Serial rank statistics for detection of changes

M. Hušková

Department of Statistics, Charles University, Sokolovská 83, CZ-186 00 Praha, Czech Republic

Received December 2001; received in revised form September 2002

Abstract

A class of ranks based test statistics for testing hypothesis of randomness (observations are independent and identically distributed) against the alternative that the observations become dependent at some unknown time point is introduced and its limit properties are studied. The considered problem belongs to the area of the change-point analysis.

© 2003 Elsevier Science B.V. All rights reserved.

MSC: 62G20; 62E20; 60F17

Keywords: Independence; AR-sequences; Change point detection; Serial rank statistics

1. Introduction

Let X_1, \ldots, X_n be observations obtained at ordered time points $t_1 < \cdots < t_n$. We are interested in testing that the observations are independent identically distributed (iid) random variables (H_0) against the alternative (H_1) that there exists $m \in [1, n - 1]$ such that the first m observations are independent identically distributed (iid) random variables and the observations obtained after the mth one are dependent, typically form an AR- or ARMA sequence. In other words we are interested in testing independence against alternative that after some unknown $m(< n)$ the independence of observations changes to a certain dependence.

Most of the test procedures for detection of changes in statistical models was developed for a change in location or regression parameters or in the distribution of single observations (for review see recent books by Csörgő and Horváth, 1997; Brodsky and Darkhovskiy, 2000; Chen and Gupta, 2000 among others). The procedures for detection of changes in type of dependence, e.g. independence versus AR-dependence has become of interest mostly during the last 10 years. One of

In the present paper a class of test statistics based on serial rank statistics is introduced and studied. The procedure is simple and since the proposed test statistic is distribution-free under the null hypothesis the critical values can be calculated relatively easily.

Wilcoxon type serial rank statistics were introduced by Wald and Wolfowitz (1943) for testing randomness against serial dependence. Later on general rank based statistics were introduced and studied not only for testing randomness versus dependence but also for more general problems, e.g. for testing ARMA(p,q) dependence against ARMA($p+d,q+d$) dependence. For more information see the survey papers by Hallin and Puri (1992) and Hallin and Werker (1999) and the references there. It appears that rank based procedures are quite useful in a number of problems in time series analysis.

In the present paper we propose serial rank based test procedures for testing hypothesis of independence (H_0) against alternatives where at some unknown time points the observations become serially dependent. The resulting test procedures are distribution-free and are easy to calculate. We focus on the max type statistics. However, the sum type and the MOSUM type test statistics can be introduced along the same line. The limit distributions of the proposed test statistics under the null hypothesis are derived and approximations to the critical values can be obtained either through the limit distributions of the test statistics under the null hypothesis or through simulations.

The main results are contained in Section 2. Namely, a class of test statistics for the considered testing problem is introduced and their limit behavior under the null hypothesis are formulated and some remarks on possible approximations to the desired critical values are made. The proof of the main theorem is postponed to Section 3.

2. Main results

We consider the testing problem

\[H_0: X_1, \ldots, X_n \text{ i.i.d. random variables with continuous d.f.} \]

against

\[H_1: \text{there is } m < n \text{ such that} \]

\[X_1, \ldots, X_m \text{ are i.i.d. r.v.'s and } X_{m+1}, \ldots, X_n \text{ are dependent.} \]
Our test statistics will be based on the rank statistics

\[S_k(a) = \sum_{i=2}^{k} a_n(R_i)a_n(R_{i-1}), \quad k = 2, \ldots, n, \]

(2.1)

\[S_0^k(a) = \sum_{i=k+1}^{n} a_n(R_i)a_n(R_{i-1}), \quad k = 1, \ldots, n, \]

(2.2)

where \(R_i \) is the rank of \(X_i \) among \(X_1, \ldots, X_n \) and \(a_n(1), \ldots, a_n(n) \) are scores satisfying

\[\bar{a}_n = \frac{1}{n} \sum_{i=1}^{n} a_n(i) = 0. \]

(2.3)

The statistics \(S_k(a) \) and \(S_0^k(a) \) can be viewed as serial rank statistics based on the ranks \((R_1, \ldots, R_k) \) and \((R_{k+1}, \ldots, R_n) \), respectively. We set

\[\sigma_n^2(a) = \frac{1}{n} \sum_{i=1}^{n} a_n^2(i). \]

(2.4)

At first we recall simple properties of \(S_k(a) \) and \(S_0^k(a) \) that provide motivation for definition of the test statistics. Straightforward calculations (for more details see Lemma 3.1) give that under \(H_0 \)

\[E \left(\frac{1}{k-1} S_k(a) - \frac{1}{n-k} S_0^k(a) \right) = 0. \]

