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Abstract. We develop a test for stationarity of a time series against the alternative of
a time-varying covariance structure. Using localized versions of the periodogram, we
obtain empirical versions of a reasonable notion of a time-varying spectral density.
Coef®cients with respect to a Haar wavelet series expansion of such a time-varying
periodogram are an indicator of whether there is some deviation from covariance
stationarity. We propose a test based on the limit distribution of these empirical
coef®cients.
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1. INTRODUCTION

Often, the simplifying assumption of stationarity of time series, i.e. a second-
order structure which is constant over time, is not justi®ed in practice. Examples
of non-stationary processes are numerous, and can be found, for instance, in
biomedical time series analysis with measurements of blood pressure, enzyme
levels, biomechanical movements or EEGs and ECGs etc. Other examples of
non-stationary phenomena derive from electrical and acoustical engineering
(Doppler signals, speech analysis) and geophysics. Here, sudden changes often
arise in the time±frequency structure of these signals where the characterizing
quantity of interest is now a time-varying spectrum rather than a changing
covariance.

Hence it is important to have a tool for detecting changes in the second-
order structure of a stochastic process. As is common practice, in this paper we
will use estimates of the spectrum rather than looking at explicit estimates of
the covariances. We will develop a new statistical test which is localized, as to
our knowledge there exist only a few studies of this kind, and we will now
explain what we mean by localization.

For the particular purpose of testing a single change-point in the covariance
structure of an otherwise stationary Gaussian time series, Picard (1985)
developed a test based on the statistic

ZT � sup
ë2[0,ð]

sup
k2f1,..., Tÿ1g

ø
k

T

� ������ë
0

fIh1,ki(ù)ÿ Ihk�1,Ti(ù)gdù
���� (1:1)
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where ø is a suitable weight function and Ih1,ki and Ihk�1,Ti are periodograms on
the segments X 1, . . ., X k and X k�1, . . ., XT, respectively. This method has been
generalized by Giraitis and Leipus (1992) to the case of linear processes, and has
been modi®ed by Rozenholc (1995) by using tapered periodograms. The test of
Picard is based on estimates of the (possibly time-varying) spectral function
F(ë) � � ë

0
f (ù)dù. In contrast, we intend to use estimates of the (possibly time-

varying) spectral density directly. The relative merits of smoothing-based tests
based on local characteristics like densities versus non-smoothing tests based on
cumulative characteristics are discussed in a different context by Rosenblatt
(1975) and Ghosh and Huang (1991). The essential message is that non-
smoothing tests look primarily at global deviations, and are therefore well suited
for detecting classical Pitman alternatives of the form f � f0 � nÿ1=2 g, where n
denotes the sample size. On the other hand, smoothing-based tests focus on more
localized deviations, and are consequently more powerful for detecting
alternatives of the form f � f 0 � nÿä g(:=nÿã) for suitable ä, ã. 0.

In the present paper we develop a test of stationarity which is based on the
following general idea: using special segmentations we test on a change of the
autocovariance structure from segment to segment. To be more speci®c, we use
a wavelet decomposition of an appropriate notion of a time-varying spectral
density. A model which allows for a rigorous asymptotic theory in this context
is developed by Dahlhaus (1997), who introduced the concept of locally
stationary processes. However, we think that our proposed test procedure is
applicable in more general terms.

Some technical prerequisites for our test can be taken from Neumann and
von Sachs (1997), where an estimator of a time-varying spectral density
f (u, ù) was developed. It is a multiple test with the null hypothesis of
stationarity H0: f (u, ù) � f (ù), where each subtest checks the signi®cance of
a particular coef®cient á j,k; j9,k9 �

� �
f (u, ù)ø j,k(u)ö j9,k9(ù)du dù in our de-

composition with respect to some set of bivariate wavelet functions
fø j,k(u)ö j9,k9(ù)g j,k; j9,k9. Note that under H0 all of these coef®cients are equal
to zero. To get estimates of the coef®cients á j,k; j9,k9 we consider two natural
candidates for empirical versions of f (u, ù). First, we can use segmented
periodograms IhK,Li(ù) as used in Dahlhaus (1997) and von Sachs and Schneider
(1996), which are calculated on segments corresponding to the particular wavelet
ø j,k(u) in the time direction. Second, we can employ the so-called pre-
periodogram introduced in Neumann and von Sachs (1997). This second method
has advantages of adaptivity in the process of estimating the evolutionary
spectral density.

