(/\,S)ZT(/\,S)dS> J: Z (A, 8)oX(s)ds + 0,,(1)

= HZ[UXT,ZT, -3 Ze, o%)(n +0,,(1). (A.6)

For the analysis that follows, we require the following
lemma.

Lemma A.1. T-Y2ZTZ,(-,0T)e, > o f$Z(-, r)dW(r)
(using the uniform metric).

Proof. The individual components of the vector
T-V28TZ (A, tT)e, are T-?ZTe,, T 3?ZTte,, and
T 2Z]}+ 8, respectively. By straightforward manip-
ulations, we may express the preceding sums as func-
tions of X; that is, T~ V28Te, = oX (1), T-3?Zte, =
o(X (1) — [6X7(r)dr),and T~ 2Z, ) e, = o(X (1) —
Xr(1)). By joint convergence and the CMT, we have
that (T~V2E{Z(:, t1T)e,) = (eW(1), o(W(1) — [iW),
o(W(1) — W())" = ofsZ(-, dW(r).

Note that the convergence result of Lemma A.1 holds
jointly with X{(-) = W(-). Furthermore, using argu-
ments similar to those used later it can be shown that
s%(A) = 0% + 0,,(1). Since Z,(-, -) has the degenerate
limiting distribution Z(, +), and ¢% and s?(+) have the
degenerate limit distributions o and o*1(+), where 1(-)
is the constant function equal to 1 for all A € A, it
follows that (X(-), ZH:, ), T"Y2ZIZ,(:, t/T)e,, 0%,
s%(+))’ converges weakly to (W(+), Z(-, -), [AZ(-, NdW(r),
a?, 0?1(+))’ (using the uniform metric on the first, third,
and fifth elements of this vector function, the d* metric
on the second element, and the Euclidean metric on
the fourth). Hence the desired result follows from the
CMT provided that (A.2) defines a continuous func-
tional with probability 1 with respect to the limit process
(W(), Z(-, ), J8Z(-, ndw(r), o?, o?1(-))'. In what
follows, continuity is defined using the uniform metric
on every space of functions considered except that which
contains Z,(-, ) and Z(-, -), for which d* is used.

We prove the continuity of g in a series of steps. The
first step establishes continuity of H, at (W, Z) and H,
at (W, Z, [8Z(-, ndW(r), o) a.s. [W]. The second step
establishes continuity of h[m,, m,, ms](*) at (m,, m,,
m3) = (HI[UW7 ZL H2[0W7 Z, f(l)Z(a r)dW(r)’ 0'2]7
0°1) a.s. [W]. The last step establishes the continuity

of h*(m) at all real functions m on A. The continuity
of g then follows from the continuity of a composition
of continuous functions, and the result of the theorem
follows from the CMT.

Lemma A.2. The functions H, and H, defined in
(A.5) and (A.6) are continuous at (W, Z) and (W, Z,
$Z(-, r)dW(r), 0?), respectively, with W-probability 1.
Proof. From (A.5) we see that the functional H,[oW,
Z](A) is simply the sum of products of the functions
W2, [SZ(A, N\W(r)dr, and (J3Z(A, VZ(A, r)'dr)~, each
of which is being viewed as a map that maps oW(-) on
[0, 1] and Z(:, -) on A x [0, 1] to a function on A.
From (A.6) we see that H,loW, Z, [$Z(-, r)dW(r),
a?](A) is similarly defined with the addition of the terms
W(1), [$Z(A, r)dW(r), and o?. Continuity of H; with
respect to (W, Z) and H, with respect to (W, Z,
[3Z(-, r)dW(r), o?) follows from continuity of each of
the preceding functions, with respect to (W, Z) [(W,
Z, [3Z(-, r)dW(r), 0?)] with W-probability 1 provided
each function is bounded over A with W-probability 1—
that is, provided sup,elf8Z(A, W(r)dr] < » with
probability 1 and likewise for the other functions. Let
32z’ = [§Z(A, r)Z(A, r)'dr. With the possible excep-
tion of (f4ZZ')~1, it is easy to verify the boundedness
over A with W-probability 1 of each of the preceding
functions. The function (f}ZZ')~! is bounded over A
provided inf,c det(f4ZZ') > 0. Since det(f3ZZ") = (1/
NI~ A) = W — A%? — (V4 — MA2 + (U
H(1 — D — A%) — (13)(1 — A)?, infycpdet(f§ZZ")
> 0 if A is a closed subset of (0, 1), which we assume.
Next, we show continuity of the map (W, Z) —
(f3ZZ")~* (using the metric on the domain given by the
maximum of the d* metric for Z and the uniform metric
for W and using the uniform metric on the range). We

have
1 1
[J;) ZTZT:|33 - I:L ZZ :|33

E (DUEpy(A) — du*(A, r))dr

172

sup
AEA

172

i

sup
AEA

= d(DUpr. ("), du(-, *)).

In consequence, the map (W, Z) — [[§ZZ']5; is contin-
uous. Similarly, one can show that the maps (W, Z) —
[J3ZZ'),, are continuous for k, € = 1, 2, 3. Further-
more, the map [}ZZ' — [f{ZZ'] ' is continuous (using
the uniform metric on its domain and range), because
inf, ¢ det[f§ZZ'] > 0. Since the composition of contin-
uous functions is continuous, we get the desired result
that the map (W, Z) — [[§ZZ']~! is continuous.

We now consider the continuity of the maps involving
the integral functions of W. For example, consider the
map (W, Z) — [{W? (using the same metrics on the
domain and range as previously). Let W and W be two
Wiener processes on [0, 1] such that for some 6 > 0



sup,ep,y|W(r) - W(r)| < 6. Then

1 1
o[
0 0

= sup |W(r) — W(r)
rel0.1)
= sup [W(r) — W(r)|- sup |W(r) + W(r)|
rel0.1) . re(0.]
=g- sup |[W(r) + W(r)l.
rel0,1]

Since W and W are continuous functions with proba-
bility 1 on the compact set [0, 1], sup,cjo | W(r) + W(7)|
< o with probability 1 and continuity follows on a set
with W-probability 1.