(2.5)

Tedious but direct calculations (for more details see Section 3) give also that under the null hypothesis, as \(n \to \infty \),

\[E \left(\frac{1}{k} S_k(a) - \frac{1}{n-k} S_0^k(a) \right)^2 = \frac{n}{k(n-k)} \sigma_n^4(a)(1 + O(n^{-1})) \]

(2.6)

uniformly in \(1 < k < n \). By a slight modification of the proof of Corollary 1.1 in Hauesler et al. (2000) we observe that under the null hypothesis and the assumptions of Theorem 2.1 below for any \(t \in (0, 1) \), as \(n \to \infty \),

\[\frac{S_{[nt]}(a)}{\sqrt{[nt]\sigma_n^2(a)}} \to^D N(0, 1), \]

\[\frac{S_{0, [nt]}^0(a)}{\sqrt{n-[nt]\sigma_n^2(a)}} \to^D N(0, 1), \]
where \(\to^D \) denotes convergence in distribution, while under alternatives with \(X_m, \ldots, X_n \) forming AR- or ARMA sequence
\[
\frac{S_{\lfloor nt \rfloor}(a)}{[nt]} \to^P c(t),
\]
\[
\frac{S_{\lfloor nt \rfloor}^0(a)}{[nt]} \to^P c^0(t),
\]
where \(c(t) - c^0(t) \neq 0 \) for at least some \(t \in (0,1) \).

Now, using union-intersection principle (cf. Hawkins, 1989; Csörgő and Horváth, 1997) we introduce our test statistics as follows:
\[
T_n(a) = \max_{1 < k < n} \sqrt{\frac{k(n-k)}{n}} \frac{1}{\sigma_n^2(a)} \left| \frac{1}{k-1} S_k(a) - \frac{1}{n-k} S_{\lfloor nt \rfloor}^0(a) \right|.
\]
(2.7)

This is a so called max-type test statistic. Similarly structured test statistics are used for detecting other type of changes.

Large values of \(T_n(a) \) indicate that the null hypothesis is violated.

Since the proposed test statistic \(T_n(a) \) depends on the observations only through the ranks \(R_1, \ldots, R_n \) the resulting test is distribution-free under the null hypothesis.

Approximation to the critical values can be obtained either from its limit distribution under the null hypothesis (see Theorem 2.1 below) or by simulations.

We assume that the scores \(a_n(1), \ldots, a_n(n) \) in addition to (2.3) satisfy
\[
\sigma_n^2(a) \geq D_1
\]
(2.8)
\[
\frac{1}{n} \sum_{i=1}^n a_n^4(i) \leq D_2
\]
(2.9)
with some positive \(D_1 \) and \(D_2 \).

Theorem 2.1. Let \(X_1, \ldots, X_n \) be iid random variables with continuous distribution function and let the scores satisfy (2.3), (2.8)–(2.9). Then for all \(y \)
\[
P(\sqrt{2 \log n T_n(a)} \leq 2 \log n \log n + y + \frac{1}{2} \log \log n - \frac{1}{2} \log \pi) \to \exp\{-2e^{-y}\},
\]
(2.10)
as \(n \to \infty \).

The proof is postponed until the next section.

One can introduce other classes of test statistics based on weighted maxima of serial rank statistics for the considered testing problem, e.g.
\[
\max_{1 < k < n} \frac{1}{\sqrt{n}} \frac{1}{\sigma_n^4(a)} \left| \frac{1}{k-1} S_k(a) - \frac{1}{n-k} S_{\lfloor nt \rfloor}^0(a) \right| w(k/n),
\]
where \(w \) is a weighted function. Eventually, one can consider a MOSUM (moving sum) type test procedure

\[
\max_{G < k < n - G} \frac{1}{\sqrt{2G}} \frac{1}{\sigma_n^2(a)} \left| \sum_{i=k-G+1}^{k} a_n(R_i)a_n(R_{i-1}) - \sum_{i=k+1}^{k+G} a_n(R_i)a_n(R_{i-1}) \right| ,
\]

where \(G = G(n) \) satisfies \(\lim_{n \to \infty} G(n) = \infty \) and \(\lim_{n \to \infty} G(n)/n = 0 \).