Using an asymptotic result for the marginal distributions of our estimates of
á j,k; j9,k9, we obtain an appropriate critical value via Bonferroni's inequality. We
prove that the error of the ®rst kind is asymptotically not greater than the
nominal error and we give a brief discussion on the power of our test. The
practicability of this method for moderate sample sizes is investigated by
simulations which are reported in Section 4. In addition we apply our method
to a set of tremor data from neurobiology.
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2. SOME BASIC CONCEPTS FOR NON-STATIONARY PROCESSES

2.1. A framework for non-stationary processes: a model of local stationarity

The null hypothesis is simply that the time series fXtg is covariance stationary.
Non-stationarity is basically de®ned as any arbitrary deviation from covariance
stationarity. To de®ne non-stationarity on the level of spectral densities, we have
to ®nd an appropriate extension of the de®nition of the spectral density
generalizing from the stationary case. A particular framework which also allows
for rigorous asymptotic theory has recently been developed by Dahlhaus (1997).
The basic idea of his model may be explained as follows. In order to estimate
some object of interest (parameter, function, . . .) consistently, one needs an
increasing amount of information about each feature of this object. Indepen-
dence or weak dependence of the observed data is one part of a possible set of
suf®cient conditions for that. If the object of interest is of in®nite dimension,
e.g. a curve, we also have to bound its complexity appropriately. In non-
parametric regression, an asymptotic with a ®xed function on a bounded interval
is often taken as the target, and independent observations are made with an
increasingly ®ne grid of design points which then guarantee a growing amount of
information about the true function on every subinterval. In order to actually
have such an increasing amount of information about the function at any point
x0, we have to be able to gain some information about f (x0) from the
observations corresponding to design points close to x0. This is guaranteed by
appropriate smoothness assumptions on the regression function f. Dahlhaus uses
basically this approach to de®ne an appropriate framework for the asymptotic
theory of non-stationary processes. He keeps the central parameters of a time
series, the mean and the covariance structure, ®xed and links them to a set of
observations X 1, . . ., X T on a growing time horizon by an appropriate rescaling
of time. This leads to the following de®nition.

DEFINITION 2.1 (DAHLHAUS, 1997). A sequence of stochastic processes
X t,T (t � 1, . . ., T ) is called locally stationary with transfer function A0 and
trend ì if there exists a representation

X t,T � ì
t

T

� �
�
�ð
ÿð

A0
t,T (ù)exp(iùt)dî(ù) (2:1)

where

(i) î(ù) is a stochastic process on [ÿð, ð] with î(ù) � î(ÿù), Eî(ù) � 0
and orthonormal increments, i.e. covfdî(ù), dî(ù9)g � ä(ùÿ ù9)dù,
cumfdî(ù1), . . ., dî(ùk)g � ç(

Pk
j�1ù j)hk(ù1, . . ., ùkÿ1)dù1 . . . dùk , where

cumf. . .g denotes the cumulant of order k, jhk(ù1, . . ., ùkÿ1)j < constk for
all k (with h1 � 0, h2(ù) � 1) and ç(ù) �P1j�ÿ1ä(ù� 2ð j) is the period 2ð
extension of the Dirac delta function;

(ii) there exists a positive constant K and a smooth function A(u, ù) on
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[0, 1] 3 [ÿð, ð] which is 2ð-periodic in ù, with A(u, ÿù) � A(u, ù), such
that for all T

sup
t,ù

����A0
t,T (ù)ÿ A

t

T
, ù

� ����� < KTÿ1: (2:2)

A(u, ù) and ì(u) are assumed to be continuous in u.

REMARK 2.1. In (2.1), t denotes a time point in the set f1, 2, . . ., Tg while u
denotes a time point in the rescaled interval [0, 1], i.e. u � t=T . Note that (2.1)
does not de®ne a ®ner and ®ner discretized continuous-time process as T tends
to in®nity. Rather, it means that more and more data of the same local
structure, given by A(t=T , ù), are observed with increasing T. Simple examples
are given by a stationary process modulated by a time-changing variance (as
in Dahlhaus, 1996, Example 1.1(i)) and by autoregressive moving-average
(ARMA) processes with time-varying coef®cients (cf. our simulated examples in
Section 4). A more elaborate example for a model of a time-varying spectrum
arising from mobile radio communication can be found in von Sachs and
Schneider (1996).

This concept now allows for the de®nition of a time-varying spectral density.

DEFINITION 2.2. As the evolutionary spectrum of fX t,Tg given in (2.1) we
de®ne for u 2 (0, 1)

f (u, ù) � lim
T!1

1

2ð

X1
s�ÿ1

cov(X [uTÿs=2],T ; X [uT�s=2],T )exp(ÿiùs) (2:3)

where X t,T is de®ned according to (2.1) with A0
t,T (ù) � A(0, ù) for t , 1 and

A0
t,T (ù) � A(1, ù) for t . T.

Under the smoothness assumptions on A(u, ù) as given in Section 3.1 below,
this evolutionary spectrum equals f (u, ù) � jA(u, ù)j2, and is uniquely de®ned.
For stationary processes this spectral density becomes constant in time, i.e.
f (u, ù) � f (ù); hence the class of locally stationary processes is a true
generalization including stationary processes.