Similar proofs to those just given establish the con-
tinuity of the maps (W, Z) — [LZ(A, r)W(r)dr and
(W, Z) — [LZ(A, r)dW(r) with W-probability 1, using
the fact that the latter function can be written as an
explicit function of W(-) as in the proof of Lemma A.1.

Remark. The functions H,[oW, Z](A) and H,[oW,
Z, [8Z(-, rdW(r), o?](\) may be expressed as
a2 [§W(A, r)2dr and o [§W(A, r)dW(r), respectively, where
W(A, r) is the limit expression of the projection residual
Y{A); that is,

WA, r) = W(r) — Z(A, 1)’
X (LlZ(A,s)Z()\,s)’ds>_ LlZ()\,s)W(s)ds. (A7)

Lemma A.3. The function £ defined in (A.4) is con-
tinuous at (my, m,, ms) = (H\[oW, Z], Hy[oW, Z,
3Z(-, r)dW(r), o?], 1) with W-probability 1 (using
the uniform metric on its domain and range).
Proof. Since hmy, my, ms](*) = my(-) ™ 2my(Yms(+),
h is continuous at (m,, m,, my) = (H\[eW, Z], H,[oW,
Z, [8Z(-, r)dW(r), 0?], a*1) with W-probability 1 pro-
vided ¢® > 0 and inf, c|H,[cW, Z](A)| > 0 with prob-
ability 1. Suppose that HiJoW, Z](A) = 0 with positive
W-probability. Then, since H,[oW, Z](}) is continuous
in A with W-probability 1 and A is compact, there exists
a [0, 1}-valued random variable A, such that for those
realizations of W for which inf,c,|H [oW, Z](A)| = 0
we have H,[oW, Z](A,) = 0 and A, € A, for other
realizations of W we have A, = 0, and A\, > 0 with
positive probability. In consequence, on a set with pos-
itive probability W(A,, r) = 0, for all r € [0, 1]. From
the definition of W(A,, r) given in (A.7), this implies
that

w(r)

Z(Ag, r)’(fl Z(Ag, $)Z(Ag, s)’ds) i

0

X f Z(Ag, s)W(s)ds

o

I

(1, r, du(rg, 7)) - C(W, Ap), (A.8)

for all r € [0, 1], where C(W, Ay) is a (3 X 1) vector,
independent of r, with elements C;(W, Ag), Co(W, Ag),
and Cy(W, Ay). Now consider any 0 = r; <r, <13 <
inf{A : A € A}. By definition of the Wiener process, the
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increments W(r;) — W(r,) and W(r,) — W(r,) are in-
dependent. On the other hand, by (A.8), W(r;) —
W(ry) = Cy(W, A)(rs — r,) and W(r,) — W(r) =
C,(W, Ao)(r, — r1) on a set with positive probability.
This implies that these increments are not independent,
which is a contradiction. Hence we conclude that Ay =
0 with probability 1 and the desired result follows.

Lemma A.4. The function A* defined in (A.3) is
continuous at all functions m on A (using the uniform
metric on its domain and the Euclidean metric on its
range).

Proof. Given that & > 0, let m and /m be two func-
tions on A such that sup,c,|m(A) — m(A)| < &. Then
the result follows from the inequality

linf m(A) — inf m(A)| = suplm(A) — m(A)| < e.
AEA AEA AEA

The proof of the theorem follows from Lemmas A.1-
A.4, the continuity of a composition of continuous func-
tions, and the CMT. The expression for the limit dis-
tribution given in the theorem may be verified by using
the integral representations of H,[oW, Z](:) and H[oW,
Z, [$Z(-, r)dW(r), o?](*) described in the preceding
remark.

APPENDIX B: CONSTRUCTION OF TABLES OF
CRITICAL VALUES

This appendix details the approach used to approx-
imate the limiting distributions in Theorem 1. It is in-
structive to outline the steps of the approximation since
our methodology for approximating the limiting distri-
butions differs slightly from the procedure used by Per-
ron. First, we generate N = 1,000 iid N(0, 1) random
variables, {e}, and form the (N X 1) vector of partial
sums, S. Then for each value of A = j/N, where j runs
from 2 to 999, we create the data matrix X4(A) = (Z'(A),
S_1), where Zi{(A) contains the deterministic compo-
nents of the regressions, and construct the projection
residual vector Si(A) = (I — X'(A)(X (W) X(X)) 1 X(A)")S
for each Model i = A, B, C. We then form sample
moments that converge as N — <« to the functions of
the standardized Wiener processes that are involved in
the expressions in the theorem; that is, we form
NTIZVS(A),_1e; (= [AWHA; r)dW as N — «) and
N7ZEYS(A)Z, (= JEW(A; r)?dr as N — ). Using these
values, we form the approximate expressions for the
limiting distributions of the statistics for a fixed value
of A—for example, t(A) = (N72ZNS(Af_ )17 X
(N~1Z¥S(A);1€)). We do this for each value of A = j/
N for 1 < j < N, and from these N — 2 expressions
we define Ai; to be the value of A that minimizes the
preceding expression. The test statistic approximations
evaluated at these values of A give the corresponding
approximate limiting distributions of the test statistics.
This process gives us one observation from the asymp-
totic distributions of the test statistics. We repeat this
process 5,000 times and obtain the critical values for
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the limiting distributions from the sorted vector of rep-
licated statistics.
[Received December 1990. Revised February 1992.]
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