Motivated by results of Hallin et al. (1987) and the above test statistics one can develop test statistics for more general type of change point alternatives, e.g., one can consider the test statistic

\[
T_n(a,s) = \max_{s < k < n-s} \sqrt{\frac{k(n-k)}{n}} \frac{1}{\sigma_n^2(a)} \times \left| \frac{1}{k-1} \sum_{i=s}^{k} a_n(R_i)a_n(R_{i-s}) - \frac{1}{n-k} \sum_{i=k}^{n-s} a_n(R_i)a_n(R_{i+s}) \right| , \quad s = 1, \ldots .
\]

3. Proofs

Since the test statistic \(T_n(a) \) is distribution-free under the null hypothesis we may assume without loss of generality that \(R_1, \ldots, R_n \) are ranks of \(U_1, \ldots, U_n \) which is a sample from \((0,1)\)-uniform distribution.

We start with a technical lemma on the moments of some rank statistics.

Lemma 3.1. Let \(U_1, \ldots, U_n \) be iid random variables with uniform distribution function on \((0,1)\) and let \(R_1, \ldots, R_n \) be corresponding ranks. Let the scores \(a_n(.) \) \(b_n(.) \) satisfy (2.3) and

\[
\sum_{i=1}^{n} b_n(i) = 0,
\]

respectively. Then, as \(n \to \infty \),

\[
Ea_n(R_1)b_n(R_2) = - \frac{1}{n(n-1)} \sum_{i=1}^{n} b_n(i)a_n(i)
\]

and, as \(n \to \infty \),

\[
E(a_n(R_1)b_n(R_2))^2 = \frac{1}{n^2} \sum_{i=1}^{n} a_n^2(i) \sum_{j=1}^{n} b_n^2(j)(1 + O(n^{-1})),
\]

\[
Ea_n(R_1)b_n(R_2)a_n(R_3)b_n(R_3) = O \left\{ \frac{1}{n^3} \left(\sum_{i=1}^{n} a_n^2(i)b_n^2(i) + \left(\sum_{i=1}^{n} b_n(i)a_n(i) \right)^2 \right) \right\}
\]
\[Ea_n(R_1)a_n(R_2)b_n(R_3)b_n(R_4) = O \left\{ \frac{1}{n^4} \left(\sum_{i=1}^{n} a_n^2(i)b_n^2(i) + \left(\sum_{i=1}^{n} b_n(i)a_n(i) \right)^2 + \sum_{i=1}^{n} a_n^2(i) \sum_{j=1}^{n} b_n^2(j) \right) \right\}. \] (3.5)

Proof. The assertions follow by direct calculations applying (2.3) and (3.1) and
\[P(R_1 = r_1, \ldots, R_n = r_n) = \frac{1}{n!} \]
for any permutation \(r_1, \ldots, r_n \) of \(1, \ldots, n \).

As easy consequences we obtain
\[ES_k(a) = -\frac{k - 1}{n - 1} \sigma_n^2(a) \]
\[ES_k^0(a) = -\frac{n - k}{n - 1} \sigma_n^2(a) \]
hence (2.5) holds true. Again by Lemma 3.1, as \(n \to \infty \),
\[ES_k^2(a) = (k - 1)Ea_n^2(R_1)a_n^2(R_2) + 2(k - 2)Ea_n^2(R_1)a_n(R_2)a_n(R_3) + (k - 2)(k - 3)Ea_n(R_1)a_n(R_2)a_n(R_3)a_n(R_3) \]
\[= \frac{k}{n^2} \left(\sum_{i=1}^{n} a_n^2(i) \right)^2 \left(1 + O\left(\frac{1}{n} \right) \right) + O\left(\frac{k^2}{n^3} \sum_{i=1}^{n} a_n^4(i) \right) \]
\[= k \sigma_n^4(a)(1 + O(n^{-1})) \]
uniformly in \(1 < k < n \). Quite analogously we get
\[ES_k^0(a) = (n - k)\sigma_n^2(a)(1 + O(n^{-1})), \]
\[\text{cov}(S_k(a), S_k^0(a)) = \frac{k(n - k)}{n^2} \sigma_n^4(a)(1 + O(n^{-1})) \]
uniformly in \(1 < k < n \) and hence (2.6) holds true.