Note that (2.3) could have been derived also on a purely heuristic level
without the theory of locally stationary processes. If we assume that the
covariances decay at a suf®ciently fast rate as the lag order tends to in®nity,
and that the covariance structure changes slowly over time (which is in
accordance with the idea of rescaling), then De®nition 2.2 is obviously a
reasonable generalization of the spectral density for stationary processes.
Actually, since the covariances decay as the lag length increases, f (u0, ù) is
mainly determined by covariances of the Xt with ju0T ÿ tj small. Hence, the
de®nition of f (u0, ù) is already automatically localized in some sense.
Furthermore, since the covariance structure is nearly the same over small
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segments, the de®nition of f (u, ù) is also stable in u, which means in turn that
it is reasonable to include some X ts with small ju0T ÿ tj in the de®nition of
the spectrum near u0.

2.2. Two time-varying periodograms

We discuss now the two possibilities for de®ning local periodograms for non-
stationary processes which we will use as the main parts of our test on
stationarity. Assume for simplicity that ì � 0. In the case of non-stationary time
series it is natural to consider ®tting time series models on small segments.
Accordingly, we can also consider the usual periodogram on small segments as a
starting point for further inference. This has been proposed by Dahlhaus (1997)
for the purpose of ®tting certain time series models locally to a non-stationary
process, and by von Sachs and Schneider (1996) as a starting point for a wavelet
estimator of the evolutionary spectrum. In the non-tapered case, such a local
periodogram has the form

IN (u, ù) � 1

2ðN

����XN

s�1

X [uTÿN=2�s],T exp(ÿiùs)

����2:
REMARK 2.2. Note that the role of the parameter N, which is usually

assumed to obey N !1 and N=T ! 0 as T !1, is twofold. First, it
delivers a cut-off point above which higher lags are not incorporated in the
de®nition of the periodogram. Actually, IN (u, ù) contains only estimates of the
covariances up to lag N ÿ 1; hence, too small a value of N will introduce some
bias. Second, the de®nition of IN (u, ù) already contains some smoothing in the
time direction. In other words, the parameter N acts in two opposite ways as a
smoothing parameter: whereas small values of N restrict the resolution in the
frequency direction, large N restricts the resolution in the time direction. Of
course, according to the uncertainty principle (see, for example, Priestley, 1981,
p. 835), there is no loss due to the fact that the number of lags being
incorporated in the segmented periodogram is not greater than the time
window. Nevertheless, problems can occur with such a global parameter N. At
any point u0 there exists a choice of N � N (u0) which is connected to the
`bandwidth of stationarity' hu; for the latter see Dahlhaus (1996). So an in
general time-varying hu over [0, 1] would call for possibly very different
segment lengths N (u) over [0, 1]. Moreover, there is the additional important
problem of how to perform a data-driven choice of N. Usually, this parameter
is chosen before one starts the `smoothing machinery', i.e. before one gets
information about the order of magnitude of the bandwidth of stationarity.

To avoid these shortcomings, Neumann and von Sachs (1997) introduced a
different empirical version of f (u, ù). The basic idea is to avoid any kind of
pre-smoothing at this stage, which amounts to choosing the time window as
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small as possible and the lag window as large as possible. These considerations
led Neumann and von Sachs (1997) to the de®nition

I(u, ù) � 1

2ð

X
k:1<[uTÿk=2],[uT�k=2]<T

X [uTÿk=2],T X [uT�k=2],T exp(iùk) (2:4)

which was called the `pre-periodogram'. It was used in Neumann and von Sachs
(1997) as a starting point for a wavelet estimator of the evolutionary spectral
density and was also applied in Dahlhaus (1999) to establish local likelihood
methods as a tool for ®tting semiparametric time series models to locally
stationary processes.

REMARK 2.3. (i) In contrast to the usual periodogram, both non-stationary
versions provide an appropriate localization in time. While this is obvious for
the segmented periodogram IN (u, ù), the localization is achieved in a more
implicit way by I(u, ù). Actually, since EX [uTÿk=2],T X [uT�k=2],T tends to zero as
jkj ! 1, I(u, ù) also re¯ects the local covariance structure for t around uT.

(ii) An obvious advantage of the pre-periodogram over the segmented
periodogram is that the choice of the appropriate bandwidths in the time and
frequency directions is completely left to the major smoothing step. In contrast
to IN (u, ù), the pre-periodogram has a diverging variance as T !1. However,
it turns out that smoothing in time and smoothing in frequency both lead to a
variance reduction; see also the calculations in Neumann and von Sachs (1997).
This fact also explains why the wavelet estimator of the evolutionary spectral
density considered in Neumann and von Sachs (1997) attains similar rates of
convergence to the estimator based on the segmented periodogram considered
in von Sachs and Schneider (1996).

3. THE TEST

3.1. Derivation of the test statistic

The test we intend to devise will be based on a decomposition of an empirical
version of f (u, ù) with respect to a certain system of Haar wavelet functions.
Anticipating their later use on the intervals [0, 1] and [0, ð], respectively, we
de®ne

ø(u) � 1 if 0 < u < 1=2

ÿ1 if 1=2 , u < 1

�
and

ö(ù) � 1=ð1=2 for 0 < ù < ð:

Furthermore, we set

ø j,k(u) � 2 j=2ø(2 juÿ k) and ö j,k(ù) � 2 j=2ö(2 jùÿ kð)
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k � 0, . . ., 2 j ÿ 1:

In the following we estimate the coef®cients

á j,k; j9,k9 �
�1

0

�ð
0

f (u, ù)ø j,k(u)ö j9,k9(ù)du dù

which may be interpreted as measures for the local contrast in the time direction.
Under the null hypothesis H0: f (u, ù) � f (ù), all of these coef®cients are equal
to zero. This means that we have to test the hypothesis á j,k; j9,k9 � 0 for all
( j, k; j9, k9).

In sharp contrast to the problem of estimating f (u, ù), where the use of
wavelets of higher regularity may lead to better rates of convergence than that
of Haar wavelets, there is no such gain in the context of testing. The functions
ø j,k do a perfect job of detecting differences, whereas the scaling functions
ö j,k are used to stabilize the spectral estimate.

A natural estimate based on the segmented periodogram is

~á(1)
j,k; j9,k9 �

�1

0

�ð
0

[Ih[k2ÿ j T ],[(k�1=2)2ÿ j T ]i(ù)÷fu 2 [k2ÿ j, (k � 1
2
)2ÿ j]g

� Ih[f(k�1=2)2ÿ j�1gT],[(k�1)2ÿ j T ]i(ù)÷fu 2 [(k � 1
2
)2ÿ j, (k � 1)2ÿ j]g]

3 ø j,k(u)ö j9,k9(ù)du dù

� 2( j� j9)=2 1

ð1=2

�(k9�1)2ÿ j9ð

k92ÿ j9ð
fIh[k2ÿ j T],[(k�1=2)2ÿ j T ]i(ù)

ÿ Ih[f(k�1=2)2ÿ j�1gT],[(k�1)2ÿ j T ]i(ù)gdù (3:1)

where

IhK,Li(ù) � 1

2ð(Lÿ K � 1)

����XL

t�K

X t exp(ÿiùt)

����2
is the ordinary periodogram for the segment X K , . . ., XL. In words, we pick a
segment in the time±frequency plane which is determined by the indices
( j, k; j9, k9) of wavelet and scaling functions, respectively. On the two halves of
this segment in time we calculate integrated periodograms, and if these show a
signi®cant difference we reject the null hypothesis of stationarity.

For the purposes of asymptotic considerations, in order to control the bias of
the coef®cients ~á(1)

j,k; j9,k9, we assume that the dyadic segment lengths Nj �
Nj(T ) � 2ÿ( j�1)T ful®l Nj � T 1=2. Note that, in our situation, there is no
additional segmentation bias of order O(N=T ) as we estimate integrals of the
spectrum over pre-de®ned dyadic segments. We de®ne our assumption as
follows.
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(A1) 2 j � o(T 1=2):

Analogously, we obtain for the pre-periodogram

~á(2)
j,k; j9,k9 �

�1

0

�ð
0

I(u, ù)ø j,k(u)ö j9,k9(ù)du dù

� 2( j� j9)=2 1

ð1=2

�(k9�1)2ÿ j9ð

k92ÿ j9ð

3

�(k�1=2)2ÿ j

k2ÿ j

I(u, ù)duÿ
�(k�1)2ÿ j

(k�1=2)2ÿ j

I(u, ù)du

( )
dù: (3:2)

For simplicity of notation, we use the multi-index I � ( j, k; j9, k9). Let

I T � fI j0 < j� j9 < log2(JT ), 0 < k < 2 j ÿ 1, 0 < k9 < 2 j9 ÿ 1g (3:3)

be the set of indices that correspond to those ~á(i)
I s to be used in our test, where

JT � O(T 1ÿr) (3:4)

for some r. 0.
To complete the construction of the test, we have to know at least the

asymptotic distribution of the ~á I s. It will turn out that, under natural
conditions, a large number of these ~á I are asymptotically normally distributed.
Since it is natural in this non-parametric context to base the test on an
increasing number of ~á I s, we need an appropriate formulation of this fact in
terms of probabilities of large deviations.

We use the following assumptions.