The idea of the proof of Theorem 2.1 relies on the fact that \(S_k(a) \) and \(S_k^0(a) \) are sufficiently close to statistics of a similar structure for which the limit distribution of the corresponding maxima is known. Namely, we show that \(S_k(a) \) and \(S_k^0(a) \) are sufficiently close to the partial sums
\[S_k(a, U) = \sum_{i=2}^{k} (a_n([nU] + 1) - \tilde{a}_n(U))(a_n([nU_{i-1}] + 1) - \tilde{a}_n(U)), \quad k = 2, \ldots, n, \] (3.6)
and

$$S_k^0(a, U) = \sum_{i=k+1}^{n} (a_n([nU_i] + 1) - \tilde{a}_n(U))(a_n([nU_{i-1}] + 1) - \tilde{a}_n(U)), \quad k = 1, \ldots, n - 1,$$

(3.7)

$$\tilde{a}_n(U) = \frac{1}{n} \sum_{i=1}^{n} a_n([nU_i] + 1),$$

where $[c]$ denotes the integer part of c.

Let $U_\cdot = (U_1, \ldots, U_n)$ be the ordered sample corresponding to (U_1, \ldots, U_n). It is well-known that U_\cdot and (R_1, \ldots, R_n) are independent random vectors and we can write

$$S_k(a, U) = \sum_{i=2}^{k} (a_n([nU(R_i)] + 1) - \tilde{a}_n(U_\cdot))(a_n([nU(R_{i-1})] + 1) - \tilde{a}_n(U_\cdot)), \quad k = 2, \ldots, n.$$

(3.8)

Therefore

$$E \left(\frac{1}{k - 1} S_k(a, U) - \frac{1}{n - k} S_k^0(a, U) \right) = E \left\{ E \left(\frac{1}{k - 1} S_k(a, U) - \frac{1}{n - k} S_k^0(a, U) \right) \bigg| U_\cdot \right\} = 0,$$

(3.9)

where we apply (2.5) with $a_n(i)$ replaced by $a_n([nU(i)] + 1)$. Proceeding similarly and applying (2.6) instead of (2.5) we obtain

$$E \left(\frac{1}{k - 1} S_k(a, U) - \frac{1}{n - k} S_k^0(a, U) \right)^2 = \frac{n}{k(n - k)} \sigma_n^4(a)(1 + O(n^{-1}))$$

(3.10)

uniformly in $1 < k < n$ under H_0. Clearly,

$$Ea_n(U) = \frac{1}{n} \sum_{i=1}^{n} a_n(i).$$

(3.11)

The assertion of Theorem 2.1 is a straightforward consequence of the following two theorems.

Theorem 3.1. Let U_1, \ldots, U_n be iid random variables with uniform distribution function on $(0, 1)$ and let R_1, \ldots, R_n be the corresponding ranks. Let the scores $a_n(.)$ satisfy (2.3), (2.8) and (2.9). Then for all y, as $n \to \infty$,

$$\max_{1 < k < n} \sqrt{\frac{k(n - k)}{n}} \left(\frac{1}{k - 1} |S_k(a) - S_k(a, U)| + \frac{1}{n - k} |S_k^0(a) - S_k^0(a, U)| \right) = o_P(n^{-\gamma})$$

(3.12)

with some $\gamma > 0$.
Theorem 3.2. For each $n = 1, 2 \ldots$ let Y_1, \ldots, Y_n be iid random variables with zero mean, unit variance and finite fourth moment, $n = 1, 2 \ldots$. Then for all y

$$P \left(\sqrt{2 \log \log n} \max_{1 < k < n} \left| \frac{k(n-k)}{n} \left(\frac{1}{k-1} \sum_{i=2}^{k} Y_{ni}Y_{n,i-1} - \frac{1}{n-k} \sum_{i=k+1}^{n} Y_{ni}Y_{n,i-1} \right) \right| \leq 2 \log \log n + y + \frac{1}{2} \log \log n - \frac{1}{2} \log \pi \right) \to \exp\{ -2e^{-y} \}, \quad (3.13)$$

as $n \to \infty$.

Theorem 3.1 can be useful in deriving the limit behavior of the test statistics discussed at the end of Section 2. Theorem 3.2 can be used in developing test statistics for the considered testing problem using empirical correlation coefficients of the first k and last $n-k$ observations. One should point out that the important issue is that we consider a triangular array of the Y’s.

Proof of Theorem 3.1. We employ the martingale property of properly transformed $S_k(a)$ and a number of properties of rank statistics including moment inequality for rank statistics proved in Hušková (1997).