(A2) (a) supu,ùjA(u, ù)j,1:
(b) inf u,ùjA(u, ù)j > k for some k. 0.
(c) A(u, ù) has a uniformly bounded total variation with respect to

both time u and frequency ù, i.e. supuTV[0,ð]fA(u, :)g,1 and
supùTV[0,1]fA(:, ù)g,1.

(A3) Let Â(u, s) :� (1=2ð)
�

A(u, ù)exp(iùs)dù, s 2 Z, u 2 [0, 1]. Then
assume

(a) Ós supujÂ(u, s)j,1
(b) ÓsTV[0,1]fÂ(:, s)g,1

where TV[0,1]fÂ(:, l)g denotes the total variation of the Fourier
transform Â(:, l) of A(:, ù) as a function of the ®rst argument
u 2 [0, 1].

(A4) sup1< t1<Tf
PT

t2,..., t k�1jcum(X t1,T , . . ., X t k ,T )jg < Ck(k!)1�ã for all k �
2, 3, . . ., where ã > 0.
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REMARK 3.1. Conditions (A2) and (A3) are ful®lled in particular if A(u, ù)
is differentiable in both arguments with uniformly bounded partial derivatives.
We decided to use these weaker assumptions to allow for jumps of
f (u, ù) � jA(u, ù)j2 in time u. An important class of processes which ful®l
these assumptions are time-varying ARMA processes with coef®cient functions
which can have jumps in time. In the case of MA, for example, condition (A3)
simpli®es considerably, being only a condition on the summability and the time
variation of the MA coef®cients. Furthermore, it was shown in Neumann
(1994) that (A4) is ful®lled if fXtg is á-mixing with coef®cients á(s) <
K exp(ÿbjsj) and

EjXtjk < Ck(k!)r for all k: (3:5)

Relation (3.5) is known to be satis®ed for many distributions that can be found
in the literature for an appropriate choice of r. In Johnson and Kotz (1970) we
can ®nd closed forms of higher order cumulants of the exponential, gamma and
inverse Gaussian distributions, which show that this condition is satis®ed for
r � 0. The need for a positive r occurs in the case of a heavier-tailed
distribution, which could arise as the distribution of a sum of weakly dependent
random variables.

PROPOSITION 3.1. Suppose that Assumptions (A1)±(A4) are ful®lled. Let
ÄT � C(log T )1=2 for any ®xed C ,1. Then

Pf�(~áI ÿ á I )=ó I > xg � f1ÿÖ(x)gf1� o(1)g
holds uniformly in ÿ1 < x < ÄT and I 2 I T, where Ö(x) � � x

ÿ1 j(t)dt
denotes the standard normal cumulative distribution function and

ó 2
I � 2ðTÿ1

�1

0

�ð
0

f 2(u, ù)ø2
j,k(u)ö2

j9,k9(ù)du dù� o(Tÿ1)� O(2ÿ j9Tÿ1):

The proof of this proposition is analogous to that of Proposition 3.1 in
Neumann and von Sachs (1997), and is therefore omitted. Note, however, that
here, by (A3), part (b), we use slightly stronger assumptions on the smoothness
of A(u, ù), basically to allow for the use of less regular Haar scaling functions
ö(ù).

As a minimum prerequisite for our test we have to de®ne a consistent
estimate of the variance ó 2

I of ~áI . Under H0, with
�
ø2

j,k(u)du � 1, we have

ó 2
I � 2ðTÿ1

�ð
0

f 2(ù)ö2
j9,k9(ù)dù� o(Tÿ1)� O(2ÿ j9T ÿ1):

Whereas it is rather laborious to estimate the O(2ÿ j9Tÿ1) term caused by fourth-
order cumulants, the estimation of the ®rst term is quite easy. Since, for the
ordinary periodogram Ih1,Ti(ù),

EI2
h1,Ti(ù) � 2 f 2(ù)� o(1) as T !1
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we propose to estimate ó 2
I simply by

ó̂ 2
I �

ð

T

�ð
0

I2
h1,Ti(ù)ö2

j9,k9(ù)dù: (3:6)

From well-known properties of the periodogram, it follows that

P(T jó̂ 2
I ÿ ó 2

I j. Tÿä) � O(Tÿë)

for suitable ä. 0 and arbitrarily large ë,1.
Let á be the nominal level of our test. Since a result on the joint distribution

of the ~á I s does not exist, we use a slightly conservative approach via
Bonferroni's inequality and de®ne áT � á=jI T j. Then our test rejects H0 if

j~á I j. ó̂ IÖ
ÿ1(1ÿ áT=2) for any I 2 I T : (3:7)

Although our simple approach for estimating ó 2
I neglects terms caused by

fourth-order cumulants, there are basically two settings under which the
asymptotic error of the ®rst kind does not exceed the desired error. This is
obviously the case if the time series is Gaussian. Furthermore, since the term
from the fourth-order cumulants becomes negligible when j9!1, our test is
also correct if j9!1. The assumption of j9!1 appears to be very natural
in our fully non-parametric context.

THEOREM 3.1. Suppose that (A1)±(A4) are ful®lled. Furthermore, suppose
either (i) that fXtg is Gaussian, or (ii) that j9!1. Then

PH0
fj~á I j. ó̂ IÖ

ÿ1(1ÿ áT=2) for any I 2 I Tg < á� o(1):

3.2. A brief discussion on the power of the test

Although the focus is often primarily on errors of the ®rst kind, the power is an
important quantity to compare different competing tests. Since no result on the
joint distribution of the ~á I s is available, asymptotically exact power calculations
seem to be out of reach. Nevertheless, some insight into the power properties of
our test is provided by looking at certain special cases in the space of
alternatives. First, from Proposition 3.1 we obtain, for 0 , â, 1ÿ á, that

Pfj~á I j < ó̂ IÖ
ÿ1(1ÿ áT=2) for all I 2 I Tg < â (3:8)

if there exists an I 2 I T such that

já I j > CâTÿ1=2flog(T )g1=2 (3:9)

for an appropriate constant Câ. We consider the simple case of a jump in
f (u, ù). For simplicity of presentation, suppose that X t � ó (t=T )å t, where
å � N(0, 1) are independent and identically distributed. To simplify our
considerations further, we assume that the jumps are located at dyadic points.
We look at the case of testing
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H0: ó (u) � ó0

against

H1: ó (u) � ó0 u 2 [0, 1=2) [ (1=2� 2ÿ j0 , 1]

ó0 � cT u 2 [1=2, 1=2� 2ÿ j0 ]

�
where ó0 . 0 is ®xed, and we look for the minimal value of cT that guarantees a
`non-trivial power', i.e. â, 1ÿ á. The parameter j0 . 0 is used to model a
transient deviation from stationarity. Now it is easy to see that

max
k,k9
fjá j,k; j9,k9jg � cT 2ÿ j9=2[2ÿ j0 2 j=2 ^ 2ÿ j=2] (3:10)

where the maximum is attained for (k � 1=2)2ÿ j � 1=2. The right-hand side of
(3.10) is maximized by the choice j9 � 0 and j � j0. Hence, (3.9) implies that
cT � ~Câ2 j0=2Tÿ1=2flog(T )g1=2 is a suf®cient height of transient jump in ó (u) of
length 2ÿ j0 . Deviations from ó0 of short duration are modelled by j0 �
j0(T)!1 in our simpli®ed context. Hence, it is necessary to incorporate
wavelets on these ®ne scales j0 in order to be able to detect such a jump of
minimal height.

So far, bivariate wavelet bases with mixed scale indices have rarely been
used in the statistical literature. However, in our opinion their use has important
advantages for detecting localized deviations from a time-constant spectral
density. We refer to the examples of the next section.

4. A NUMERICAL STUDY

We now apply our new test procedures to some simulated examples which give
an indication of the performance both on the null hypothesis of stationarity and
on the alternative, i.e. with a spectrum f (u, ù) which is not constant in time u.
Most of our simulations concern the test based on the segmented periodogram,
i.e. with coef®cients ~á(1)

j,k; j9,k9 as given in (3.1), though we also show the use of
the pre-periodogram as in (3.2). Note that in all our simulated examples the
technical conditions of the previous section are ful®lled, as we consider Gaussian
autoregressive processes. However, as this speci®c choice is due only to the
convenience of the simulation algorithms, we would like to emphasize that the
chosen examples have some generic character and could have been realized by
simulating other classes of weakly dependent processes. This robustness is also
con®rmed by the successful application of our proposed method to our ®nal
example of a real data set.

We start with simulation of some stationary processes, all of length
T � 1024, by generation of pseudo-random standard normal få tg and, possibly,
transformation to some low-order autoregressive process with time-constant
spectral density f (ù). For testing the null hypothesis H0 we use the following
set of seven Haar wavelet coef®cients:
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I7,1 � f( j, k; 0, 0)j0 < j < 2, 0 < k < 2 j ÿ 1g:
That is, in the frequency direction we start with only the Haar scaling function
ö00(ù) on the coarsest scale. This also enters in Equation (3.6) for determining
an estimate ó̂ 2

I for the unknown variance ó 2
I . Fixing the nominal level of our test

to á � 0:1 we measure the error of the ®rst kind e0 in counting the exceedences
in (3.7) based on the normal quantile q7,1 for áT � á=jI7,1j � 1=70, which is
q7,1 � 2:45:

The ®rst three examples are the standard normal white noise å t, an
autoregressive process of order 1, X t � a1 X tÿ1 � å t with parameter a1 � ÿ0:9,
and an AR(1) process with a1 � 0:9. In 1000 simulation runs we observed the
following rates e0 of false rejection: for Example 1 (white noise), e0 � 0:105;
for Example 2 (a1 � ÿ0:9), e0 � 0:109; and for Example 3 (a1 � 0:9),
e0 � 0:134. We note that the number of simulation runs is large enough to
ensure a small enough standard deviation over these pseudo-independent runs,
and we observe empirical levels which are quite close to the nominal level
á � 0:1.