Set

$$V_k(a, b) = \sum_{i=2}^{k} a_n(R_i)b_n(R_{i-1}), \quad k = 2, \ldots, n$$

$$\tilde{V}_k(a, b) = V_k(a, b) + \sum_{i=2}^{k} b_n(R_{i-1}) \frac{1}{n-i+1} \sum_{j=1}^{i-1} a_n(R_j), \quad k = 2, \ldots, n - 1, \quad (3.14)$$

where $a_n(1), \ldots, a_n(n)$ and $b_n(1), \ldots, b_n(n)$ are scores satisfying (2.3), (2.8), (2.9) and

$$\frac{1}{n} \sum_{i=2}^{n} b_n^4(i) \leq D_3, \quad n \geq 3 \quad (3.15)$$

$$\frac{1}{n} \sum_{i=1}^{n} b_n(i) = 0 \quad (3.16)$$

with some $D_3 > 0$. $V_k^0(a, b)$ and $\tilde{V}_k^0(a, b)$ are defined accordingly. Clearly,

$$V_k(a, a) = S_k(a), \quad V_k^0(a, a) = S_k^0(a).$$

Next we prove three auxiliary lemmas.

Lemma 3.2. Let U_1, \ldots, U_n be iid random variables with $(0,1)$-uniform distribution and let R_1, \ldots, R_n be the corresponding ranks. Let assumptions (2.3), (2.8), (2.9), (3.15)–(3.16) be satisfied.
Then \((\tilde{V}_k(a, b), \sigma\{R_1, \ldots, R_{k-1}\}; k=2, \ldots, n-1)\) and \((\tilde{V}_k^0(a, b), \sigma\{R_n, \ldots, R_{k+1}\}; k=n-1, \ldots, 1)\) form martingales. Here \(\sigma\{R_1, \ldots, R_{k-1}\}\) and \(\sigma\{R_n, \ldots, R_{k+1}\}\) denote a \(\sigma\)-field generated by \(R_1, \ldots, R_{k-1}\) and by \(R_n, \ldots, R_{k+1}\), respectively.

Moreover, as \(n \to \infty\),

\[
E \tilde{V}_k(a, b) = 0, \quad k = 2, \ldots, n, \quad (3.17)
\]

\[
E \tilde{V}_k^0(a, b) = 0, \quad k = 2, \ldots, n, \quad (3.18)
\]

\[
E \tilde{V}_k^2(a, b) = k \sigma_n^2(a) \sigma_n^2(b) \left(1 + O\left(\frac{k}{n} + \log((n-k)/n) \right) \right), \quad (3.19)
\]

\[
E(\tilde{V}_k^0(a, b))^2 = (n-k) \sigma_n^2(a) \sigma_n^2(b) \left(1 + O\left(\frac{n-k}{n} + \log((k)/n) \right) \right) \quad (3.20)
\]

uniformly in \(1 < k < n - 1\).

Proof. Direct calculations yield (3.17), (3.18) and that

\[
E(\tilde{V}_k(a, b)|R_1, \ldots, R_{k-1}) = \tilde{V}_{k-1}(a, b) + b_n(R_{k-1})E(a_n(R_k)|R_1, \ldots, R_{k-1})
\]

\[
+ b_n(R_{k-1}) \frac{1}{n-k+1} \sum_{j=1}^{k-1} a_n(R_j)
\]

\[
= \tilde{V}_{k-1}(a, b), \quad k = 3, \ldots, n,
\]

where we applied also (2.3). This means that \(\tilde{V}_k(a, b), k = 2, \ldots, n,\) forms a martingale and also that the expectation of \(\tilde{V}_k(a, b)\) is zero.

Using Lemma 3.1, (3.17), (2.3), (3.1) and martingale properties of \(\tilde{V}_k\)‘s we have

\[
E \tilde{V}_k^2(a, b) = \sum_{i=2}^{k} Eb_n^2(R_{i-1}) \left(a_n(R_i) \left(1 - \frac{1}{n-i+1} \right) - \frac{1}{n-i+1} \sum_{j=i+1}^{n} a_n(R_j) \right)^2
\]

\[
= Eb_n^2(R_1) a_n^2(R_2) \left(\sum_{i=2}^{k} \left(\frac{n-i}{n-i+1} \right)^2 + \sum_{i=2}^{k} \frac{n-i}{(n-i+1)^2} \right)
\]

\[
E b_n^2(R_1) a_n(R_2) a_n(R_3) \left(-2 \sum_{i=2}^{k} \frac{(n-i)^2}{(n-i+1)^2} + \sum_{i=2}^{k} \frac{(n-i)(n-i+1)}{(n-i+1)^2} \right)
\]

\[
= \sigma_n^2(a) \sigma_n^2(b) (k + O(\log((n-k)/n) + k/n))
\]

which implies (3.19). The assertions on \(\tilde{V}_k^0, k = 1, \ldots, n,\) can be shown in the same way therefore it is omitted. \(\Box\)
Lemma 3.3. Under the assumptions of Lemma 3.2 for any $C > 0$ there exist n_C and $D_C > 0$ such that for all $n \geq n_C$