In the following examples of non-stationary processes, we simulate the
performance on the alternative H1 to get an idea about the error e1 of the
second kind. For this we simulated two time-varying autoregressive processes,
which can be considered as quite typical examples of realizations of a non-
stationary process motivated from Model (2.1):

X t,T �
Xp

i�1

ai

t

T

� �
X tÿi,T � å t

with autoregressive parameters ai � ai(t=T ) being functions which change over
time.

The ®rst, our Example 4, can be considered as a symbolic transient, i.e. short
non-stationarity of considerable size but short duration (note the similarity to
the simpli®ed example of Section 3.2). We start from a stationary AR(2)
process X t � a1 X tÿ1 � a2 X tÿ2 � å t with a1 � ÿ0:5, a2 � 0:2, up to time
t � T=2. Then, for the short interval t 2 [T=2, T=2� T=64] we switch to
Yt � CX t with some parameter C . 1 that we will vary appropriately. Finally
for t . T=2� T=64 we jump back to the original process Xt. In exactly the
same way as above for the simulations of the stationary Examples 1±3, the
error rates of the second kind e1 � e1(C) depend, of course, on C. For C
varying between 1.50 (`small jump'), 1.65 (`medium jump') and 1.75 (`large
jump') we observe a monotonically falling error e1(C � 1:50) � 0:275,
e1(C � 1:65) � 0:121, e1(C � 1:75) � 0:055, by counting the frequency of
failure of detection of the jump. This is compatible with the performance on
the null hypothesis H0. We display the time-varying (piecewise in u constant)
spectrum of this example, with C � 1:65, in Figure 1. Observe the higher
intensity in the short-duration segment in time.

The next example, Example 5, is a piecewise constant AR(1) process with
parameter a1 � ÿ0:95 for t < 0:6T and a1 � ÿ0:99 for t . 0:6T. So we have a
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peak in the spectrum at zero frequency which gets sharper for the second
segment of piecewise stationarity. Observe the plot in Figure 2 with higher
intensity in the second time segment. Using the same set-up as for Examples
1±4 and testing only seven wavelet coef®cients will lead to a high error of the
second kind of e1 � e1(7) � 0:543. It seems that for this and the next example,
it is no longer suf®cient to only use the scaling function in frequency ö00(ù)

FIGURE 1. Example 4: True spectrum of AR(2) process `transient with medium-size jump'
(C � 1:65).

FIGURE 2. Example 5: True spectrum of piecewise constant AR(1) process.
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on the coarsest level j9 � 0: we need to include also some splitting in the
frequency domain, to detect signi®cant differences by wavelet coef®cients
obtained by integrating over smaller segments in the frequency direction. This
seems to be necessary whenever the time-changing spectrum shows a higher
spatial variability, as for the process of this example 5 with a lot of spectral
mass concentrated around zero frequency. So now our new sets of incorporated
indices are

I7,2 � f( j, k; j9, k9)j0 < j < 2, 0 < k < 2 j ÿ 1; j9 � 1, 0 < k9 < 2 j9 ÿ 1g
with 14 coef®cients, and

I7,4 � f( j, k; j9, k9)j0 < j < 2, 0 < k < 2 j ÿ 1; j9 � 2, 0 < k9 < 2 j9 ÿ 1g
counting 28 coef®cients, which is a suf®ciently large subset of I T for this
purpose. We get the following errors of the second kind, again based on 1000
simulation runs, now with quantiles q7,2 � 2:69 and q7,4 � 2:91, respectively. For
I7,2, e1(14) � 0:203, and for I7,4, e1(28) � 0:200, which is a big improvement
compared with e1(7) � 0:543 with the use of I7,1. In this case we also checked
the errors of the ®rst kind e0(14) and e0(28) for the use of I7,2 and I7,4 in
Examples 1 and 2, which, with sample size T � 1024, were the following: for
Example 1 (standard Gaussian white noise), e0(14) � 0:111 and e0(28) � 0:117;
and for Example 2 (AR(1) process with a1 � ÿ0:9), e0(14) � 0:176 and
e0(28) � 0:214. As these values were quite high compared with those with I7,
we repeated the simulations with increased sample size T � 2048, and got
e0(14) � 0:116 and e0(28) � 0:158. We conjecture that the higher the scale j9 of
the wavelet coef®cients in frequency, the more data are needed to get close
enough to the asymptotic normality of the empirical coef®cients. This is not too
surprising as the variance of the integrated classical periodogram is smaller the
larger the range of integration in frequency is. In another, ®nal simulation
example, Example 6, again with T � 1024, we simulated a piecewise stationary
autoregressive process of order 2, with parameters a1 � ÿ0:60 for t < 0:6T and
a1 � ÿ0:208 for t . 0:6T, and a constant a2 � 0:36. This amounts to a sudden
shift of the autoregressive peak from frequency ð=3 to frequency 4ð=9, which is
comparatively close. Compare the plot of the true spectrum in Figure 3. Here we
suspect again the need for using the sets I7,2 and I7,4. Our simulations con®rmed
this conjecture as e1(7) � 0:694, e1(14) � 0:093 and e1(28) � 0:092. Obviously,
integration in frequency over the whole domain leads to wavelet coef®cients
~á(1)