\[
P\left(\max_{2 < k < n_k} \frac{1}{\sqrt{k}} \left| \hat{V}_k(a, b) \right| \geq C \right) \leq \frac{D_C}{C^2} \sigma_n^2(b) \sigma_n^2(a)(\log k_n + 1),
\]

\[
P\left(\max_{2 < k < n_k} \frac{1}{\sqrt{n-k}} \left| \hat{V}_k^0(a, b) \right| \geq C \right) \leq \frac{D_C}{C^2} \sigma_n^2(b) \sigma_n^2(a)(\log k_n + 1)
\]

for any $1 < k_n < n$ and

\[
P\left(\max_{2 < k < n} \frac{1}{\sqrt{n}} \left| \hat{V}_k(a, b) \right| \geq C \right) \leq \frac{D_C}{C^2} \sigma_n^2(b) \sigma_n^2(a).
\]

\[
P\left(\max_{2 < k < n} \frac{1}{\sqrt{n}} \left| \hat{V}_k^0(a, b) \right| \geq C \right) \leq \frac{D_C}{C^2} \sigma_n^2(b) \sigma_n^2(a).
\]

Proof. All inequalities are straightforward consequences of Lemma 3.1 and of the Hájek-Rényi-Chow inequality for martingales (see, e.g. Chow and Teicher, 1988).

Next we investigate

\[
\hat{V}_k(a, b) = V_k(a, b) - \hat{V}_k(a, b) = -\sum_{i=2}^{k} b_n(R_{i-1}) \frac{1}{n-i+1} \sum_{j=1}^{i-1} a_n(R_j), \quad k = 2, \ldots, n - 1
\]

and

\[
\hat{V}_k^0(a, b) = V_k^0(a, b) - \hat{V}_k^0(a, b), \quad k = 2, \ldots, n.
\]

Lemma 3.4. Let the assumptions of Lemma 3.2 be satisfied. Then

\[
\max_{1 < k < n} \frac{k(n-k)}{n} \frac{1}{k^2} (\hat{V}_k(a, b))^2 = O_p(\sigma_n^2(b)\sigma_n^2(a)(\log n)^2)
\]

and

\[
\max_{1 < k < n} \frac{k(n-k)}{n} \frac{1}{(n-k)^2} (\hat{V}_k^0(a, b))^2 = O_p(\sigma_n^2(b)\sigma_n^2(a)(\log n)^2).
\]

Proof. By the Markov inequality we have that for any $C > 0$

\[
P\left(\max_{1 < k \leq n} \frac{k(n-k)}{n} \frac{1}{k^2} \left| \hat{V}_k(a, b) \right|^2 \geq C \right) \leq \frac{1}{C} \sum_{k=2}^{n} E(\hat{V}_k(a, b))^2 \frac{n-k}{kn}.
\]
and

\[E(\tilde{V}_k(a, b))^2 \leq 2E \left(\sum_{i=2}^{k} b_n(R_{i-1}) a_n(R_{i-1}) \frac{1}{n-i+1} \right)^2 + 2E \left(\sum_{i=2}^{k} b_n(R_{i-1}) \frac{1}{n-i+1} \sum_{j=1}^{i-2} a_n(R_j) \right)^2. \]

Since \(\sum_{i=2}^{k} b_n(R_{i-1}) a_n(R_{i-1}) \frac{1}{n-i+1} \) are the simple linear rank statistics, and regarding the assumptions (2.3), (2.9) we notice that

\[\left(E \sum_{i=2}^{k} b_n(R_{i-1}) a_n(R_{i-1}) \frac{1}{n-i+1} \right)^2 = \left(\frac{1}{n} \sum_{j=1}^{n} a_n(j) b_n(j) \sum_{i=2}^{k} \frac{1}{n-i+1} \right)^2 = O(\sigma_n^2(a)\sigma_n^2(b)(\log((n-k)/n))^2) \]

and

\[\text{var} \left\{ \sum_{i=2}^{k} b_n(R_{i-1}) a_n(R_{i-1}) \frac{1}{n-i+1} \right\} = O \left(\frac{1}{n} \sum_{i=1}^{n} a_n^2(i) b_n^2(i) \sum_{j=2}^{k} \frac{1}{(n-k+1)^2} \right) = O(\sigma_n^2(b)\sqrt{n} \frac{1}{n-k}) \]

therefore

\[E \left(\sum_{i=2}^{k} b_n(R_{i-1}) a_n(R_{i-1}) \frac{1}{n-i+1} \right)^2 \]

\[= O \left\{ \sigma_n^2(b)\sigma_n^2(a) \left(\sqrt{n} \frac{1}{n-k} + (\log((n-k)/n))^2 \right) \right\} \quad (3.26) \]

uniformly in \(1 < k < n \). Finally, by Lemma 3.1 and regarding (2.3) and (3.1) we get

\[E \left(\sum_{i=2}^{k} b_n(R_{i-1}) \frac{1}{n-i+1} \sum_{j=1}^{i-2} a_n(R_j) \right)^2 \]

\[= E \left(\sum_{i=1}^{k-1} b_n(R_i) \frac{1}{n-v} \sum_{j=1}^{v-1} a_n(R_j) \right)^2 \]

\[= O \left(\sigma_n^2(b)\sigma_n^2(a) \left(\sum_{i=1}^{k} \frac{i}{(n-i)^2} + n^{-3/2} \sum_{i=1}^{k} \frac{i^2}{(n-i)^2} + n^{-5/2} \left(\sum_{i=1}^{k} \frac{i}{n-i} \right)^2 \right) \right) \]
uniformly in $1 < k < n$, which together with (3.25) and (3.26) imply (3.21). The proof of (3.22) follows the same line hence it is omitted.

Now, we finish the proof of Theorem 3.1. We decompose the partial sums $S_k(a)$ as follows:

$$S_k(a) = S_k(a, U) + M_k(a) + N_k(a), \quad k = 2, \ldots, n,$$

(3.27)

where

$$M_k(a) = \sum_{i=2}^{k} a_n(R_i)(a_n(R_{i-1}) - (a_n([nU(R_{i-1})] + 1) - \tilde{a}_n(U_{(i)}))),$$

(3.28)

$$N_k(a) = \sum_{i=2}^{k} (a_n(R_i) - (a_n([nU(R_{i})] + 1) - \tilde{a}_n(U_{(i)}))(a_n([nU(R_{i-1})] + 1) - \tilde{a}_n(U_{(i)}))).$$

(3.29)

We apply Lemmas 3.2–3.4 with

$$b_n(i) = a_n(R_i) - (a_n([nU(R_{i})] + 1) - \tilde{a}_n(U_{(i)}))$$

taking $U_{(i)}$. Particularly, we find that with this choice of $a_n(i)$’s and $b_n(i)$’s

$$\sigma^2_n(b) = \sigma_n^2(a, U_{(i)}) = \frac{1}{n} \sum_{i=1}^{n} (a_n(i) - (a_n([nU(i)] + 1) - \tilde{a}_n(U_{(i)})))^2$$

and by Lemma in Hušková (1997) and (2.9)

$$E(\sigma^2_n(a, U_{(i)}))^2 \leq C_2 \frac{1}{n^2} \sum_{i=1}^{n} a_n^4 = O(n^{-1}).$$

This in combination with Lemmas 3.2–3.4 and (3.27) imply, as $n \to \infty$,

$$\max_{1 < k < n} \sqrt{\frac{k(n-k)}{n}} \frac{1}{k} |S_k(a) - S_k(a, U)| = O_p(n^{-\nu})$$

$$\max_{1 < k < n} \sqrt{\frac{k(n-k)}{n}} \frac{1}{n-k} |S_k(a) - S_k(a, U)| = O_p(n^{-\nu})$$

with some $\nu > 0$. Theorem 3.1 is proved.

Proof of Theorem 3.2. The proof is based on a classical results of Strassen (1967). We apply Theorem 4.3 in Strassen (1967) to the random variables

$$Z_{ni} = Y_{ni} Y_{n,i-1}, \quad i = 2, \ldots, n,$$
that have the property
\[E(Z_{ni}|Y_{n1}, \ldots, Y_{ni-1}) = 0 \quad \text{a.s. } i = 2, \ldots, n \]
and
\[E(Z_{ni}^2|Y_{n1}, \ldots, Y_{ni-1}) = Y_{ni-1}^2 \quad \text{a.s. } i = 2, \ldots, n. \]

By Theorem 4.3 of Strassen (1967) there are independent Brownian motions \(\{ W_{nj}(t); t \in [0, \infty) \} \), \(j = 1, 2 \) and sequences of nonnegative random variables \(V_{n2}, \ldots, V_{n[n/2]} \) and \(V_{n[n/2]+1}, \ldots, V_{nn} \) such that
\[
\sum_{i=2}^{k} Z_{ni} = W_n \left(\sum_{i=2}^{k} V_{ni} \right), \quad 2 \leq k \leq n/2
\]
(3.30)
and
\[
\sum_{i=k+1}^{n} Z_{ni} = W_n \left(\sum_{i=k+1}^{n} V_{ni} \right), \quad n/2 < k \leq n.
\]
(3.31)