j,k; j9,k9 in I7,1 of similar size, and only integration over ®ner segments in
frequency allows for signi®cant differences. This would not be possible with the
use of existing methods such as the one by Picard, as their test statistic (cf.
Equation (1.1)) is based on uniform integration over frequency. So the real
improvement of our new method shows up in Examples 5 and 6.

As mentioned at the beginning of this section, it is also of considerable
interest to compare these results with the performance of the test using the pre-
periodogram instead, i.e. with coef®cients ~á(2)

j,k; j9,k9. We repeated the experiments
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done for Example 2 (i.e. under the null hypothesis H0 of a stationary AR(1)
with coef®cient a1 � ÿ0:9) with e0(7) � 0:117 for the use of I7,1 and (to give
a comparison with the performance on H1, below) also e0(14) � 0:124 for I7,2.
That is, the performance of the test on H0, based on the pre-periodogram, is as
close to the nominal level of á � 0:100 as it was for the segmented
periodogram.

As a typical illustration of the performance on the alternative H1, we chose
Example 4 with C � 1:65, where we got e1(7) � 0:106 and, as an example
with a higher number of coef®cients needed, Example 6: here, e1(7) � 0:312,
whereas e1(14) � 0:102, which is roughly the same improvement as that
observed already for the segmented periodogram.

Finally we apply our procedure to a data set which is typical for the kind of
applications we have in mind. The data shown in Figure 4(a) are the ®rst 3072
observations of a set of tremor data recorded in the Cognitive Neuroscience
Laboratory of the University of Quebec at Montreal in 1995 by Professors
Anne Beuter and Roderick Edwards. The object of this study is to compare
different regions of tremor activity coming from a subject with Parkinson's
disease. Note that we added a Gaussian white noise of standard deviation 0.01
to the original data, in order to break the discrete nature of the data (where the
level of the additional noise was kept small enough not to mask the variance
structure in the original data). As our aim is to detect possible changes in the
second-order structure of the data (and not in the trend), we investigated three
consecutive segments of length 1024 of the ®rst-order differenced series, shown
in Figure 4(b). Using the simplest of our test procedures, i.e. the same
con®guration as for the simulated Examples 1±3 (based on I7,1), separately on
one segment after another, the results were as follows. The test of level á � 0:1

FIGURE 3. Example 6: True spectrum of piecewise constant AR(2) process.
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did not reject stationarity in the ®rst and the third segment, whereas it rejected
the null hypothesis for the second segment. This seems to be highly plausible
as by inspection a possible break point can be anticipated in the region shortly
before data point 2000, whereas the oscillation behaviour in the segments
outside this neighbourhood seems to be rather homogeneous. This is in
accordance with the ®ndings of the neurologists who attributed only two
different regimes of tremor activity to this particular part of the data.

Summarizing, our (simulated) examples have shown that the two test
procedures not only seem to keep the nominal level on H0, but also show
suf®cient power on H1. As the method based on the pre-periodogram did not
lead to a signi®cant improvement for most simple simulated examples, we
recommend the use of the algorithmically much faster method based on the
segmented periodogram. However, an estimator based on two-dimensional
tensor wavelet coef®cients of the pre-periodogram investigated in Neumann and
von Sachs (1997) proved useful for situations of considerably different
regularity of the time-dependent spectrum f (u, ù) in time and frequency. We
believe none the less that there are situations where it might be necessary to

FIGURE 4. Example 7: Tremor data.
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run a pre-periodogram based test, e.g. if a lot of frequency resolution would be
necessary, or where a situation of long-range dependence might call for the
need to incorporate a long range of lags, even for a locally changing spectrum
in time. A de®nite advantage, however, is that we can consider the possibility
of performing both estimation and testing simultaneously with the same non-
parametric method. That is, we can use the empirical wavelet coef®cients of the
very estimation method we have chosen to perform the test for stationarity, and
will possibly bene®t, at least in the estimation, if we use the pre-periodogram.
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