Moreover, \(V_{nk} \) is \(\sigma\{Z_{n1}, \ldots, Z_{nk}\} \) measurable, \(W_n(\sum_{i=2}^{k} V_{ni} + s) - W_n(\sum_{i=2}^{k} V_{ni}) \) is independent of \(\sigma\{Z_{n1}, \ldots, Z_{nk}\} \) for any \(s > 0 \),
\[
E(V_{nk}|Z_{n2}, \ldots, Z_{nk-1}) = E(Z_{nk}^2|Z_{n2}, \ldots, Z_{nk-1}) = Y_{nk-1}^2 \quad \text{a.s.}
\]
(3.32)
and
\[
E(V_{nk}^2|Z_{n2}, \ldots, Z_{nk-1}) \leq C E(Z_{nk}^4|Z_{n2}, \ldots, Z_{nk-1}) = CY_{nk-1}^4 \quad \text{a.s.}
\]
(3.33)

\(2 \leq k \leq n/2 \), with some \(C > 0 \).

Then by the Hájek-Rényi-Chow inequality (cf. Chow and Teicher, 1988) for any \(\beta > 1/2 \) and any \(x > 0 \) we have
\[
P \left(\max_{2 \leq k \leq n/2} \frac{1}{k^{\beta}} \left| \sum_{i=2}^{k} (V_{ni} - E(V_{ni}|Z_{n2}, \ldots, Z_{ni-1})) \right| \geq x \right)
\leq \frac{1}{x^2} \sum_{i=2}^{n} k^{-2\beta} E Z_{nk}^4 \leq Cx^{-2}
\]
(3.34)
with some \(C > 0 \). Since \(Y_{nk} \) are i.i.d. random variables with zero mean, unit variance and finite fourth moment and by (3.32) we also have for any \(\beta > 1/2 \) and any \(x > 0 \)
\[
P \left(\max_{2 \leq k \leq n/2} \frac{1}{k^{\beta}} \left| \sum_{i=2}^{k} (E(V_{ni}|Z_{n2}, \ldots, Z_{ni-1}) - 1) \right| \geq x \right) \leq Cx^{-2}
\]
(3.35)
with some \(C > 0 \). Lemma 1.2.1 of Csörgő and Révész (1981) yields that
\[
\max_{2 \leq k \leq n} \sup_{|s| \leq Ck^{\beta}} (k^\beta \log k)^{-1/2} |W_{n1}(k) - W_{n1}(k + s)| = O_p(1).
\]
(3.36)
Now, from (3.30) and (3.32)–(3.36) we can infer that
\[
\max_{1 < k \leq n/2} \left| \sum_{i=2}^{k} Y_{ni} Y_{n,i-1} - W_{n1}(k - 1) \right| / k^{1/2-r} = O_p \left(\max_{1 < k \leq n/2} k^{b/(2-(1/2-r) \log k)^2} \right) = O_p(1) \tag{3.37}
\]
for any given $0 < r < \frac{1}{4}$ with properly chosen $\beta = \beta(r) > \frac{1}{2}$.

By symmetry we get for any given $r \in (0, \frac{1}{2})$ that
\[
\max_{n/2 < k \leq n} \left| \sum_{i=k+1}^{n} Y_{ni} Y_{n,i-1} - W_{n2}(n - k) \right| / (n - k)^{1/2-r} = O_p(1). \tag{3.38}
\]

Now, the assertion of the theorem can be concluded from (3.37), (3.38) and the Darling-Erdős theorem (e.g., Theorem A.4.1 in Csörgő and Horváth, 1997). The proof is now complete.

Proof of Theorem 2.1. The assertion follows from Theorems 3.1 and 3.2 with
\[
Y_{ni} = (a_n([n U_i] + 1) - \bar{a}_n)/\sigma_n(a), \quad i = 2, \ldots, n
\]
and from the observation
\[
\bar{a}_n(U_.) = O_p(n^{-1/2}). \quad \square
\]

Acknowledgements

The author wishes to express his sincere thanks to the referees for very careful reading and helpful remarks of the manuscript. Partially supported by grant GAČR 201/00/0769, NATO PST.CLG.977607 and MSM 113200008.

References

